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Abstract: Photodegradation is the chemical conversion of large, toxic, and complex molecules into
non-toxic, simpler, and lower molecular weight species due to light exposure. Heterogeneous
photocatalysis has sufficient potential to degrade toxic organic pollutants present in wastewater. As
industries discharge their effluents containing organic pollutants into natural water bodies, which
penetrate into the subsurface through connected pores it is necessary to study this process in natural
or tap water. Tap water (TW) is mainly obtained from underground wells having inorganic salts in a
minute quantity with a conductivity of 500 µS/cm. TW contains inorganic anions, which affect the
photocatalytic activity and photocatalysis process. The aim of this review is to evaluate the effect of
TW on the photo-degradation of organic pollutants such as dyes, pharmaceutical products, pesticides,
etc., with the support of the literature. The TW had a diverse effect on the photodegradation of
organic pollutants; either it may enhance or decrease the rate of pollutants’ photodegradation.

Keywords: tap water; photodegradation; dyes; pharmaceutical products; pesticides; environmental
monitoring

1. Introduction

Organic pollutants are toxic compounds that can cause different health problems
in humans when they surpass their permitted levels. Various industrial products, e.g.,
petroleum hydrocarbons, detergents, plastics, dyes, pesticides, and organic solvents, are
the major sources of organic compounds [1]. Toxic organic pollutants cause a serious
threat to the environment and ecological existence. Organic pollutants have a harmful
effect on human health and thus have received researchers’ attention to degrade them by
applying novel approaches and developing new protocols [2]. Various physical, chem-
ical, and biological approaches were employed for the removal of organic pollutants,
such as adsorption [3], flocculation [4], coagulation [5], biodegradation [6], phytoreme-
diation [7], electrochemical degradation [8] heterogenous photocatalysis [9], etc. With
increased environmental awareness, an environmentally friendly approach to eliminating
organic pollutants from municipal and industrial wastewater is required [10]. Advanced
oxidation processes (AOPs) are well-documented and viable chemical methods for the
wastewater treatment and production of potable water via oxidation. AOP is an aqueous
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phase oxidation technique that incorporates the insitu generation of strong oxidizing agents
such as hydroxyl radicals and sulfate radicals that facilitate the oxidation of polluting
molecules found in wastewater [11]. Among the AOPs, photocatalysis is a sustainable
and eco-friendly treatment process and has been demonstrated to have considerable po-
tential for the removal of dyes from wastewater [12]. This potential process is mainly
performed for the remediation of dyes [9,13–15]. Heterogeneous photocatalysis has suffi-
cient potential to degrade toxic organic dyes present in wastewater [16]. In this method, the
wastewater contaminated with dye is treated with catalysts composed of semiconducting
materials and irradiated under light [17]. This process is commonly reported for the pho-
todegradation of dyes [18], antibiotics [19], pesticides [20], volatile organic pollutants [21],
solvents [22], polycyclic aromatic hydrocarbons [23], etc. For the enhancement of efficiency,
the process is performed in the presence of heterogeneous photocatalysts such as MoO2
nanocrystals [24], ZnO/CdS nanocomposite [25], NiO–CuFe2O4 nano-heterostructure [26],
g-C3N4 nanosheets/carbon dot/FeOCl nanocomposites [27], oxidized graphitic carbon
nitride [28], Z-scheme Bi2WO6-P25 heterojunction [29], Fe2O3 multi-walled carbon nan-
otube [30], CoP/ZnSnO3 composite [31], etc. Nanoparticles (NPs) have displayed broad
applications in the municipal and industrial wastewater treatment sectors [32].

The mechanism of photodegradation is that as light falls upon a photocatalyst, elec-
trons are excited from the valence band (VB) to the conduction band (CB) and create positive
holes (h+) in the VB. The electron in the VB reacts with O2 to produce a superoxide anion
radical (·O2

−), while the h+ of the VB reacts with H2O and generates hydroxyl radicals
(·OH). Both of these radicals are very reactive and take part in the photodegradation of
organic pollutants [33]. This process is normally carried out in an aqueous medium, which
is usually purified water [34–37].

The organic pollutants contained in industrial effluents are impure and contain various
other impurities. These impurities are mostly inorganic anions and cations, which are also
present in tap water (TW) obtained from different sources, and thus it is necessary to study
the effect of these mineral ions on the photodegradation of organic pollutants such as dyes,
pesticides, antibiotics, etc. Such assessment will also lead to applying the process to real
water samples, which will ultimately pave the way for the practical implementation of
this process for pollutant remediation. The occurrence of dissolved inorganic ions is rather
common in dye-containing industrial wastewater, which may compete for the active sites
on the photocatalyst’s surface or deactivate the photocatalyst and, subsequently, decrease
the degradation rate of the target dyes [38]. The photodegradation of some dyes also
generates some inorganic anions [39], whose presence in the solutions may also affect the
photodegradation process. These inorganic ions are present in TW. TW usually comes from
water treatment plants and is originally from artesian wells or rivers [40]. TW is mainly
obtained from underground wells having inorganic salts in minute quantities such as Na,
Ca, Mg, sulfates, chlorides, and hydrocarbonates. Mineral content in drinking water is
essential for human health [41]. Groundwater is sometimes regarded as the finest and most
essential source of drinking water. Groundwater reserves have significantly declined in
quality as well as quantity in several arid and semi-arid regions around the world. In recent
years, groundwater contamination has increased dramatically in arid and semi-arid regions
of the world. Hydrocarbons, synthetic organic compounds, anionic and cationic minerals,
viruses, and radionuclides are the major pollutants reported in groundwater. Apart from
these, nitrite and nitrate ions also occur naturally as part of the nitrogen cycle [42]. TW is
contaminated by pipe leaks as well as corrosion in pipes [43]. The literature shows that
the TW which is mostly used in household activities, contains carbonates, bicarbonates,
chlorides, oxides, sulfates, and phosphates of different metal ions such as Fe2+, Mg2+ Ca2+,

and Si2+ [44]. The levels of different cations in TW can be determined by applying atomic
absorption spectroscopy. Nano-Fe-bearing particles have been reported in TW [45,46].
Bicarbonate and carbonate ions are also commonly found in groundwater, surface water,
and wastewater. Carbonate and bicarbonate ions are known as hydroxyl radical scavengers
in certain processes such as pulse radiolysis and flash photolysis [46]. The taste of water
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depends on the chemical composition of the salt content, with both anions and cations [47].
The cations and anions content of TW can both positively and negatively affect the taste,
with undesirable taste resulting from anions and cations levels that are above or below
regulatory limits [48]. TW has a 500 µS/cm conductivity and its pH range is 7–8, which
is a very suitable pH for .OH radical formation [49]. According to the WHO standard
specifications, the total dissolved solids in TW is 1000 mg/L and its pH range is 6.5–8.5 [50].

Dyeing wastewater also contains large amounts of inorganic ions because the dyeing
process requires the addition of inorganic ions for various purposes. Both Cl- and SO42-
are common inorganic ions used in textile dyeing as promoters, exhausting, retarding, or
leveling agents. These ions that remain in the wastewater may have significant impacts
on the degradation process of organic pollutants. Therefore, it is necessary to investigate
the roles of inorganic ions during the dye degradation process [51]. Along with inorganic
ions, wastewater also contains natural organic matter, which can also influence the pho-
todegradation of organic pollutants in several ways [52,53]. Natural organic matter ranges
from aliphatic to highly colored and aromatic compounds, and from highly charged to
uncharged, with different molecular sizes and a wide variety of chemical compositions [40].

Various reviews are reported, containing the factors affecting the rate of photodegra-
dation of dyes as a portion [17,54–59], however, no review reports on assessing the effect of
TW on the photodegradation of dyes. Although there is limited research on TW’s impact
on the photocatalytic degradation of dyes and other organic pollutants such as pharmaceu-
ticals, pesticides, and so on, an attempt was made to synthesize the existing information in
this study and evaluate the influence of TW on the photo-degradation of dyes as well as
other organic pollutants.

According to the Scopus database, research on the effect of TW on the photodegrada-
tion of organic pollutants is limited. As shown in Figure 1, the number of research papers
published on the photodegradation of organic pollutants has increased steadily from 2010
to 2022.
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The effects of TW on the photo-degradation of some organic pollutants are summa-
rized below.

2. Effect of TW on Photodegradation of Dyes

About 1–20% of the total dyes are lost during the dyeing process and are released into
the environment in textile effluents [60]. The dyes released in wastewater are highly toxic,
xenobiotic, teratogenic, and carcinogenic to living organisms [61]. Dyes are the emergent
pollutants responsible for various severe deleterious effects such as drinking water poison-
ing, death of aquatic life, and the ruining of soil [62]. Organic dyes in water have caused a
major problem owing to their huge burden on both the environment and the economy [63].
According to the literature, TW represents a dual effect: either a decrease or an increase in
photocatalysts activity and efficiency of dye degradation [49]. The photodegradation of
methylene blue (MB) in wastewater and TW by Ag NPs/TiO2/Ti3C2Tx was compared and
it was observed that the degradation of MB was a little slower in the wastewater than in
the TW, which might be due to other competing organic species present in the wastewater.
However, in both the mediums, MB dye is completely degraded in 30 min in wastewater
and TW, while in deionized water it rapidly degrades in the first 15 min under UV light [64].
Similarly, the photodegradation of MB dye without a catalyst in TW is higher than that
occurring in distilled water, which might be due to the presence of a small Fe concentration
that can create the photo-Fenton system with H2O2 and generate .OH having a high oxidiz-
ing capacity. In the presence of 0.02% nanoTiO2 stabilized by 1% CMBCD-P (carboxymethyl
β-cyclodextrin polymer) catalyst, the degradation of MB is faster in distilled water than
TW which is due to the presence of dissolved organic components in TW which have an
initial inhibiting effect [65]. In the Fenton process, ferrous ions (Fe2+) react with H2O2 in the
acidic media and oxidize Fe2+ to ferric ions (Fe3+) which generates •OH, which degrades
the organic contaminants [66].

The methyl violet photo-degradation by TiO2/Pd and TiO2/Pt in TW was found to be
less in TW as compared to deionized water, applying the same experimental parameters.
The reasonable causes explained for such decreases are the presence of additional species
in TW e.g., organic, inorganic, and metallic ions, which adsorb on the catalyst’s active sites
and hence decrease its activity [67]. Fe3O4–TiO2 nanoparticles (NPs) photocatalytically
degraded a food dye, Brilliant Blue FCF in the presence of peroxymonosulfate, distilled
water, TW, river water, and filtrated raw municipal wastewater in the UVA system. The
degradation results show that the rate of photocatalytic degradation of dye in distilled
water and TW is almost the same, while river water and filtrated raw municipal wastewater
decrease the photocatalytic efficiency [68]. Similarly, the diazo reactive red 120 and triazo
direct blue 71 dyes in the presence of Au–Nx-TiO2 nanospheres under sunlight irradiation
demonstrate a 10% lower degradation than the degradation occurring in milli-Q water, and
the reason is the presence of organic, inorganic, and metal ions in TW [69]. The degradation
of methyl orange dye using ZnO NPs loaded on activated carbon in TW was very good due
to the common ions and other impurities [70]. The photocatalysts degraded Fe3O4 NPs and
Fe3O4/ZrO2 NPs degraded methyl red dye very efficiently in TW than degraded in distilled
water, as shown in Figure 2 [71]. It is reported that natural organic matter sometimes acts
as a photosensitizer for a large variety of chemical reactions that are produced by singlet
oxygen, energy transfer, and radical species generation [72]. The effects of TW on the
photodegradation of some dyes are summarized in Table 1.
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Figure 2. U.V./Vis spectra of methyl red dye in TW before and after reaction using (a) Fe3O4

NPs, (b) Fe3O4/ZrO2 NPs, (c) %degradation comparison of methyl red dye in distilled and TW
photodegraded by Fe3O4 NPs, and (d) %degradation comparison of methyl red dye in distilled and
TW photodegraded by Fe3O4/ZrO2 NPs [71].

Table 1. Effect of tap water on photodegradation of dyes.

Photocatalysts and Dye %Degradation in
Deionized Water

%Degradation in
Tap Water Conclusion and Reason Ref

MnO2/AC
nanocomposite and MnO2

NPs.
Congo red dye

98.53% by MnO2/AC and
66.57% by MnO2 in 5 min

under UV-light.

Dye almost completely
(99%) degraded in 1 min

under UV and visible
light.

Dye degraded efficiently in TW.
The presence of various mineral ions in

the tap water enhanced the
photocatalytic activity.

[73]

SnO2/SiO2 NPs and SnO2
NPs

94.58% by SnO2/SiO2 NPs
and 65.93% by SnO2 NPs
in 30 min under UV-light.

8.92% by SnO2/SiO2 NPs
and 22.81% by SnO2 NPs
in 30 min under UV-light.

Dye degraded slowly in tap water.
The presence of organic, inorganic and

metallic
ions present in TW serve as competing

species for the active sites of
photocatalysts and reduce their

photocatalytic activity.

[74]

CuO/NC NPs and CuO
NPs

97.18% by CuO/NC NPs
and 68.22% by CuO NPs
in 4 min under UV-light.

47.33% dye by CuO/NC
NPs and 23.4% by CuO

NPs in 4 min under
UV-light.

Dye degraded slowly in TW.
The presence of organic, inorganic and

metallic ions in TW, serves as
competitive species for the active sites

of photocatalyst and reduce their
photocatalytic activity.

[75]

Fe3O4/ZrO2 NPs and
Fe3O4 NPs.
Methyl red

91% by Fe3O4/ZrO2 NPs
and

84% by Fe3O4 NPs within
40 min under UV-light.

97% by Fe3O4/ZrO2 NPs
and 96% by Fe3O4 NPs

within 40 min under
UV-light.

Dye degraded efficiently in TW.
The presence of mineral ions in the TW

enhances photocatalyst activity.
[71]
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Table 1. Cont.

Photocatalysts and Dye %Degradation in
Deionized Water

%Degradation in
Tap Water Conclusion and Reason Ref

Fe–TiO2 nanotubes.
Congo red 86% under visible light. 74% under visible light.

Dye degraded slowly in TW.
Lower activity in tap water is due to

the deactivating effects of organic,
inorganic, and salt compounds.

[76]

Ag/P@BC.
Rhodamine B

83.08% under visible light
irradiation.

75.85% under visible light
irradiation.

Some inorganic salts in TW slightly
affected the process of adsorption and

photodegradation.
[77]

Ag NPs/TiO2/Ti3C2Tx
full degradation in 15 min

under UV-light
irradiation.

Lower photodegradation
in tap water under

UV-light irradiation.

Lower activity in TW. The presence of
other competing organics in the

wastewater.
[64]

TiO2/Pd and TiO2/Pt 78% and 95% in 20 min
under UV-light.

62% and 47% in 20 min
under UV-light.

Lower activity in TW. Presence of
organic, inorganic, and metallic ions in

TW, adsorbed on the catalyst active
sites decreases its activity

[67]

In natural water and wastewater, different inorganic anions like Cl−, SO4
2−, and NO3

−

are present and may affect the degradation of organic pollutants. Inorganic anion tends to
coexist with organic pollutants in wastewater effluent and can influence the separation and
purification of substances represented in wastewater treatment. The inorganic ions such as
SO4

2−, HCO3−, and Cl− have a dual effect on the photodegradation of organic pollutants
such as photocatalyst types and ion concentrations [78]. The presence of inorganic anions
such as PO4

3−, SO4
2−, and F− on the photocatalytic behaviors of TiO2 are contradictory,

mainly due to the various modification strategies and the reaction conditions [79]. In
a Fe(III)/chlorine system for degradation of reactive green 12, Cl2•− was found to be
primarily responsible for a huge reduction of dyes in the system, while Cl• and •OH
participate with only ~5% in the overall removal efficiency [80]. In the mineralization of
Reactive Orange 16 using TiO2 NPs, the effect of mineral ions such as SO4

2−, NO3
−, HCO3,

and CO3
−2 have a detrimental effect on photocatalytic decolorization [81]. Similarly, in

the ultrasound-assisted degradation of para-rosaniline and ethyl violet, the role of the
carbonate ion on the degradation is captive, though the other ions such as chloride, nitrate,
and sulfate had very little or no impact [82]. The effects of inorganic anions found in
TW on the photodegradation of dyes are summarized in Table 2. The table shows that
inorganic anions exhibited both positive and negative effects depending upon the nature of
photocatalysts, dye, and their concentrations. Similarly, cations in wastewater also have a
significant effect on the photodegradation of organic dyes.

Table 2. Effect of inorganic anions present in TW on photodegradation of dyes.

Photocatalyst and Dye Inorganic
Anions

Positive
Effect Negative Effect Negligible Effect Reference

commercial TiO2.
Direct 80, Direct Blue,
Reactive Yellow 2

SO4
2−, Cl− and NO3

− SO4
2−, Cl− and

NO3
− [83]

TiO2 dispersions.
Procion Red MX-5B and
Cationic Blue X-GRL

SO4
2−, H2PO4

−, ClO4
−

and F−
In acidic medium In basic medium [84]

Au-Fe3O4/
graphene composites.
Methylene blue

NaCl, Na2SO4, NaH2PO4,
NaNO3, and Na2CO3

SO4
2−, Cl−, H2PO4

−,
NO3

−,
CO3

2−
Na+ [85]

Ag3PO4.
Methylene blue

NO3
−, OH−, NO2

−,
HCO3

−, Cl−, Br−,
CO3

2−, SO4
2−, SO3

2−,
S2− and
PO4

3−

OH−, Cl−, Br−,
HCO−, CO3

2−,
SO4

2−, SO3
2−, S2−

NO2
−, NO3

−, [86]
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Table 2. Cont.

Photocatalyst and Dye Inorganic
Anions

Positive
Effect Negative Effect Negligible Effect Reference

CuO–Cu2O
nanocomposite.
Methylene blue (MB) and
Methyl orange (MO).

SO4
2−, Cl− and NO3

− Cl− (0.5 mM) on MB SO4
2− on MB.

Cl− on MO SO4
2− on MO. [87]

ZnFe2O4
Methylene blue

SO4
2−, NO3

−,
Cl−, CO3

2−
SO4

2−, NO3
−,

Cl−, CO3
2− [88]

cerium-doped SiO2/TiO2
Methylene blue NO3

−, SO4
2−, Cl− NO3

−, SO4
2−, Cl− [89]

Ag/Mn3O4 and
Ag/Mn3O4/graphene
with persulfate.
Methylene blue

Cl−, SO4
2−, NO3

−,
H2PO4

−, CO3
−

All ions have
negative effect in the
order H2PO4

− >
CO3

2− > SO4
2− >

Cl− > NO3
−

[90]

silver ion-doped TiO2
Methylene blue

Cl−, NO3
−,

SO4
2−, CO3

2−
Cl−, NO3

−,
SO4

2−, CO3
2− [91]

ZnO nanorod.
MB, Acid red, Remazol
red, and Rhodamine B

PO4
3−, Cl−,

SO4
2−, NO3

−,

All ions have
negative effect in the
order PO4

3−, > Cl−, >
SO4

2− ≈ NO3
−

[92]

NiS/CuS-CdS
composites.
MB and MO

NaCl, K3PO4
and Na2CO3

K3PO4 for MO
NaCl and Na2CO3
both MB and MO.
K3PO4 for MB.

[89]

TiO2 NPs SO4
2−, NO3

−,
HCO3, CO3

−2
SO4

2−, NO3
−, HCO3,

CO3
−2 [81]

The cations such as Mn2+, Cu2+, and Mg2+ are reported to inhibit the catalyst’s ac-
tivity [93]. CaCO3 has also been extracted from TW as a white powder that was sintered
at 900 ◦C and applied for the efficient adsorption/degradation of Rhodamine-B dye [94].
Inorganic cations, such as Na+, K+, Ca2+, and Mg2+, are also present in natural waters and
affect the photocatalytic degradation of organic pollutants [95]. The effects of inorganic
cations on the photodegradation of dyes are summarized in Table 3.

Table 3. Effect of inorganic cations present in TW on photodegradation of dyes.

Photocatalyst and Dye Inorganic Anions Positive
Effect Negative Effect Negligible Effect Reference

La/Bi2WO6 composite.
Reactive brilliant red X-3B
(X-3B) and rhodamine B
(RhB)

Na+, K+, Ca2+

and Mg2+
All cations promoted
the removal of RhB

All cations inhibited
the removal of X-3B [96]

TiO2/Electrochemically-
assisted photodegradation.
Methyl orange

Na+, K+, Ca2+, NH4
+

and Mg2+
Na+, K+, Ca2+

and NH4
+ Mg2+ [97]

UV/TiO2 system.
Direct Red 23 Cu2+, Al3+, Cr3+, Sn4+ Cu2+, Al3+,

Cr3+, Sn4+ [98]

NiS2-rGO and CoS-rGO
nanocomposite Na+, Mg2+ and Ca2+

Positive effect at 0.1
M salt solution
concentration

Negligible effect at
0.01 M salt solution
concentration

[99]

Ag/rGO nanocomposite.
congo red and
bismarck brow

Ca2+, Mg2+, Na+

and NH4
+

Ca2+, Mg2+, Na+ and
NH4

+ [100]

persulfate-assisted
Ag/Mn3O4 and
Ag/Mn3O4/graphene
composites.
methylene blue

K+, Ca2+, and Mg2+
Inhibition effect in
the order Ca2+ >
Mg2+ > K+

[90]
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3. Effect of TW on Photodegradation of Pharmaceutical Products

The increased global production of drugs has caused an increase in pharmaceutical
contaminants in our natural water bodies. Great amounts of these drugs consumed by
the population are discharged into the environment and finally cause contamination of
ground and surface water bodies [101]. Human as well as veterinary pharmaceuticals
offer many benefits, but also pose risks to both public health and the environment [102].
Antibiotics have various adverse effects on human health as well as aquatic life [103].
Pharmaceutical pollution is an emerging issue that has the potential to unbalance ecosys-
tems [104]. One of the most significant public health and environmental concerns is related
to the active pharmaceutical ingredients (APIs) and medicines discharged into bodies
of water [105]. The disposed of wastewater contains antibiotics, and TW is susceptible
to antibiotics contamination, ranging from a few to hundreds of nanograms per liter in
different countries [106], and detected in some countries experimentally in TW [107,108].
To simulate the actual situation, it is essential to consider the effect of inorganic ions as the
real water types include a large number of different ions [109]. The effect of TW on the
photo-degradation of pharmaceutical products is of great importance. Photocatalysis is an
advanced oxidation process (AOP) that has been potentially applied in the treatment of an-
tibiotic residues and this technology has recently become the focus of much attention [110].
Bismuth oxyiodide (BiOI) materials were prepared for the photocatalytic degradation of
oxytetracycline (OTC) in which BiOI microspheres were found to be the most active in
removing the antibiotic under visible light. BiOI microspheres degraded 84% OTC in pure
water and 92% in TW after 5 h of visible light irradiation. In terms of mineralization of the
dissolved organic matter, BiOI microspheres photocatalytically converted 77.1% of pure
water and 82% of TW to CO2. The higher rate of degradation in TW might be attributed to
the dissolved components such as nitrate ions in the TW [111]. The photolysis of nitrate can
significantly improve the production of hydroxyl radicals [112], which are highly reactive
toward the photodegradation of organic pollutants [113]. The photo-degradation of meto-
prolol (MTP) through TiO2 nanotube arrays demonstrates that the photocatalysts degraded
87.09% of MTP in Milli-Q water and 62.05% of MTP in TW. The decrease was attributed
to the presence of organic species competing with the target MTP for oxidizing species,
adsorbing onto the photocatalyst surface, and screening UV irradiation [114]. Similarly,
TW also reduced the rate of photodegradation of paracetamol and aspirin by applying
a micro-sized TiO2 catalyst owing to the presence of a large number of inorganic anions
in TW. These anions play a significant deactivating role in the adsorption efficiency of
the catalyst. The SO4

2- present in TW reacts with the photo-generated holes (h+) and the
bicarbonate anions react with •OH radicals to generate carbonate radicals which are less
reactive [115]. The photodegradation of naproxen shows a remarkable enhancement in TW
compared to ultrapure water in the presence of g-C3N4 both under natural sunlight and
visible light as shown in Figure 3 [116]. The photodegradation of sulfonamides by TiO2
is significantly suppressed by SO4

2− ions generated by the addition of Na2SO4 [117]. The
photodegradation of oxolinic acid and oxytetracycline by solar-assisted TiO2 is hindered
by PO4

3− while other inorganic ions (Cl−, SO4
2−, NO3

−, NH4
+, and HCO3

−) did not
substantially alter the antibiotics’ photodegradation [118]. The inorganic anions present in
water did not significantly influence sulfadiazine degradation using N-doped coconut-shell
biochar as a catalyst [119]. Similarly, dissolved organic matter, phosphate, and ferrous ions
inhibit the degradation of Diclofenac, which becomes stronger when the concentrations of
dissolved organic matter, phosphate, and ferrous ions increase [120].
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Figure 3. Photo-degradation of naproxen through g-C3N4 under (a) visible light radiation, and
(b) and natural sunlight. Reprinted/adapted with permission from [116], 2022, Elsevier (License
Number 5454330213985).
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4. Effect of TW on Photodegradation of Pesticides

Pesticides are applied extensively in agriculture to protect crops from harmful pests.
They are present in drinking water and have adverse health effects [121]. The extensive us-
age of pesticides has posed serious detrimental impacts on wild flora and fauna, including
birds [122]. The residue of pesticides remain in plant parts, air, and soil, and even penetrate
the water, and are considered one of the most destructive threats to the ecosystem. They can
exist in the environment for a long time with carcinogenic effects [123]. Inorganic ions such
as nitrate, sulfate, phosphate, ammonium, or copper are widely employed in agriculture,
and others such as chloride, calcium, or sodium can be found in natural waters [124]. As
pesticides are present in drinking water, assessing the TW effect on pesticide degradation
is very important. The photo-degradation of four herbicides, namely clopyralid, amitrole,
diuron, and fluroxypyr by UV-radiation revealed that the photodegradation rate is faster in
ultrapure water than in TW and wastewater, as shown in Figure 4. Such behavior may be
due to the absence of inorganic and organic compounds in ultrapure water, which consumes
UV radiation [125]. Such results were also observed in the degradation of organophos-
phorus pesticides in water applying UV/H2O2 treatment. The rate of photodegradation
followed the pattern: distilled water > TW > river water. The lower degradation in tap and
river water is because the organic carbon present in this water absorbs most of the emitted
photons and slows down the degradation of the pesticide [126]. The same results were also
detected in the photodegradation of five insecticides such as imidacloprid, clothianidin,
acetamiprid, thiamethoxam, and dinotefuran. The rate of photodegradation was faster in
ultra-pure water than in tap and pond water [127]. In the photodegradation of Diazinon
and Imidacloprid by TiO2, Cl− exhibited the strongest inhibition effect followed by NO3

–

and SO4
2− ions, because these ions may compete for the TiO2 active sites or deactivate

the photocatalyst and, consequently, decrease the rate of the degradation of the pollutant.
The inhibition effects of anions may be due to the reaction of h+ and •OH with anions
that behave as h+ and •OH scavengers, resulting in prolonged contaminant removal. The
extremely reactive •OH also reacts with inorganic an-ions contained in water, resulting in
a greater requirement for •OH to achieve the necessary degree of degradation or the full
inhibition of the advanced oxidation process [128]. In the photodegradation of phosphami-
don by TiO2, the Cl−, PO4

3−, and NO3
− ions have no significant effect on degradation

at low concentrations, but at higher concentrations, all these ions considerably inhibit
degradation. This inhibition might be due to the competition of these ions for adsorption
sites on the TiO2 catalyst. The inhibition efficiency of the three anions follows the order
PO4

3− > Cl− > NO3
− [129]. The same results of inhibition by Cl−, SO4

2–, NO3
−, and F−

ions at higher concentrations were also observed in the photo-degradation of nicosulfuron
using TiO2 photocatalyst [130]. Similarly, the Cl− and NO3

− ions also displayed inhibitory
effects in the degradation of terbufos using TiO2 photocatalyst. Along with the competing
mechanism, it was also stated that Cl− may lead to the formation of f inorganic radical
anions (e.g., Cl•, ClOH−•) as represented in the following equations.

Cl− + h+ → Cl•

Cl− + •OH→ ClOH−•

The reactivity of these radicals may be considered, but they are not as reactive as h+

and •OH [131].
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Figure 4. Influence of the type of water on the photodegradation of clopyralid (CLP) by UV radiation.
[CLP]0 = 25 mg/L. (�) wastewater, (4) tap water, and (#) ultrapure water. Reprined/Adapted with
permission from [125], 2022, Elsevier (License Number 5336460765282).

5. Effect of TW on Photodegradation of Organic Solvents

Solvents are used widely in many sectors of industry as well as everyday life, like
agrochemicals, detergents, pharmaceuticals, cosmetics, paints, inks, varnishes, etc. [132].
Despite their environmental toxicity, organic solvents are widely used [133]. Almost all
of the solvents are hazardous to health if inhaled or swallowed in more than the allowed
quantity and cause irritation when they come in contact with the skin [134]. Environmental
pollution caused by the discharge of these organic solvents into aqueous solutions has
become a major global issue of increasing concern [135]. A limited focus has been shifted
to studying the effect of TW on the photodegradation of organic solvents. Sulfolane
degradation was studied in milli-Q water, TW, and groundwater using TiO2 and RGO-
TiO2 as photocatalysts and it was observed that in milli-Q water, sulfolane reached non-
detectable levels in 3 h, while 32% and 29% of sulfolane remained in groundwater and
TW at the end of the reaction time. The presence of SO4

2−, HCO3
− and Cl− in high

concentrations in tap and ground water coated on TiO2 in the dark reaction time reduces
the photocatalytic degradation of sulfolane [136].

6. Future Perspectives

In evaluating the TW effect, a few dimensions still require thorough investigations to
clearly evaluate the dual effect of TW on the photodegradation of organic pollutants.

For the photo-degradation of organic pollutants, it is necessary to perform the experi-
ment in TW and real water samples to approach the practical applicability of the process. It
would also be beneficial to conduct the photodegradation experiment in other natural and
running water sources.

It is necessary to individually evaluate the effect of organic and inorganic ions present
in TW on the photodegradation of organic pollutants. It is also recommended to evalu-
ate the effect of mineral ions present in TW on the mechanism of photodegradation of
organic pollutants.
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It is also necessary to evaluate the effect of common ions on the photodegradation of
organic pollutants.

It is suggested to measure all the physicochemical properties such as pH, conductivity,
types of ions, etc. of TW and real water samples utilized in photodegradation experiments.

It will also be useful to measure the surface charge of the photocatalysts before experi-
ments because positive surface charge photocatalysts will display less activity in TW due to
the strong electrostatic interaction with the inorganic anions present in TW, while negative
surface charge photocatalysts will display maximum efficiency. This characterization will
also help in the selection of organic pollutants such as dyes, antibiotics, and pesticides for
photodegradation experiments.

Furthermore, it is highly recommended to perform theoretical studies along with
experimental work, because density functional theory (DFT) calculations can predict in ad-
vance the effect of medium pH and particular minerals present in TW. DFT calculations will
also suggest mechanisms and are also very helpful in supporting the experimental results.

7. Conclusions

Evaluating the effect of mineral ions present in TW on the photo-degradation of or-
ganic pollutants is very important for the practical applicability of the process. TW contains
a minute quantity of inorganic salts and 7–8 pH, and this range of pH can enhance the
formation of .OH radicals. The enhancement or reduction of the photodegradation rate is
due to the pH range and inorganic ions present in TW. Similarly, the reduction in the pho-
todegradation rate is due to the presence of inorganic and metal ions in TW, which serve as
competing species for the photocatalyst active sites and reduce their photocatalytic activity.
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