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ABSTRACT: Nanoparticles can influence the properties of polymer materials by a variety
of mechanisms. With fullerene, carbon nanotube, and clay or graphene sheet nanocom-
posites in mind, we investigate how particle shape influences the melt shear viscosity
η and the tensile strength τ , which we determine via molecular dynamics simula-
tions. Our simulations of compact (icosahedral), tube or rod-like, and sheet-like model
nanoparticles, all at a volume fraction φ ≈ 0.05, indicate an order of magnitude
increase in the viscosity η relative to the pure melt. This finding evidently can not be
explained by continuum hydrodynamics and we provide evidence that the η increase
in our model nanocomposites has its origin in chain bridging between the nanopar-
ticles. We find that this increase is the largest for the rod-like nanoparticles and
least for the sheet-like nanoparticles. Curiously, the enhancements of η and τ exhibit
opposite trends with increasing chain length N and with particle shape anisotropy.
Evidently, the concept of bridging chains alone cannot account for the increase in τ

and we suggest that the deformability or flexibility of the sheet nanoparticles con-
tributes to nanocomposite strength and toughness by reducing the relative value of
the Poisson ratio of the composite. The molecular dynamics simulations in the present
work focus on the reference case where the modification of the melt structure associ-
ated with glass-formation and entanglement interactions should not be an issue. Since
many applications require good particle dispersion, we also focus on the case where the
polymer-particle interactions favor nanoparticle dispersion. Our simulations point to a
substantial contribution of nanoparticle shape to both mechanical and processing prop-
erties of polymer nanocomposites. © 2007 Wiley Periodicals, Inc.∗ J Polym Sci Part B: Polym
Phys 45: 1882–1897, 2007
Keywords: mechanical properties; modeling; molecular dynamics; nanocomposites;
rheology

INTRODUCTION

Blends of polymers and nanoparticles, commonly
called “polymer nanocomposites” (PNC), have
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garnered much attention due to the possibility of
dramatic improvements of polymeric properties
with the addition of a relatively small fraction
of nanoparticles.1–7 Successfully making use of
these materials depends upon a firm understand-
ing of both their mechanical and flow properties.
Numerous computational and theoretical stud-
ies have examined the clustering and network
formation of nanoparticles and their effect on
both the structural and rheological properties of
PNCs.8–26 The vast majority of these efforts have
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focused on nanoparticles that are either spheri-
cal, polyhedral or otherwise relatively symmetric,
although there are some notable exceptions.19–21,23

In contrast, experiments have tended to empha-
size highly asymmetric nanoparticles,27–38 such
as layered silicates or carbon nanotubes. It is
generally appreciated that these highly asymmet-
ric nanoparticles have the potential to be even
more effective than spherical (or nearly spheri-
cal) nanoparticles in changing the properties of the
polymer matrix to which they are added. In addi-
tion to the large enhancements in viscosity and
shear modulus expected from continuum hydrody-
namic and elasticity theories, extended nanoparti-
cles can more easily form network structures both
through direct interaction between the nanopar-
ticles, or through chain bridging between the
nanoparticles,11,16,17,39 where a “bridging” chain
is a chain in contact with at least two different
nanoparticles. These non-continuum mechanisms
are believed to play a significant role in property
enhancement, though the dominant mechanism
depends on the properties considered, particle-
polymer and particle-particle interactions, sample
preparation, etc.

Given that the majority of previous computa-
tional efforts have focused on symmetric nanopar-
ticles, we wish to elucidate the role of nanoparticle
shape in determining basic material properties,
such as the viscosity η, and material “strength”,
(i.e., breaking stress). Computer simulations are
well suited to examine the role of nanoparticle
shape, since it is possible to probe the effects
of changing the shape without the alteration of
the intermolecular interactions. As a result, the
changes due to nanoparticle shape can be iso-
lated from other effects. Such a task is compli-
cated experimentally, since it is difficult to modify
the shape of a nanoparticle without dramati-
cally altering its intermolecular interactions. In
this paper, we evaluate the viscosity η and ulti-
mate isotropic tensile strength τ of model PNC
systems with either (i) highly symmetric icosa-
hedral nanoparticles (compact particles), (ii) elon-
gated rod-like nanoparticles, and (iii) sheet-like
nanoparticles. These nanoparticles can be thought
of as idealizations of common nanoparticles, such
as gold nanoparticles and fullerenes (polyhedral),
nanotubes and fibers, and nanoclay and graphene
sheet materials, respectively. Our results are
based on molecular dynamics (MD) computer sim-
ulations, using non-equilibrium methods to eval-
uate η,40,41 and exploit the “inherent structure”
formalism to determine τ .42,43 We find that the

rod-like nanoparticles give the largest enhance-
ment to η, which we correlate with the presence
of chains that bridge between the nanoparticles.
The sheet nanoparticles offer the weakest increase
in η, and correspondingly have the smallest frac-
tion of bridging chains. For the ultimate isotropic
strength τ , we find opposite results: the sheets pro-
vide the greatest reinforcement, while the rods the
least. For both of these properties, the property
changes induced by the icosahedral nanoparticles
fall between those of the extended nanoparticles.

The present simulations are idealized mix-
tures of polymers and nanoparticles in which
the polymer-nanoparticle interactions are highly
favorable so as to promote nanoparticle disper-
sion. Moreover, we have chosen to work at rel-
atively high temperature in order to avoid con-
tributions to η from the complex physics of the
slowing dynamics that arise from approaching
the glass transition. Previous work9,10 has shown
that polymer-surface interaction effects in this low
temperature range can alter, and potentially dom-
inate the nanocomposite properties. We also limit
the range of chain length N studied to avoid effects
of significant polymer entanglement. These lim-
itations on interaction, temperature, and chain
length are advantageous in order to develop a
clear understanding of the origin of the observed
changes in properties. Such a reference calculation
provides a starting point to understand behavior
when these constraints are relaxed. With this in
mind, caution is needed when comparing these
results with experimental data where these com-
plicating additional factors may be present – along
with other possible effects, such as crystallization
or phase separation.

We organize this paper as follows: we first
describe the details of the model and method,
focusing on the differences between the nanopar-
ticle types used in each system. The Composite
Rheology section describes our investigation of
the rheological properties of the nanocomposites,
while the Isotropic Tensile Strength section con-
siders the effects of shape on τ and a discussion of
the general significance of our results is given in
the Conclusion section.

SIMULATION

To directly compare to experiments, it is desirable
to use as realistic a molecular model as possi-
ble. While a chemically accurate MD simulation
is possible in principle, it is often more difficult to
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identify basic physical trends with such models.
Such attempts at chemical realism are also
demanding in terms of the computational times
required, which restricts the class of problems
that can be investigated. Coarse-grained models
of polymeric materials provide a good compromise
between the opposing needs of realism and com-
putational feasibility. Such models can reproduce
qualitative experimental trends of nanocompos-
ites, but precise quantitative predictions cannot
be expected.26 Building on nanocomposite models
introduced before,8–10,44 we study a coarse-grained
model for polymers45,46 and nanoparticles that

allow us to consider PNC systems over a wide
range of physically interesting conditions. Here
we consider several nanoparticle shapes built by
connecting spherical force sites.

We perform MD simulations of systems consist-
ing of a small fraction of model nanoparticles in a
dense polymer melt. For reference we also simu-
late the corresponding systems of pure polymers.
The polymers are modeled via the common “bead-
spring” approach, where polymers are represented
by chains of monomers (beads) connected by bond
potentials (springs).47 All monomers interact via a
modified Lennard Jones (LJ) potential

VP−P(rij) =




4εP−P

[(
σ

rij

)12

−
(

σ

rij

)6
]

− VLJ(rc) − dVLJ

drij
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rc

(rij − rc) : rij ≤ rc

0 : rij > rc

, (1)

where rij is the distance between two monomers,
where εP−P is the depth of the well of the LJ
potential and σ is the monomer size. The poten-
tial is truncated and shifted at rc = 2.5 σ , so
that the potential and force are continuous at
the cutoff. Bonded monomers in a chain interact
via a finitely extensible, non-linear elastic (FENE)
spring potential45,46

VFENE(rij) = −k
(

R2
0

2

)
ln

[
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(
rij
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)2
]

, (2)

where k and R0 are adjustable parameters that
have been chosen as in refs. 45, 46. Since we do
not aim to study a specific polymer, we use reduced
units where σ = εP−P = m = 1 (m is the monomer
mass). Length is defined in dimensionless units
relative to σ , time in units of σ

√
m/ε and temper-

ature T is expressed in units of ε/kB, where kB is
Boltzmann’s constant.

We use three different types of nanoparticles
for our calculations. Figure 1 shows representa-
tive images of the nanoparticles. The first type of
nanoparticle, an icosahedron, was previously stud-
ied in refs. 8–10 which focused on factors control-
ling nanoparticle dispersion and low temperature
effects on transport for a similar polymer matrix.
Practical realizations of polyhedral nanoparticles
include fullerene particles, primary carbon black
particles, quantum dots, and metal nanoparticle
additives. The nanoparticle force sites interact
with each other via an identical VP−P given in

eq 1, with σ = εP−P = m = 1. To maintain the
icosahedral shape, the force site at each vertex is
bonded to its 5 nearest neighbors via a harmonic
spring potential

Vharm(rij) = −κ
r2

0

2

(
rij

r0
− 1

)2

(3)

where κ = 60 and r0 equals the minimum of
the force-shifted LJ potential, approximately 21/6.
To further reinforce the icosahedral geometry, a
central particle is bonded to the vertices with
the potential of eq 3 with the same value of κ,
but with a slightly smaller preferred bond length,
r′

0 = 1/4(10 + 2
√

5)1/2r0, the radius of the sphere
circumscribed around an icosahedron. The result-
ing nanoparticles have some flexibility, but are
largely rigid, thereby preserving their icosahedral
shape.

The second type of nanoparticle is a semiflexible
rod represented by 10 LJ force sites with neigh-
boring monomers bonded by the same VFENE as
used for the polymers. We choose the shape to
represent nanoparticles such as carbon nanotubes
or nanofibers. Carbon nanotubes typically have
lengths up to several µm and a diameter of 1 nm to
2 nm (single-walled tubes) or 2 nm to 25 nm (mul-
tiwalled tubes can have even larger diameters).48

Unfortunately, such large rods are not feasible
to simulate, as the system size needed to avoid
finite size effects exceeds current computational
resources. As a compromise, we simulate rods with
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a length-to-diameter ratio of 10. There is an addi-
tional bond potential between nanoparticle force
sites

Vlin(θ) = κlin(1 + cos θ) (4)

where θ is the angle between three consecutive
force sites. This imparts stiffness to the rod. We
choose κlin = 50, so that like the icosahedra, the
rods have some flexibility, but are largely rigid.

The third type of nanoparticle is square “sheet”
comprised of 100 force sites. While the sheets are
obviously different from the rods, the sheets have
the same aspect ratio as the rods, where aspect
ratio is defined by the ratio of the largest and
smallest length scales. Aspect ratio is often con-
sidered to be one of the most important properties
for anisotropic particles, apart from the interac-
tions with the surrounding matrix. The sheets
represent a coarse-grained model of clay-silicate
nanoparticles or graphene sheets,23 and in the lit-
erature these objects are also termed “tethered
membranes”.9,10,45,46,49 Each monomer in the 10 ×
10 array has non-bonded interactions described by
the same LJ forces as the polymers. The monomers
are also bonded to their 4 nearest neighbors via the
same FENE bond potential of eq 4. The particles
at edges and corners of the sheet are only bonded
to 3 and 2 neighboring particles, respectively. Like

the rods, the sheets are stiffened with a Vlin poten-
tial to prevent the nanoparticle from folding in
on itself. The sheets also include a perpendicular
bonding potential

V⊥(θ) = k⊥
2

(
θ − π

2

)2
(5)

which limits distortions from a square geometry.
Without the potential V⊥, the sheet can deform
into a rhombus. As in ref. 23, we choose κlin = 10
and k⊥ = 100 for the sheets.

Thus far, we have not defined a nanoparticle-
monomer potential. In previous work,8–10 the same
LJ potential of eq 1 was used for nanoparticle-
monomer interactions, with the well depth εP−P

replaced by εN−P. The soft 1
r6 form of the attrac-

tion makes it relatively easy for monomers of
polymers which are first and second nearest neigh-
bors of a nanoparticle to exchange. As a result,
the chains can “slide” relatively easily along the
nanoparticle surface, thereby reducing the ben-
efit of networks built by chain bridging.50 To
make monomer exchange at the surface less favor-
able, we use a “12–24” potential V12−24 rather
than the standard “6-12” powers of VLJ. Thus,
the the nanoparticle-monomer interactions are of
the form

VN−P(rij) =




4εN−P

[(
σ

rij

)24

−
(

σ

rij

)12
]

− V12−24(rc) − dV12−24

drij

∣∣∣∣
rc

(rij − rc) : rij ≤ rc

0 : rij > rc

, (6)

where σ = 1 and rc = 2.5σ . This potential
has stronger forces binding the first neighbor
monomers to the nanoparticle. So that the total
energy of the potential well, i.e. 4π

∫ rc
σ

VN−Pdr, is
roughly the same as that of the LJ potential used
in refs. 9 and 10, we choose εN−P = 3. In this way,
the total potential energy is comparable to that
used in refs. 9 and 10 with εN−P = 1.5, which led to
well-dispersed nanoparticles in that study. Thus,
we expect our systems will be well-dispersed.
However, we shall see this is not entirely the case
for the systems with sheet nanoparticles. Figure 2
shows snapshots of a typical configuration for each
system studied.

We generate initial configurations using the
same approach as in refs. 9 and 10, namely
growing vacancies in the pure melt so that the

nanoparticles can be accommodated. However,
this process generates artificial initial configu-
rations, and so we generate subsequent “seed”
configurations by simulating at T = 5 where reor-
ganization occurs on relatively short time scales.
Depending on the nanoparticle type, we extract
independent starting configurations every 105 to
106 time steps. Subsequently, we make the neces-
sary changes in density and chain length before
cooling and relaxing at T = 2. A possible con-
cern is that at T = 2, monomers will stick to the
nanoparticle surface on a time scale that is long
compared to the simulation, since εN−P = 3; how-
ever, we confirmed that chain monomers exchange
with the nanoparticle surface many times over the
simulation. The equilibration time depends on the
system type and is directly related to particle size.
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1886 KNAUERT, DOUGLAS, AND STARR

Figure 1. The three different types of nanoparticles used in simulation: (a) icosahe-
dron, (b) rod,and (c) sheet.The nanoparticle force sites are rendered as spheres connected
by cylinders representing FENE bonds.

Figure 2. Typical equilibrium configurations of each of the three nanocomposite sys-
tems: (a) icosahedra, (b) rods, and (c) sheets. In each image all nanoparticles are shown;
for clarity of the figure, only 10% of the polymers are shown.
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Pure systems relax relatively quickly,needing only
105 time steps. Icosahedral systems need roughly
106 time steps before reaching thermodynamic
equilibrium. The rods and sheet nanoparticles are
much larger, and thus diffuse more slowly. As a
result, these systems require in excess of 5 × 106

time steps to reach equilibrium. Given that equi-
libration requires more than 106 time steps at
T = 2, equilibration under conditions of entan-
glement or supercooling would be computationally
prohibitive.

We integrate the equations of motion via the
reversible reference system propagator algorithm
(rRESPA), a multiple time step algorithm used
to improve simulation speed.40 We use a basic
time step of 0.002 for a 3-cycle velocity Verlet
version of rRESPA with forces divided into “fast”
bonded (VFENE, Vharm, Vlin, V⊥) and “slow” non-
bonded (VP−P,VN−P) components. The temperature
is controlled using the Nose-Hoover method where
the adjustable “mass” of the thermostat is selected
to match the intrinsic frequency obtained from
theoretical calculations of a face-centered cubic LJ
system.

To study rheological properties, we shear equili-
brated configurations using the SSLOD equations
of motion,51 integrated using the same rRESPA
algorithm used for equilibrium simulation. The
SLLOD method generates the velocity profile for
Couette flow. If we choose the flow along the x-axis
and the gradient of the flow along the y-axis, the
shear rate dependent viscosity is given by

η = −〈Pxy〉
γ̇

(7)

where 〈Pxy〉 is the average of the x-y components
of the pressure tensor (sometimes also called the
stress tensor), and γ̇ is the shear rate.41 We limit
our simulations to small enough shear rates to
avoid potential instabilities associated with break-
ing FENE bonds in the simulation.52

We choose a loading fraction φ ≈ 0.05, defined
by the ratio of the number of nanoparticle force
sites to the total number of system force sites;
values of this order of magnitude are common in
experimental studies.30,34–36 Since all force sites
have the same diameter, φ should also be roughly
equal to the volume fraction. Due to the fact both
polymers and nanoparticles consist of a discrete
number of force sites, φ varies slightly between
systems. For the icosahedral systems φ = 0.0494,
and for the rods and sheets φ = 0.0505. The sys-
tem size for all three nanoparticle systems is much
larger than either the radius of gyration of the

Table 1. The Table Details All System Variants
Simulated

System Type N NC φ n nN

Pure 10 100 0 N/A N/A
20 100 0 N/A N/A
40 100 0 N/A N/A

Icosahedra 10 400 0.0494 13 16
20 200 0.0494 13 16
40 100 0.0494 13 16

Rods 10 944 0.0505 10 50
20 472 0.0505 10 50
40 236 0.0505 10 50

Sheets 10 944 0.0505 100 5
20 472 0.0505 100 5
40 236 0.0505 100 5

Listing: Chainlength N, Number of Chains NC, Loading Frac-
tion φ, Number of Force Sites per Nanoparticle n, and Number
of Nanoparticles nN.

polymers, or the largest nanoparticle dimension,
to avoid finite size effects. The number of chains
NC ranges from NC = 10 in the smallest system up
to NC = 994 for the largest systems. For each sys-
tem we examine chain lengths N = 10, 20, and 40.
For this polymer model, the entanglement length
≈ 30 to 40.53 Hence, only the longest chains stud-
ied may exhibit any effects of entanglement, and
the effects should be small in the present work. We
reiterate that effects of dynamics due to proximity
to the glass transition should not play a signifi-
cant role at the relative high T of our systems. A
summary of the system parameters can be found
in Table 1.

COMPOSITE RHEOLOGY

Shear Viscosity η

In this section, we evaluate the role of nanopar-
ticle geometry on η and clarify the influence of
chain bridging on η for a range of shear rates (γ̇ =
0.005, 0.007, 0.01, and 0.02) and chain lengths. In
the nanocomposite simulations of ref. 8, η became
nearly constant at γ̇ = 0.005 – in other words, at
the smallest γ̇ , we are approaching the Newton-
ian limit where η is independent of γ̇ ; however,
our data are still clearly in the shear thinning
regime. Ideally, we would estimate η in the γ̇ = 0
limit directly—for example, by using an Einstein
or Green-Kubo relation—but the accurate eval-
uation of η using these methods is difficult.13,44

We note that if γ̇ is considered in physical units,
these rates would be quite large by experimental
standards.

Journal of Polymer Science: Part B: Polymer Physics
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Figure 3. The viscosity η as a function of shear rate γ̇

for chain length N = 20 at ρ = 1.00. The rods show
the largest η, followed by the icosahedra, and lastly
the square sheets. We show the statistical uncertainty
of η for each system at γ̇ = 0.005, where the fluc-
tuations are largest, and hence represents an upper
bound for the relative uncertainty for all η calculations.
The uncertainty is the result of “block averaging”.41

The inset includes the bulk polymer and shows that
the pure system has much lower viscosity than any
of the nanocomposites by roughly an order of magni-
tude. The lines in this and subsequent figures are drawn
only as guide for the reader’s eyes. [Color figure can
be viewed in the online issue, which in available at
www.interscience.wiley.com]

Figure 3 shows η for the three nanocomposites
and pure polymer as a function of γ̇ . These data
show a clear change in η between the systems for
all γ̇ simulated, with the rods having the largest η,
followed by the icosahedra, sheets, and finally the
bulk polymer. The decrease of η with increasing γ̇

is indicative of shear thinning. We note that η is
not constant at the lowest γ̇ , indicating we have
not yet reached the Newtonian regime. Nonethe-
less, it is clear that the pure polymer has a viscos-
ity approximately an order of magnitude smaller
than any of the composites. Comparable differ-
ences in η have been observed in experiments.29,31

This demonstrates an enhancement of η through
the addition of nanoparticles, which is often a
desired goal of adding nanoparticles to a polymer
melt. While the figure only shows η for the N = 20
and ρ = 1.00, other chain lengths and densities
indicate the same trend. Figure 4(a) shows the
effect of varying N on η at ρ = 1.00 and γ̇ = 0.007.
An increase in η with increasing N is expected
from basic polymer physics since the chain friction
coefficient increases with N.47 Interchain inter-
actions and “entanglement” interactions enhance

this rate of increase since the friction coefficient of
each chain increases linearly with N.

While it is clear that addition of nanoparticles
increases η of the resulting composite, the reasons
for this are not obvious. Since the pure polymer
has a relatively low η it is reasonable to assume
that the rigid nanoparticles themselves inherently
raise η as in any suspension of particles in fluid
matrix. To separate out this continuum hydrody-
namic effect of the nanoparticles from the effects
specifically due to polymer-nanoparticle interac-
tions, we calculate intrinsic viscosity [η] for the
individual nanoparticles. Specifically, continuum
hydrodynamics provides an estimate of the incre-
mental change of the reduced viscosity ηr(φ) =
η(φ)/η (φ = 0) through the addition of particles
to a fluid,

ηr(φ) = 1 + [η]φ + O(φ2) (8)

where the velocity of the fluid is taken to be zero
on the surface of the particle (“stick” boundary
conditions). Such expansions are only quantita-
tively reliable for φ � 0.01 for nearly spherical
particles; for larger φ, we expect eq 8 to recover

Figure 4. The (a) viscosity η and (b) reduced viscos-
ity ηr as a function of chain length N. All values are
from systems at ρ = 1.00 and γ̇ = 0.007. Chain length
appears to have no effect on the ordering of η amongst
the systems. [Color figure can be viewed in the online
issue, which in available at www.interscience.wiley.com]
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only qualitative variations in ηr. For reference,
the “intrinsic” viscosity [η] = 5/2 for spheres in
three dimensions.54 It is also known that [η] is
generally larger for isotropically oriented spher-
ical shapes.55 Refs. 19–21 and 56 have reviewed
the modeling of polymer composites containing
extended particles based on continuum mechan-
ics. This work also considers the effect of particle
clustering on η which is important under poor
dispersion conditions.

To compare the predictions of hydrodynamic
theory to our simulation, we use the Zeno package
to calculate [η] for our particles.57 The compu-
tational method involves enclosing an arbitrary-
shaped object within a sphere and launching ran-
dom walks from the border or launch surface. The
probing trajectories either hit the object or return
to the launch surface. From these path integra-
tion calculations, [η] for the rigid particles can
be estimated for objects of essentially arbitrary
shape.58 We determine [η] of the nanoparticles as
an average over 100 different conformations found
in the equilibrium system as they adopt a range of
shapes due to bond flexibility.

Using Zeno, we find that the icosahedral
nanoparticles have [η] = 3.93, the rods have [η] =
16.3, and the sheets have [η] = 10.8. The intrinsic
viscosity of a regular icosahedron has been esti-
mated to be 2.47.58 The discrepancy between this
value and our icosahedral nanoparticles arises
from the fact that our nanoparticles are not regu-
lar solids, but rather consist of a group of spherical
force sites with icosahedral symmetry. We can use
eq 8 to predict ηr for the MD simulations, and find
(for the N = 20 systems) ηr = 1.20 for the icosa-
hedra, ηr = 1.82 for the rods, and ηr = 1.54 for
the sheets. Such a prediction underestimates the
N = 20 MD results by 92% for the icosahedra,
90% for the rods, and 89% for the sheets. Clearly
this hydrodynamic estimate of ηr for our nanocom-
posites is not adequate, even accounting for the
order-of-magnitude nature of the estimate based
on eq 8. Consistent with the full MD simulations,
the rods have the largest value, but in contrast
to the MD simulation, the order of the sheets and
icosahedra are reversed. While the larger [η] value
of the rods are generally consistent with a larger
value of η, the reversal of the sheet and icosahe-
dra [η] values indicates that nanoparticle and/or
polymer interactions play a role in the overall vis-
cosity. Moreover, the continuum theory indicates
that ηr should be independent of N, while we see
from Figure 4(b) that ηr from the MD simulations
is strongly dependent on N. Hence we conclude

that the continuum model of η does not provide an
adequate explanation of the changes we see in our
simulations.

Evidently, we must also examine other contri-
butions to the nanoparticle viscosity. One possi-
bility that has recently been discussed21 is that
slip rather than stick boundary conditions might
provide a better description of nanoparticle bound-
ary conditions. However, this would result in a
decrease of the predicted value of ηr

22,44 relative
to the stick case, which is in the wrong direction
for explaining our results. At a molecular level,
the boundary conditions are clearly neither stick
nor slip, as particles have finite residence times
at the surface, although it is difficult to deter-
mine the appropriate hydrodynamic boundary
conditions directly from molecular considerations.
Nanoparticle-polymer interactions and nanopar-
ticle clustering are evidently factors that might
cause the property enhancements we observe, and
in the next section we focus on this possibility.

Relationship of Viscosity to Fluid Structure

We next turn to the structural results obtained
from MD simulation to better quantify the rela-
tionship of polymer and nanoparticle structure
to η. We first calculate the fraction of nanopar-
ticles in contact with other nanoparticles, fN−N.
Nanoparticles are said to be “in contact” if one
or more comprising force sites of a nanoparti-
cle are within the nearest neighbor distance of a
force site belonging to another nanoparticle. The
nearest-neighbor distance is defined by the first
minimum in the radial particle distribution func-
tion g(r); the first minima is at r ≈ 1.5 for all
systems. Figure 5 shows fN−N as a function of N for
ρ = 1.00 and for both γ̇ = 0 and γ̇ = 0.007. While
it is not readily apparent from Figure 2(c), the
polymers “intercalate” between the sheets to some
degree, and hence, the nanoparticles are not actu-
ally in direct contract with each other, resulting in
a very low value of fN−N for the sheets. With the
exception of the N = 40 equilibrium system, the
sheets have the fewest nanoparticle-nanoparticle
contacts. For the systems under steady shear, fN−N

evidently stays fairly constant as N varies. While
the order of the systems for fN−N is consistent with
the trend for η, the similarity between the rods and
icosahedra suggests that the fraction of nanopar-
ticles alone is not responsible for determining
composite viscosity. Of note, is the large fraction
of nanoparticle contacts for the N = 40 sheet sys-
tem at equilibrium. We have conducted further
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Figure 5. The fraction of nanoparticles in contact with
other nanoparticles fN−N as a function of N for each of
the composite systems at (a) γ̇ = 0 and (b) γ̇ = 0.007.
[Color figure can be viewed in the online issue, which in
available at www.interscience.wiley.com]

simulations at various ρ (not shown) that suggest
there is a tendency for the sheets to favor a truly
clustered state at lower density, that is, chains no
longer intercalate between the sheets for N = 40.
The lack of intercalating chains may also be a sam-
pling issue, since the timescale on which chains
enter or exit between the sheets is a significant
fraction of the total simulation time. Thus, we may
not sample the equilibrium fraction of contacts
between the sheets well, and our average may
be dominated by either an intercalated or non-
intercalated state. Nonetheless, it is reasonable
to think that the tendency of the sheets to stack
is a ρ dependent phenomena, possibly caused by
entropic interactions that result from polymer-
depletion induced attractions between the sheets.
Such depletion interactions could arise due to
physically adsorbed polymers on the sheet surface,
much like the depletion interactions of polymer
coated colloids.59 This interaction should be most
pronounced for the sheets, presumably due to the
large and relatively flat surface of a sheet, which
more effectively reduces the entropy of chains at
the surface.

Given that nanoparticle–nanoparticle contacts
do not appear to be the origin of the relative

ordering, we next consider the role of polymer-
nanoparticle interactions. To gauge the possible
role of such interactions we calculate the fraction
of polymer chains in direct contact with a nano-
particle, fN−P. Using the same nearest-neighbor
criteria as used to determine nanoparticle-
nanoparticle contacts, we compute fN−P as a func-
tion of N for ρ = 1.00 at γ̇ = 0 and γ̇ = 0.007
in Figure 6. We find that fN−P is approximately
the same for both the quiescent and sheared sys-
tems. There are also clear trends: fN−P increases
with increasing N, and for every value of N the
system containing the rods has the largest value
of fN−P, followed by the system containing the
icosahedra, and finally the system containing the
sheets. These same trends in η appear in Figure 4,
suggesting that the nanoparticle-polymer contacts
indeed have a significant effect on relative magni-
tude of η.

The correlation of η with fN−P is consistent with
the idea that bridging between nanoparticles play
a major role in determining the rheological prop-
erties of polymer nanocomposites.11,16,17,39 Thus,
we extend our analysis to test for a correlation

Figure 6. The fraction of polymer chains in direct
contact with a nanoparticle fN−P shown as function of
chain length N for each of the three nanoparticle sys-
tems at (a) γ̇ = 0 and (b) γ̇ = 0.007. [Color figure
can be viewed in the online issue, which in available
at www.interscience.wiley.com]
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Figure 7. The effect of chainlength N on the fraction
of bridging chains fB in each of the three nanoparti-
cle systems at ρ = 1.00 for (a) γ̇ = 0 and (b) γ̇ =
0.007. The order of fB with respect to nanoparticle type
matches the trend in Fig. 3 for η. [Color figure can
be viewed in the online issue, which in available at
www.interscience.wiley.com]

between η and chain bridging. We define a “bridg-
ing chain” as a chain that is simultaneously in
contact with two or more nanoparticles. Figure 7
shows fB as a function of N for ρ = 1.00. The trend
in fB is consistent with both fN−P and η, showing an
increase in fB with increasing N as well as a clear
ordering between systems for every chain length.
Although not shown, the results seen in Figure 7
occur for every value of ρ that we have simulated.
Hence, the fraction of bridging chains seems to be
a useful “order parameter” for characterizing the
polymer-nanoparticle interactions. If the polymer-
nanoparticle interactions were sufficiently small,
the bridging would not be expected to play sig-
nificant role, and it is likely that the continuum
hydrodynamic approach would be applicable.

Similar to the notion of bridging is the idea
that the nanoparticles can act as transient cross-
linkers that can lead to effects equivalent with the
formation of higher molecular weight chains.11,39

To test this idea, we define an “effective chain”
as the collection of chains that are connected by
nanoparticles. We then define an effective chain

length Neff as the mean mass of chains connected
by the nanoparticles. Figure 8 shows that Neff

is almost an order of magnitude larger than N.
Hence, we expect that the largest contribution to
the η increase comes from this effect. Even in
the simplest Rouse theory, an order of magnitude
increase in N would lead to an order of magnitude
increase in η. The formation of longer effective
chains is expected to lead to entanglement interac-
tions that would further amplify the η increase, as
emphasize by ref. 60. However, this entanglement
contribution is hard to quantitatively interpret in
the present context.

ISOTROPIC TENSILE STRENGTH τ

Calculation of τ

The ultimate isotropic tensile strength τ of a mate-
rial is defined as the maximum tension a homoge-
neously stretched material can sustain before frac-
ture. While this definition can be directly probed
experimentally, the situation is less straightfor-
ward in an MD simulation. Reference 43 has
developed an approach to estimate τ based on
potential energy-landscape (PEL) formalism that

Figure 8. The effective chainlength Neff as a func-
tion of N in each of the three composite systems at
ρ = 1.00 for (a) γ̇ = 0 and (b) γ̇ = 0.007. [Color figure
can be viewed in the online issue, which in available at
www.interscience.wiley.com]
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is accessible by MD simulation. Although the PEL
is complex and multidimensional, one can envi-
sion it as a series of energy minima connected
by higher energy transition pathways. By defin-
ition, the minima, or inherent structures (IS) are
mechanically stable, that is, there is no net force at
the minimum.The method of ref. 43 relates τ to the
maximum tension the IS can sustain, determined
by an appropriate mapping from equilibrium con-
figurations to energy minimized configurations. In
other words, τ is the upper bound on the tension
at the breaking point of an ideal glass state in the
T → 0 limit. Here we evaluate τ for the various
possible nanoparticle geometries. As a caution-
ary note, we point out that this method has not
been directly validated by comparison with exper-
iments; thus conclusions drawn from these results
should be considered tentative. Reference 61 dis-
cusses an alternate approach using the PEL to
evaluate the elastic constants.

To determine τ , we must first generate the
energy minimized configurations from the equi-
librium configurations. For a system of N atoms
in the canonical ensemble, the most commonly
used mapping from equilibrium configurations to
the IS takes each force site along the steepest
descent path of the energy of the system. This
configurational mapping procedure corresponds to
the physical process of instantaneous cooling to
the T → 0 limit to obtain an ideal glass with no
kinetic energy. Therefore, by sampling thermally
equilibrated configurations and minimizing their
energies we can estimate the average inherent
structure pressure, PIS, which will be negative
when the system is under tension. The maximum
tension then defines τ . The value of PIS has been
found to be weakly dependent on the T at which
the sampling is performed. For example, while
cyclopentane has a strongly temperature depen-
dent structure, ref. 62 has shown that equilibrium
T only weakly effects PIS. Since the structures in
our systems do not display such dependence, we
expect our results also to be independent of the
starting equilibrium T. Thus, we can use the same
systems at T = 2 that we used to determine η and
still obtain reliable results for τ – even though
the starting configuration is a highly fluid state.
This calculation of τ should be an upper bound
for the tensile strength that would be obtained for
any finite T system, and hence is referred to the
as the ultimate tensile strength. The energy min-
imization process eliminates the high frequency
effects that would normally be associated with
such high T states and thus the method refers

Figure 9. The inherent structure pressure PIS as a
function of ρ for the pure polymer and the nanocompos-
ite systems at N = 20. The pure, icosahedron, and rod
systems all have a Sastry density ρS ≈ 0.99, while for
the sheets ρS ≈ 0.93. The uncertainty intervals (“error
bars”) represent the statistical uncertainty in our aver-
age for PIS from block averaging.41 [Color figure can
be viewed in the online issue, which in available at
www.interscience.wiley.com]

to the strength of an ideal glass material having
essentially no configurational entropy.

Figure 9 shows the PIS curves generated for
the N = 20 variant of each system. We find that
PIS decreases at large ρ, until a minimum value
is reached. The density of the minimum, referred
to as the “Sastry density” ρS,42 characterizes the
density where the system fractures, and voids first
start to appear in the minimized configurations.
As ρ decreases below this point, PIS begins to rise.
Since this is the greatest tension achievable, we
have PMAX

IS = −τ . For pure, icosahedral, and rod
systems we find ρS ≈ 0.99, while for the sheets it is
much lower ρS ≈ 0.93. Similarly, τ is considerably
larger for the sheets than for the other systems.We
find that the increase in τ for the sheets is not as
sizable as observed experimentally.29 This may be
related to the fact that (experimentally) the chains
often form stronger associations with layered sil-
icates than in our simulations; additionally, the
chain lengths we examine are small compared to
experiments, and we will see that τ increases with
N. We note that at this chain length, the icosahe-
dra and rods actually reduce the strength of the
nanocomposite as compared to the pure melt.

To quantify the chain length dependence of τ ,
we plot the minimum of each PIS curve as a func-
tion of N in Figure 10. For the pure polymers,
we find that τ decreases with increasing chain
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Figure 10. Tensile strength τ as a function of chain
length N for the pure polymer and the nanocomposite
systems. We find that τ increases as N increases. This
is in contrast to the behavior of the pure polymer where
τ decreases with increasing N. Only for systems with
the sheet nanoparticles—or the system with icosahedral
nanoparticles at N ≥ 40—does the addition of nanopar-
ticles produce a net benefit relative to the bulk polymer.
[Color figure can be viewed in the online issue, which in
available at www.interscience.wiley.com]

length. A similar decrease of τ was observed in
simulations of n-alkanes43 and experimentally it
has been found that ultimate tensile strength of
certain polymeric systems, such as amorphous
polyethylene, decreases with increasing molecular
weight.63 Such a decrease in τ is non-trivial,
since one expects longer chains to exhibit more
chain “entanglement”. Such a view neglects the
importance of packing, however, which is crucially
important in the low temperature glass regime.

For n-alkanes, it was argued that these packing
effects play an important role for the behavior of
τ .43 As chains grow longer, it becomes more diffi-
cult to pack effectively due to the constraints of
chain connectivity. The poorer chain packing in
turn can lead to an increase in the“fragility”, in the
context of fragile and strong glass formers.64 Poor
chain packing in fragile glass formers is known
to give rise to decreases in the tensile stress at
breakage, and so it is reasonable to expect that τ

would decrease with increasing N as the fragility
of glass formation increases. This interpretation of
the trend in τ being related to the fragility of the
glass-formation requires further investigation, of
course, and we mention this as a tentative expla-
nation of the trend in τ that we and others have
observed. Reference 43 also finds a maximum τ

for N = 3, and a tendency for ρIS to saturate
near N = 8. Since the smallest chain we simu-
late is N = 10, we are above the regime where
this feature occurs. Consistent with these facts, τ

decreases with N and ρS is roughly independent
of N. More importantly, Figure 10 shows that the
addition of the nanoparticles reverses the N depen-
dence of τ when compared to the pure system.
Thus, while the presence of icosahedral or rod-
like nanoparticles decreases the material strength
for most chain lengths studied, τ increases with
increasing N, and if this continues, τ will sur-
pass the pure melt for all nanoparticle shapes
at large enough N. Indeed, τ for the icosahedra
nanocomposite already exceeds that of the melt at
N = 40.

Relationship of Structure to Tensile Strength

To better understand the predicted N dependence
of τ , we perform a parallel analysis to the struc-
tural analysis of shear runs discussed above. The
analysis of Figures 5–7 focuses on ρ = 1.00. We
relate the structure to τ by examining the struc-
ture at ρS. Evidently, ρS for the sheets differs from
the other systems studied, and it is possible that ρ

dependent changes in connectivity properties are
responsible for the difference of τ . Thus, we cal-
culate the quantities fB, fN−N, and fN−P at ρS for
each system using the equilibrium and IS config-
urations at the Sastry density ρS of the system.
The results for the equilibrium and IS configura-
tions show the same qualitative trends, so we will
present only data for the IS.

We first focus on fB because our investiga-
tions into the rheological properties suggested
that bridging chains played a large role in deter-
mining η. However, when we plot fB in Figure 11
for each system at ρS, we see that the N depen-
dence is the reverse of that seen for τ , even though
this quantity follows η. The ordering of fB among
the systems is the same as for fB in the case of
the η calculations. The sheet composites have the
smallest fB, followed by those with icosahedra, and
those with rods. While bridging chains do increase
with increasing N, fB does not seem to be a major
factor in the relative value of τ between the com-
posites. For example, the N = 10 nanocomposites
with icosahedra and sheets have almost the same
value of fB, yet they have significantly different
values for τ .

The fewer bridging chains in the systems with
square sheets suggests that the sheets may be
clustered, and we find that this is indeed the case
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Figure 11. The effect of chainlength N on the fraction
of bridging chains fB in each of the three composite sys-
tems calculated using the inherent structure configura-
tions at ρ = ρS. [Color figure can be viewed in the online
issue, which in available at www.interscience.wiley.com]

for N = 40 [Fig. 5(a)]. Thus, we plot fN−N in
Figure 12 and find indeed that fN−N ≈ 1 for the
sheets. The sheets prefer a stacked state at low ρ

due to entropic interactions with polymers which
leads to a reduced explicit energetic interaction
with the surrounding polymers. In particular, the
relative ordering of fN−N matches that of τ . Naïvely,
this would seem to suggest a potential correlation

Figure 12. The fraction of nanoparticles in contact
with other nanoparticles fN−N as a function of N for each
of the composite systems calculated using the inher-
ent structure configurations at ρ = ρS. [Color figure
can be viewed in the online issue, which in available
at www.interscience.wiley.com]

between fN−N and τ . However, this apparent corre-
lation is problematic. Firstly, the N dependence of
τ and fN−N are different, namely τ monotonically
increases,while fN−N is roughly constant. Secondly,
if the nanoparticles interactions are the origin of
the increased strength, then one might expect to
find the largest effect when the nanoparticles’ are
well dispersed.8 This is not the case, since the
clustered sheets give the largest effect.

To confirm that the nanoparticles actually
impart additional strength, we visually examined
the location of fracture in our systems at ρS. To
find empty spaces that are at least the size of
a particle, we discretize the system into a cubic
lattice of overlapping spheres, each with a radius
rV and a nearest neighbor separation d. We then
identify spheres that do not contain any system
force site. By adjusting the parameters rV and d
we can ensure that the voids we find are at least
large enough for a single particle. Since the force
sites of both the nanoparticles and polymers have
diameter 1, we must choose rV > 0.5 to have phys-
ical relevance. We find that values of rV = 0.6 and
d = 0.3 work best for visualizing voids.

Figure 13 shows that the voids in the system
occur in regions of pure polymer for the icosahe-
dral system. The same is also true for the rods
and square sheets. Quantitative analysis of the
force sites within nearest-neighbor distance r =
1.5 of the voids confirmed this suggestion, with

Figure 13. Typical fractures for the IS of the icosa-
hedral nanocomposite. The large contiguous blobs are
the fractures. The surrounding spheres represent force
sites in contact with the rupture. Note that nearly
all sites in contact are polymers. [Color figure can
be viewed in the online issue, which in available at
www.interscience.wiley.com]
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Figure 14. The fraction of polymer chains in direct
contact with a nanoparticle fN−P as function of chain-
length N for each of the three nanoparticle systems
calculated using the inherent structure configurations
at ρ = ρS. [Color figure can be viewed in the online issue,
which in available at www.interscience.wiley.com]

over 99% of the resulting force sites belonging
to polymer chains. Thus, while the nanoparticles
impart an increased strength to the nanocom-
posite, the correlation to fN−N is not apparently
causal. Evidently, there is something more subtle
controlling the magnitude of τ in the sheet filled
nanocomposite that we have not yet identified.

To complete the structural analysis we calcu-
late fN−P for the IS. Figure 14 shows that the
sheet nanoparticles are not in contact with many
polymers, consistent with the fact that fN−N ≈ 1.
In fact, after minimization the difference in fN−P

between the rods and the sheets is even larger
than observed in the equilibrium configurations
shown in Figure 6. Figure 14 shows that the rela-
tive ordering of fN−P is opposite to that of τ , hence
the number of nanoparticle-polymer contacts
alone also does not provide a good indicator of τ .

A potential clue to the increase of τ of the sheet
nanocomposite is the fact that ρS is significantly
smaller than for the other systems. This allows
the sheet composites to undergo a greater defor-
mation before fracture. This large increase in both
the strength and toughness of the polymer matrix
with incorporation of nanoparticles is reminiscent
of the changes in the properties of natural and syn-
thetic rubbers with the inclusion of carbon black
and nanofiller additives.39,65–67 Extraordinarily
large increases in both the strength and tough-
ness of materials have recently been observed
in the case of exfoliated clay sheets dispersed

in the polymer polyvinylidene fluoride (PVDF).68

Although some of this change is associated with
the modification of the crystallization morphology
by the clay nanoparticles, this does not explain
in itself the observed toughening mechanism. It
is known that nanofiller particles can behave as
temporary cross-linking agents that impart vis-
coelastic characteristics to the fluid. Gersappe39

further emphasizes the role of this transient net-
work formation in impeding cavitation events that
initiate material rupture and the potential sig-
nificance of this phenomenon in understanding
the nature of biological adhesives (abalone), fibers
(spider silk), and shell material (nacre).69,70 Ger-
sappe further suggests that the relative mobility
of nanoparticles has a role on the toughening of
materials. However, such reasoning is inconsis-
tent with the fact that the sheet nanoparticles
lead to the strongest material while being the least
mobile of our additives.

Recent work indicates that flexible sheet-like
structures, such as studied here, are character-
ized by a negative Poisson ratio ν,71–73 that is, the
material expands normal the direction of stretch-
ing, as opposed to normal materials which expand
in the same direction as the stretching. The for-
mation of a composite material with negative
Poisson ratio (“auxetic” materials) is expected to
lead to a reduction of the Poisson ratio of the
composite as a whole.74,75 A large reduction in ν

can lead to materials that are strong and frac-
ture resistant.76 Related to this, we observe in
our simulations that the voids that form in the
sheet-filled nanocomposites tend to be fewer and
smaller than those for the other nanoparticles
at ρS. As we further reduce ρ for the sheet sys-
tem, the voids grow more numerous as opposed
to growing larger as in the other nanocomposites.
Microvoid formation has also been established as
a mechanism for toughening polymer materials.77

Previous work devoted to understanding the high
impact strength of polycarbonate and other glassy
polymers has likewise emphasized the importance
of large “free volume” within the polymer material
as a necessary condition for large toughness.78,79

Based on our simulation results and previous
observations, we tentatively suggest that the addi-
tion of these “springy” sheet materials reduces
the effective Poisson ratio of our nanocomposites,
and that the microvoid formation process that we
observe is a manifestation of the non-uniformities
in the elastic constants within the nanocomposite.
In principle, the elastic constants can be deter-
mined by the PEL approach,61 but this analysis
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will be deferred to a future work since it is rather
involved. Our tentative interpretation of the pre-
dicted τ variation in the sheet nanocomposites
also suggests the need for better characterization
of the geometric rigidity properties of the sheet
nanoparticles, since these variables may be impor-
tant for understating how such particles modify
the stiffness and toughness of nanocomposites.

CONCLUSION

In this work we have focused on how nanopar-
ticle shape influences the viscosity of polymer-
nanoparticle melt mixtures at high temperature
and the ultimate tensile strength (estimated from
the PEL formalism) of polymer nanocomposites
in the ideal glass state. Our results suggest that
chain bridging between the nanoparticles can
have a large effect on η of the mixture when
the polymer-particle interactions are attractive, so
that the nanoparticles disperse readily. In addi-
tion, there is a relatively weak increase in η for
sheet nanoparticle composites, which tend to clus-
ter in our simulations, supporting the expectation
that nanoparticle clustering diminishes the vis-
cosity enhancement. However, the formation of
“open” or percolating fractal clusters may have
the opposite effect on the viscosity. Curiously, the
tensile strength of the sheet nanocomposite is
greatest, in spite of the sheet stacking. One of
the most intriguing effects of the nanoparticles is
that, regardless of shape, the dependence of the
tensile strength on chain length for the nanocom-
posites is opposite to that for the pure polymer
melt. We reiterate that our results for τ rely on
the PEL approach, and this approach should be
carefully compared with experimental measure-
ments to test the expected relationship between
τ from simulations and tensile strength found
experimentally.

The trends observed for τ are more difficult to
understand than those for η. There is evidently
no clear-cut correlation of τ with the formation
of bridging chains or with the attractive particle-
particle interactions. In the absence of such a cor-
relation, we suggest that the nanoparticles effect
the mechanical properties by modifying the ratio
of the bulk and shear moduli in the low tempera-
ture nanocomposite state (i.e., the nanocomposite
Poisson ratio). Recent work has noted that mole-
cularly thin sheets have a negative Poisson ratio
when they are flexible enough to crumple by ther-
mal fluctuations. Such additives could reduce the

Poisson ratio of the material as a whole and
provide a potential rationale for interpreting the
increases in both the strength and toughness
observed in our simulation of sheets dispersed in a
polymer matrix, as well as in experiments on clay
nanocomposites.
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