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The present paper deals with a weakly nonlinear stability problem under an imposed time-periodic thermal 

modulation. The temperature has two parts: a constant part and an externally imposed time-dependent part. We 

focus on stationary convection using the slow time scale and quantify convective amplitude through the real 

Ginzburg-Landau equation (GLE). We have used the classical fourth order Runge-Kutta method to solve the real 

Ginzburg-Landau equation. The effect of various parameters on heat transport is discussed through GLE. It is 

found that heat transport analysis is controlled by suitably adjusting the frequency and amplitude of modulation. 

The applied magnetic field (effect of Ha) is to diminish the heat transfer in the system. Three different types of 

modulations thermal, gravity, and magnetic field have been compared. It is concluded that thermal modulation is 

more effective than gravity and magnetic modulation. The magnetic modulation stabilizes more and gravity 

modulation stabilizes partially than thermal modulation. 

 

Key words: Ginzburg-Landau equation, temperature modulation, applied magnetic field, internal heating. 

 

1. Introduction 

 
 In this paper, we study the impact of time-periodic oscillations on Rayleigh-Benard convection in the 

presence of an applied magnetic field by weakly nonlinear analysis. We derive the Ginzburg-Landau 

equation focusing on stationary finite amplitude convection. We study heat transfer through GLE and discuss 

the impact of thermal modulation on heat transport. An excellent review of the studies related to magneto 

convection is presented by Yu et al. [1], Thomson [2] and Chandrasekhar [3]. The effect of thermal 

modulation on linear instability of Rayleigh Benard convection is reported by Venezian [4]. The shift in the 

critical Rayleigh number has been calculated as a function of frequency modulation and wavenumber. It has 

                                                      
* To whom correspondence should be addressed 



The effect of modulation on heat transport by a weakly... 97 

been reported that frequency of modulation has a significant effect on instability of the layer with its proper 

tuning.  

 Among the early studies on thermal modulation, Venezian [4] and Greshuni et al. [5] using small 

amplitude approximation studied the effect of thermal modulation in a fluid layer. They showed that the 

system could be stabilized by three different types of modulation with periodically varying temperature of 

the plane. They also investigated unsteady equilibrium nature of a layer. Double diffusive convection under 

an applied magnetic field is reported by Rudraiah et al. [6]. They showed that the magnetic field acts like 

third diffusing component to suppress onset convection. In general, the effect of thermal modulation is of 

three forms: 

 

1. In-phase modulation (θ=0) 

2. Out of phase modulation (θ=π) 
3. Only lower boundary modulation (θ=-I∞) 

 

where θ is the phase angle. Most of the published studies considered only these three different types of 

thermal modulation on convective flows. The effect of thermal modulation on different models related to 

linear or nonlinear problems was well documented and reported by Bhadauria [7-10] and Bhadauria et al. 

[11-19]. In their studies, the effect of thermal modulation was investigated on different fluid models either 

for linear or nonlinear theory. 

The study of gravity modulation on Rayleigh Benard convection was made by Gresho and Sani [20]. 

A linearized stability analysis was performed to show stability limits of the system under gravity modulation. 

The effect of gravity modulation on RBC with rigid, isothermal boundaries was investigated by Clever et al. 

[21]. The effect of resonance ranging from 100 to 3000 and Pr from 0.71 to 50 on thermal instability was 

presented. It was concluded that both synchronous and subharmonic modes of convection are identified. The 

effect of gravity modulation for oscillatory mode of convection for fluid and porous media was investigated 

by Bhadauria and Kiran [22, 23]. It was concluded that oscillatory modes enhance heat transfer more than 

stationary modes. A number of studies have been devoted to gravity modulation on different models, e.g., on 

chaotic convection [24,25], on throughflow [26], on rotating nanofluid convection [27], rotating oscillatory 

convection [28], on throughflow and double diffusive oscillatory convection [29]. The effect of gravity 

modulation was extensively investigated on different fluid or porous convection. 

Other models of magnetic field modulation were investigated by Aniss et al. [30, 31]. These authors 

proposed theoretical and experimental investigations of RBC confined in a horizontal annular Hele–Shaw 

cell and subjected to radial temperature and magnetic field modulation. With their geometrical configuration, 

the possibility of magneto convection and its control by an external magnetic field gradient in the absence of 

gravity was shown. Their studies are restricted to only linear models. The effect of magnetic field 

modulation on a weakly nonlinear thermal instability was investigated by Bhadauria and Kiran [32] for 

stationary mode convection. The comparison of thermal, gravity, and magnetic field modulation was 

investigated. They concluded that magnetic modulation reduces heat transfer and stabilizes the system. The 

same problem has been extended to oscillatory mode of thermal convection by Kiran and Bhadauria [33]. It 

was concluded that oscillatory flows produce better heat transfer results. 

In situations like radioactive decay or relative weak exothermic reactions the fluid layer 

offers its own internal heat generation (IHG). Due to internal heat generation a thermal gradient is formed 

between interior and exterior layers of the earth's crust with multi component liquids. Other important and 

relevant applications can be seen in geophysics, reactor safety analyses, fire and combustion 

studies. However, there are few studies on internal heating of the convective flow, some of them have been 

published by Tveitereid et al. [34, 35], Tasaka et al. [36], Takashima [37], Bhadauria et al. [38-40], Kiran et 

al. [41, 42, 61]. No data have been reported on thermal convection in the presence of an applied magnetic 

field and internal heat generation. 

An unsteady flow of an incompressible fluid an infinite vertical channel in the presence of an applied 

magnetic field was investigated by Rao et al. [43]. They considered viscous dissipate heat along with the free 

convection currents. It is reported that variations of velocity field, temperature field and skin friction are 
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influenced by the applied magnetic field. The study of heat transfer in the presence of magneto convection is 

reported by Bhadauria et al. [16]. It is reported that under the effect of magnetic field modulation heat 

transfer can be suppressed more than that of thermal and gravity modulation. Recently Keshri et al. [44] 

studied the effect of solutal and gravity modulation on thermal instability in a fluid layer under applied 

magnetic field. They concluded that the effect of the applied magnetic field is to suppress the mass transfer 

irrespective of the modulation. The effect of concentration modulation on weakly nonlinear thermal 

instability in a rotating porous media has been investigated by Kiran [45]. The investigation on stability 

analysis of RBC under an applied magnetic field and internal heat source has not been carried out yet.  

To the best of the authors' knowledge, there is no nonlinear study available in the literature in which 

the effect of thermal modulation has been considered in a magnetic fluid layer with internal heating. This 

motivated us to make a nonlinear stability analysis and study the combined effect of internal heating and 

thermal modulation. Further, three types of different modulations, thermal, gravity and magnetic field 

modulations are investigated and the results compared. 

 

2 Governing equations 
 

We consider two infinite horizontal and parallel planes at z = 0, z = d and between these two planes 

there is an electrically conducting liquid of depth ‘d’. We have taken Cartesian coordinates with the z axis 

vertically upwards and the origin at the bottom of the layer. The layer is heated and salted from below to 

maintain a variable temperature across the layer.  

 

 
 

Fig.1. Physical configuration of the problem. 
 

 The surfaces are maintained at a constant gradient 
T

d


 and a constant magnetic field bH K is applied 

across the liquid region (as shown in Fig.1). Under the Boussinesq approximation, the dimensional 

governing equations for the study of applied magneto-convection in a fluid layer are 

 

  . ,0 q   (2.1) 
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   ( )0 T 01 T T      (2.4) 

 

where q  is velocity (u, v, w),  is the viscosity, KT is the thermal diffusivity tensor, T is temperature,  T is 

the thermal expansion coefficient,  is the ration of heat capacity. For simplicity   is taken to be unity in this 

paper,  is density, g  = (0, 0, -g) is the gravitational acceleration, while 0  is the reference density, e  is 

the magnetic permeability, B0 is the strength of the applied magnetic field. The externally imposed thermal 

boundaries considered in this paper are given by Venezian [4] and Kiran et al. [10, 12, 18, 41, 56, 61]. 
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where 1  is the small amplitude of temperature modulation, T  is the temperature difference across the 

fluid layer,   is modulation frequency and   is the phase difference. The basic state is assumed to be 

quiescent and the quantities in the state are given by 
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[ ( )]b 0 T b 01 T T     . (2.9) 

 

 The solution of Eq.(2.8), subjected to the boundary conditions Eq.(2.5), is given by 

 

  
     ,     Re ,  2

b s 1 1T z t T z T z t         (2.10) 

 

where  sT z  is the study temperature field and  ,1T z t  is the oscillating part while Re stands for the real 

part. We assume finite amplitude perturbations on the basic state in the form. 

 

  
,bq q   q

' ,b     ' ,bp p p  '
bT T T   (2.11) 

 
where primes denote the quantities at the perturbations. Substituting Eq.(2.11) in Eqs (2.1)-(2.4) and using 

the basic state results, we obtain 

 

  . 0 q , (2.12) 
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Further, we consider only two dimensional disturbances in our study and hence the stream functions  are 

introduced as  , ,u w
z x

      
. We eliminate density and pressure terms from Eqs (2.12)-(2.15), and 

the resulting systems can be dimensionless through the following transformations:
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2
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the asterisk. Then the non-dimensionalized governing system is 
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The non-dimensional parameters in the above equations are given in the nomenclature. Equation (2.17) 

shows that the basic state solution influences the stability problem through the factor bT

z




 which is given by 

 

  
 ( ) ,2b

1 1 2

T
f z f z t

z


     

 (2.18) 

where 

  

  ( ) cos cos ( )
sin

i
1 i i

i

R
f z R 1 z R z

2 R
   , (2.19) 

 

  
( ) ( ) i t

2 ef z R f z e     , (2.20) 

 

  
 
 

( ) ( ) ( ) , ( ) ,

i m

mz mz 2
im m

e em
f z A m e A m e A m m R

2 e e

  





         

  

and 2 i    . 

 

 We assume small variations of time and re-scale it as 
2 t   to study the stationary convection of 

the system Eqs (2.16)-(2.17). We use the following boundary conditions to solve the above system. The 

stress free and isothermal boundary conditions are given by Kiran et al. [10, 16, 22, 28], Bhadauria and 

Kiran [32], Manjula et al. [47], Bhadauria et al. [22, 32] 
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3. Finite amplitude equation and heat transport for stationary instability 
 

 We now introduce the following asymptotic expansions (Malkus and Veronis [46], Manjula et al. 

[47, 58], Kiran et al. [48, 49, 57]) in the system Eqs (2.16)-(2.17) 

 

  

  ...,

 ...,

2 4
T 0c 2 4

2 3
1 2 3
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where R0c is the critical value of the Rayleigh number at which the onset of convection takesplace in the 

absence of temperature modulation. Now we solve the system for different orders of . 

 

3.1. Lowest order system 

 

 The lowest order system case is similar to the problem of linear system. At this order we get the 

following relation 
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 The solutions of the lowest order system subjected to the boundary conditions Eq.(2.21) are 
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where     ,   .2 2 2 2 2
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 The critical value of the Rayleigh number for the onset of magneto-convection in the absence of 

temperature modulation is 
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when Ri=0, Ha=0 the classical results of Chandrasekhar [3] are obtained.  

 

3.2. Second order system 

 

 The second order system is obtained based on the first order system. Because the nonlinear Jacobian 

term in Eq.(17) is clearly dependent on the previous solutions, thus we have. 
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The second order solutions subjected to the boundary conditions Eq.(2.21) is obtained as follows 
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3.3. Estimation of heat transport in terms of the Nusselt number 

 

 The horizontally averaged Nusselt number Nu    for the stationary mode of convection is given by 

(Bhaduria and Kiran [39, 40], Kiran [41, 42, 45], Keshri et al. [44], Manjula et al. [47]) 
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 Here one can notice that  ,  2f z   is effective at second order and affects the above Nusselt number 

Eq.(3.11), through factor B(  ) because this amplitude is obtained from GLE. 

 

3.4. Third order system  

 

 In this order we get the following system, where the modulation effect will take place. We restrict 

ourselves up to 3rd order system and find the finite amplitude. Thus the third order system is given by 
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 The terms in the RHS of Eq.(33), i.e. R31 and R32, are given by 
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where the second term in Eq.(3.14) represents the modulation term. Substituting 1 , 1T  and T2 into Eqs 

(3.13)-(3.14), we can obtain expressions for R31, R32easily. Now by applying the solvability condition for the 

existence of third order solution, we get the Ginzburg-Landau equation (Bhaduria and Kiran [39, 40, 54], 

Kiran [41, 42, 45, 61], Keshri et al.[44], Manjula et al.[47],) for stationary convection with time-periodic 

coefficients in the form 
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 The Ginzburg Landau equation given in Eq.(3.15) is a Bernoulli equation and obtaining its analytical 

solution is difficult, due to its non-autonomous nature. So it is solved numerically using the in-built function 

NDSolve of Mathematica, subjected to the initial condition B(0) = b0; where b0 is the chosen initial 

amplitude of convection. In our calculations we may use R2 = R0c; to keep the parameters to the minimum. 

We assume that R2 = R0c which shows that the nonlinear influence considered in this paper are in the 

neighborhood of critical state of convection onset.  

 

4. GLE in the presence of non-uniform gravity field 

 
 The effect of gravity modulation is discussed in the studies of (Gresho and Sani [20], Bhadauria and 

Kiran [22-24], Kiran et al.[28], Manjula et al. [29]). The momentum equation takes the form 
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(4.1) 

 

where  2, m are the amplitude and frequency of the applied magnetic field. 

 Similarly, the finite amplitude (GLE) equation is given by 
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There are many studies on gravity modulation well documented in [50]-[55]. 
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5. GLE in the presence of non-uniform applied magnetic field 
 

 According to the studies of Bhadauria and Kiran [32], Kiran and Bhadauria [33], under the effect of 

magnetic modulation the momentum equation takes the form 

 

  

( . ) ( cos( ))2 2 2 2
e 0 2 m

0 0 0

1
p B 1 t

t

  
           

   
q

q q g q q  (5.1)

 
 

where  2 and  m are the amplitude and frequency of the applied magnetic field. 

 Similarly, the finite amplitude (GLE) equation is given by 

 

  

 

 
 
 

   ( )

Pr

  
cos( ) ( ) ( ) .

    

4 2 2 22
c

2
R

2 4 4 2 22 4
c2 3c 0c

2 m4 2 2 2
R i R i

H a k dB t

dt

k H a4 k R
Ha t B t B t 0

4 R 2 4 R

     
 
 
              
           

 (5.2) 

 

6. Results and discussions 

 
In this paper, we discuss the effect of thermal modulation and internal heating on RBC in the 

presence of an applied magnetic field. The magnetic field and thermal modulation are applied externally to 

the system. Using the method of GLM the finite amplitude of convection is quantified regarding the Nusselt 

number. The systems of nonlinear partial differential equations are simplified using perturbation analysis. 

The GLE is derived under the solvability condition. Three types of temperature modulations (i) out of phase 

modulation (OPM) (ii) in phase modulation (IPM) (iii) and lower boundary modulations are considered. 

We have also discussed three different modulations; (i) thermal modulation (ii) gravity modulation 

(iii) applied magnetic field modulation. These three different modulations have been compared and presented 

in the results. The effect of various system parameter values on heat transport has been presented. The values 

of parameters are considered within the range of the solutions. The Nusselt number Eq.(3.11) is obtained at 

second order.   

Variations of Nu with slow time for various parameters are presented in Figs 2-7. Here the Nusselt 

number oscillates with slow time  . The solution of the Ginzburg-Landau equation gives the amplitude of 

convection which helps to quantify heat transfer through the Nusselt number. Before interpreting the results 

we assume R2=R0c which means that the disturbances are near to critical state of convection onset.  

Because we solve the nonlinear system at every order, every order depends on the previous solution. 

Thus, our analysis is not a direct solution to the nonlinear model problem. Since our study is related to slow 

convective flow we consider the slow time as t=χ2  . We present our results in the case of OPM only for 

convenience and later we compare three different types of modulation.  

The effect of internal heat source and sink is presented in Figs 2a and 2b. From the figures we 

observe that the effect of internal heating on thermal instability is destabilizing, as heat transport increases on 

increasing Ri. The heat transport is greater at higher positive values of Ri Fig.2a. This confirms the results 

obtained most recently by Kiran et al. [15, 16, 52, 61]. The effect of heat sink, i.e. negative values of Ri, is to 

diminish heat transport and shows a stabilizing effect. Thus, one needs to understand that any composite 

mixture of material stabilizes or destabilizes the system. The stability criteria are very important in many 

chemical experiments or reactions. 
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3.  The effect of the magnetic field (Ha), frequency of modulation ( ), heat sink (Ri<0) is to suppress heat transport. 

4.  The effect of an increase in the values of Ha decreases the value of the Nusselt number. Thus, the amount 

of heat transfer decreases and hence the system is more stable. 

5.  The effect of amplitude of modulation (δ1), heat source (Ri>0) is to enhance heat transport. 

6.  Upon increasing the value of Ri, Nu increases. 

7.  The magnitude of streamlines increases as time   passes and isotherms lose their evenness, showing that 

convection takes place. At  =1.0 the system achieves equilibrium state. 

8.  Thermal modulations enhance heat transfer. 

9.  Magnetic modulation diminishes heat transfer. 
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Nomenclature 
 

 B − amplitude of convection 

 b − basic state 

 c − critical 

 d − depth of the fluid layer 

 g − acceleration due to gravity 

 Ha − Hartman number 

 k − vertical unit vector 

 k − wavenumber 

 p − reduced pressure 

 q − fluid velocity 

 RaT − thermal Rayleigh number 

 Ri − internal Rayleigh number 

 δ1 − amplitude of thermal modulation 

 δg − amplitude of gravity modulation 

 δm − amplitude of magnetic modulation 

 Pr − Prandtl number 

 R0c − critical Rayleigh-number 

 t − temperature 

 t − time 

 
 T  
− coefficient of thermal expansion 

   − slow time (dimensionless) 

   − perturbation parameter 

   − phase angle 

 κt − effective thermal diffusivity 

 ω − thermal modulation frequency 

 ωg − gravity modulation frequency 

 ωm − magnetic modulation frequency 

 μ − dynamic viscosity of the fluid 

 μe − magnetic permeability 

 ν − kinematic viscosity 

 
   − fluid density 

 ѱ − stream function 

 / − perturbed quantity 

 * − dimensionless quantity 

 0 − reference value 
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