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An energy harvesting concept has been proposed comprising a piezoelectric patch on a vertical cantilever beam with a

tip mass. The cantilever beam is excited in the transverse direction at its base. This device is highly nonlinear with two

potential wells for large tip masses, when the beam is buckled. For the pre-buckled case considered here, the stiffness is

low and hence the displacement response is large, leading to multiple solutions to harmonic excitation that are exploited in

the harvesting device. To maximise the energy harvested in systems with multiple solutions the higher amplitude response

should be preferred. This paper investigates the amplitude of random noise excitation where the harvester is unable to

sustain the high amplitude solution, and at some point will jump to the low amplitude solution. The investigation is

performed on a validated model of the harvester and the effect is demonstrated experimentally.

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The energy limitations of portable power sources is a fundamental bottleneck in many applications. Ambient energy from

a variety of sources, such as solar, wind, thermal gradients or mechanical vibration can be harvested and used to provide

the energy required. There is significant research and development in the use of smart materials for energy harvesting in

applications ranging from battery-free pace-makers (Karami and Inman [26]) to structural health monitoring of civil or

aerospace structures (Beeby et al. [4], Priya [38], Lefeuvre et al. [27, 28]). Reviews of the literature on energy harvesting

from vibration have been given by Sodano et al. [49], Anton and Sodano [2], Cook-Chennault et al. [9] and Priya and

Inman [39]. Furthermore, Pellegrini et al. [37] and Harne and Wang [24] have recently presented focused reviews on the

topic of nonlinear vibration energy harvesting.

Piezoelectric materials are widely used as actuators and sensors for active vibration control of beams and plates. Can-

tilever type vibration energy harvesting devices, such as beams, use a passive substrate to support a piezoelectric transduc-

tion element. The maximum power output of such a device, operating in the linear regime, occurs when the fundamental

frequency of the device is near the dominant frequency of ambient vibration, ensuring a resonance response that maximizes

the strain in the piezoelectric material. Sodano et al. [48, 50] investigated the transduction performance of several mono-

lithic and piezocomposite devices. Electromechanical models and experimental validation were presented by Erturk and

Inman [15], and Erturk et al. [13]. Bilgen [5] compared resistive shunt energy harvesting of several cantilever beam vibra-

tion energy harvesters. Guyomar et al. [23] and Wickenheiser et al. [53] gave further examples of analysis and maximization

of mechanical and electronic parameters of vibration energy harvesters. Ng and Liao [35], duToit et al. [12], Roundy [43],

and Renno et al. [42] proposed methods to optimize the parameters of such systems to maximize the harvested energy.

Shu and Lien [46, 47], and Shu et al. [45] conducted detailed analyses of power output response of piezoelectric energy

harvesting systems. Karami and Inman [25] presented the electromechanical modeling of a low frequency zigzag micro

energy harvester.

One of the drawbacks of linear energy harvesters, regardless of the type of its active material, is that generally they are

efficient only when the excitation frequency is near to the resonance frequency (see Daqaq [11]). Therefore, most linear

energy harvesting devices are designed on the assumption that the (base) excitation has some known narrow-band form,

typically harmonic excitation. However, there are many situations where energy harvesting devices are operating under

∗ Corresponding author E-mail: m.i.friswell@swansea.ac.uk, Phone: +44 1792 602969, Fax: +44 1792 295676
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434 M. I. Friswell et al.: Vertical beam energy harvester

unknown or random excitations, and in such situations harvesters with a broadband or adaptive response are likely to be

beneficial. One approach is to adaptively change the parameters of the linear harvester so that its natural frequency becomes

close to the excitation frequency as it changes (see Wang et al. [52]). Such adaptive systems may be difficult to implement in

general and also may not adapt well to a broadband excitation. Ferrari et al. [19] used an array of cantilever beam harvesters

tuned to different frequencies.

An alternative approach to maximize the harvested energy over a wide range of excitation frequencies uses nonlinear

structural systems, and a range of devices have been proposed by Cottone et al. [10] and Gammaitoni et al. [21, 22]. The

key aspect of the nonlinear harvesters is the use of a double well potential function, so that the device will have two

equilibrium positions (see Cottone et al. [10], Mann and Owens [30], Ramlan et al. [41], Ferrari et al. [18], and Quinn

et al. [40]). Gammaitoni et al. [21] and Masana and Daqaq [32] highlighted the advantages of a double well potential for

energy harvesting, particularly when inter-well dynamics are excited. The simplest equation of motion with a double well

potential is the well-known Duffing oscillator, which has been extensively studied, particularly for sinusoidal excitation.

The dynamics is often complex, sometimes with coexisting periodic solutions, and sometimes exhibiting a chaotic response.

The Duffing oscillator model has been used for many energy harvesting simulations, with the addition of electromechanical

coupling for the harvesting circuit. One popular implementation of such a potential is a piezomagnetoelastic system based

on the magnetoelastic structure that was first investigated by Moon and Holmes [34] as a mechanical structure that exhibits

strange attractor motions. Erturk et al. [14] investigated the potential of this device for energy harvesting when the excitation

is harmonic and demonstrated an order of magnitude larger power output over the linear system (without magnets) for non-

resonant excitation. One problem with multiple solutions to harmonic excitation is that the system can respond in the low

amplitude solution; Sebald et al. [44] proposed a method to excite the system to jump to the high amplitude solution at low

energy cost. Stanton et al. [51] and Erturk and Inman [16] investigated the dynamic response of such systems, including

the chaotic response. Cottone et al. [10] used an inverted beam with magnets and also considered random excitation. Mann

and Sims [31] and Barton et al. [3] used an electromagnetic harvester with a cubic force nonlinearity. Litak et al. [29] and

Ali et al. [1] investigated nonlinear piezomagnetoelastic energy harvesting under random broadband excitation. McInnes et

al. [33] investigated the stochastic resonance phenomena for a nonlinear system with a double potential well.

Another requirement of an energy harvester is to be able to harvest reasonable amount of energy when the excitation

frequency is low. Common examples include the vibration of long span bridges and tall buildings. A low frequency piezoe-

lastic or piezomagnetoelastic harvester is difficult to realise due to the small physical dimensions of the devices. In this

paper an inverted cantilever beam with a piezoelectric patch loaded with a tip mass is investigated. The idea is to adjust

the mass such that the system is near buckling and therefore has a low effective resonance frequency. The beam undergoes

large deformations exhibiting nonlinear behavior and hence geometric nonlinearities are considered. By exploiting this

nonlinearity, the aim is to have a low frequency energy harvesting device which is relatively insensitive to a particular ex-

citation frequency and responds with a relatively large amplitude. Friswell et al. [20] presented an experimentally validated

concept of an inverted cantilever beam with tip mass subjected to harmonic excitations. Borowiec et al. [8] analyzed the

efficiency of the inverted cantilever beam, focusing on the region of stochastic resonance where the beam motion has a

large amplitude. Numerical analysis showed that increasing the noise level allows the motion of the beam system to escape

from single well oscillations and thus generate more power.

This paper considers the electromechanical response of the pre-buckled inverted cantilevered beam subjected to a com-

bination of harmonic and broadband random excitation. This extends the work of Friswell et al. [20] which concentrated

on pure sinusoidal excitation. In reality, systems driven by sinusoidal base excitation, for example from machinery rotating

at a fixed spin speed, will also be subject to broadband excitation from ambient sources. Therefore the effect of this random

noise on the deterministic steady state response to sinusoidal excitation must be investigated and understood. In particular,

for nonlinear systems with multiple solutions, the high amplitude solution is preferred for energy harvesting; the addition

of random noise can cause the system to jump to the low amplitude solution, which is a situation that should be avoided.

White noise base displacement is selected as the random signal, where the signal has a uniform power spectral density. An

experimental system is also built to validate the model and to demonstrate the effects identified by the simulations.

2 The inverted beam with tip mass

The nonlinear energy harvesting system consists of an inverted elastic beam with a tip mass and the base is harmonically

excited in the transverse direction. Friswell et al. [20] derived the governing equation of motion using Euler-Bernoulli beam

theory. The displacement-curvature relation of the beam is nonlinear due to the large transverse displacement of the beam.

Figure 1 shows the beam as a vertical cantilever of length L with harmonic base excitation z(t) = z0 cos ωt. The beam

carries a concentrated tip mass, Mt , with moment of inertia It ; in this paper this mass is assumed to be located at the end

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org
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Fig. 1 Schematic of the inverted beam harvester. Mt denotes the tip mass attached to the elastic beam,

while v and u denote the horizontal and vertical displacements of the mass. In this paper piezoelectric

patches are placed along the beam but are not shown here.

of the beam. The horizontal and vertical elastic displacements at the tip mass are v and u, respectively, and s represents the

distance along the neutral axis of the beam.

The horizontal displacement at any point in the beam is represented as a function of the tip mass displacement through

a function for the beam deformation, ψ(s), as

vp(s, t) = vp(L, t)ψ(s) = v(t)ψ(s) (1)

where v(t) = vp(L, t) is the horizontal displacement of the tip mass. A suitable displacement model is [17]

ψ(s) =
(

1 − cos
( πs

2L

))

. (2)

Using this displacement model the equation of motion in terms of the horizontal displacement v and electrical voltage V is

[

N 2
5 It + Mt + ρAN1 +

(

ρAN3 + MtN
2
4 + N 4

5 It

)

v2
]

v̈ +
[

ρAN3 + MtN
2
4 + N 4

5 It

]

vv̇2

+
[

EIN6 − N9ρAg − N4Mtg + 2EIN7v
2
]

v − Θ1V − Θ2v
2V = − [ρAN2 + Mt ] z̈ (3)

where the constants N1 to N9 are

N1 =

(

3π − 8

2π

)

L, N2 =

(

π − 2

π

)

L, N3 =

(

π2(2π2
− 9)

384

)

1

L
,

N4 =

(

π2

8

)

1

L
, N5 =

(π

2

) 1

L
, N6 =

(

π4

32

)

1

L3
, (4)

N7 =

(

π6

29

)

1

L5
, N8 =

(

π8

4096

)

1

L7
, N9 =

(

−
1

4
+

1

16
π2

)

.

In the following sections, the base acceleration, z̈(t), will consist of an harmonic component (already described) and a

random component. The random component is a band limited white noise displacement signal but will be characterised by

the standard deviation of the corresponding acceleration signal.

The model of the piezoelectric patches are now considered. The mechanical stiffness and mass density of the piezoelec-

tric layers may be included in the beam constants already derived, although in this paper an alternative approach is taken,

where the stiffness parameters, N6 and N7 , are updated based on the experimental data. The electromechanical coupling

constants are

Θ1 = γcψ
′(Lc) and Θ2 =

1

2
γc(ψ

′(Lc))
3 (5)
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Table 1 Parameter values used in the simulation.

Beam and tip mass Energy harvester

ρ 7850 kg/m3 Lc 28 mm

E 210 GN/m2 γc −1.49 × 10−5 Nm/V

b 15.88 mm Cp 25.7 nF

h 0.245 mm Rl 9.944 MΩ

L 287 mm Θ1 −1.245 × 10−5 C/m

Mt 10.5 g Θ2 −4.345 × 10−6 C/m3

It 0

where Lc is the active length of the piezoelectric material, which is assumed to start at the clamped end of the beam. For a

unimorph configuration with excitation in the 31 mode, with thickness hc and width bc , the constant γc is

γc = Ecd31bc

(

h +
hc

2
− z̄

)

(6)

where h is the thickness of the beam, d31 is the piezoelectric constant, Ec is the Young’s modulus of the piezoelectric

material, and z̄ is the effective neutral axis [36]. These expressions assume a monolithic piezoceramic actuator perfectly

bonded to the beam; Bilgen et al. [7] considered the effect of the structure of a Macro-Fiber Composite (MFC) on the

coupling coefficient, and also the effect of the bond and the insulating Kapton layers.

On the electrical side the piezoelectric patches may be considered as a capacitor, and the electrical circuit is represented

by a resistive shunt connected across the piezoelectric patch. The electrical equation then becomes

Cp V̇ +
V

Rl

+ Θ1 v̇ + Θ2v
2 v̇ = 0 (7)

where Rl is the load resistor and Cp is the capacitance of the piezoelectric patch.

The average power scavenged between times T1 and T2 is calculated as

Pave =
1

T2 − T1

∫ T2

T1

V (t)2

Rl

dt. (8)

3 Numerical simulations

The parameters considered for the numerical simulations are given in Table 1, which were verified by the experiments

reported by Friswell et al. [20]. Note that the increase in beam stiffness due to the Macro-Fiber Composite (MFC) required

an increase in the N6 and N7 terms of 19% and 0.57%, respectively. The beam-mass system is excited at the base with

harmonic excitation with amplitude z0 = 15 mm.

To demonstrate that multiple solutions occur for the deterministic inverted beam system with the given parameters, Fig. 2

shows the RMS steady state values of the displacement as the frequency of excitation is swept up and then down. This figure

is obtained by numerically integrating the equations of motion at each excitation frequency and allowing the transients to

decay leaving a stable steady state solution. The final state vector for the current excitation frequency is then used as

the initial conditions for the next excitation frequency, thus simulating a frequency sweep. For the range of frequencies

considered, there are two stable periodic solutions, distinguished by the amplitude of the response as the low and high

amplitude solutions. Two excitation frequencies, namely ω = 0.501 Hz and ω = 0.515 Hz, will be chosen to demonstrate

the effect of noise on the steady state response.

Consider now the case when ω = 0.515 Hz, which is in middle of the frequency region of multiple solutions. Figure 3

shows the basin of attraction of the low and high amplitude solutions, where the high amplitude solution is given in black.

Time simulations are now used to test the effect of random forcing on the steady state arising from the sinusoidal excitation

at a frequency of ω = 0.515 Hz. First, the initial conditions are set to obtain the high amplitude solution by using the basin of

attraction in Fig. 3, and for the first 20 s of the simulation the random forcing is set to zero to enable the steady state response

to develop. Then the amplitude of the random forcing component is linearly increased over 20 s. It should be emphasised that

the basin of attraction is only defined for the deterministic case; with the inclusion of random excitation, then any particular

set of initial conditions would yield a probability that each potential solution would occur (providing the solutions may be

suitably categorised). The random forcing is white noise base displacement with a bandwidth of 5 Hz (due to the limitations

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org
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Fig. 2 The RMS displacement response of the tip mass as the

excitation frequency varies. The arrows show the directions of

the frequency sweeps.

Fig. 3 Basin of attraction of the high amplitude solution for

ω = 0.515 Hz for the deterministic system. Black represents the

high amplitude solution.

of the experimental system). The tip displacement response, and the corresponding average electrical power output, is then

computed to determine if the system is responding in the high or low amplitude solution. Figure 4(b) shows the resulting

average power as the noise level is increased. For low noise levels (below a standard deviation of 3000 mm/s2) the high

amplitude response is maintained, but for high levels of random forcing (above a standard deviation of 4000 mm/s2 ) the

low amplitude response is preferred. For intermediate noise levels the response starts at the high amplitude solution and at

some time instant will jump to the low amplitude solution; this indicates that the low amplitude and low energy solution is

preferred at this excitation frequency, although there is also a small probability that the response will jump back to the high

amplitude solution. In Fig. 4 the low and high amplitude solution trends are clear; if the response jumps between solutions

then the resulting average power is between the power output from the high and low amplitude solutions. Figure 4(b) shows

that, at high noise levels, the response can jump to the high amplitude solution. If initial conditions are chosen so that the

low amplitude solution is obtained, before adding the random forcing, the results in Fig. 4(a) are obtained. In this case, the

high amplitude solution is never obtained until the noise level is very high (above a standard deviation of 5000 mm/s2 ).
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Fig. 4 The effect of the random component of the excitation on the low and high amplitude steady state solutions. The

harmonic excitation has ω = 0.515 Hz and z0 = 15 mm. The amplitude of the random component is given by the standard

deviation (SD).

Suppose that the initial conditions are chosen to give the high amplitude steady state solution, as shown in Fig. 4(b). We

now chose white noise displacement with a standard deviation of 7.25 mm (equivalent to an acceleration with a standard

deviation of 3200 mm/s2) and perform a Monte-Carlo simulation with 1000 samples to obtain the probability density

function (pdf) of the time when the response first jumps from the high amplitude solution to the low amplitude solution.

Figure 5 shows the pdf obtained using the kernel density estimator in MATLAB. The decaying pdf looks similar to a

Poisson distribution, which would occur if the probability of a jump at a particular time was independent of the time since
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Fig. 5 The probability density function (pdf) for the time

when the response first jumps from the high to the low ampli-

tude solution. The harmonic component of the excitation has

ω = 0.515 Hz and z0 = 15 mm and the noise component of

the acceleration has a standard deviation of 3200 mm/s2 (corre-

sponding to the vertical dashed line in Fig. 4(b)).

Fig. 6 Basin of attraction of the high amplitude solution for

ω = 0.501 Hz for the deterministic system. Black represents the

high amplitude solution.

the last jump. Of course, for practical energy harvesting, the objective would be to sustain the high amplitude solution, and

hence the random component of the base acceleration should have a standard deviation lower than 3000 mm/s2 .

Suppose now these simulations are repeated at an excitation frequency of ω = 0.501 Hz, which is close to the lowest

excitation frequency where multiple solutions occur (see Fig. 2). Figure 6 shows the basin of attraction of the high amplitude

solution (in black) and shows that the high amplitude region is much larger than the case when ω = 0.515 Hz, shown in

Fig. 3. Figure 7(a) shows the result of increasing the noise level when starting from the low amplitude solution. At this

excitation frequency, the basin of attraction of the low amplitude solution is much smaller and hence the beam is more

likely to jump to the high amplitude solution. Similarly, when starting from the high amplitude solution, the level of noise

has to be larger at this excitation frequency before jumps to the low amplitude solution occur.
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Fig. 7 The effect of the random component of the excitation on the low and high amplitude steady state solutions. The

harmonic excitation has ω = 0.501 Hz and z0 = 15 mm. The amplitude of the random component is given by the standard

deviation (SD).

4 Experimental testing

An experimental system was built to demonstrate the effects simulated in the previous section. A direct validation of

the model is difficult because of unmodeled nonlinearities (e.g. piezoelectric hysteresis, out-of-plane motion, etc) and

because the single degree of freedom model for the beam is insufficient at large displacements. However the low amplitude

c© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.zamm-journal.org
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Fig. 8 The experimental setup a) Base of the beam showing

the base clamp and the MFC device near the root b) Tip mass

of 10.5 g shown nearly vertical at a stable equilibrium c) Linear

actuation system with the inverted cantilever beam mounted.

response is used to validate the underlying linear model and estimate material damping, and these parameters are used in

the simulations. Furthermore the effects of random noise on the steady state solutions, as shown in the simulations, may be

demonstrated and the responses compared qualitatively. Bilgen et al. [6] gives further details of the experiments and gives

a more complete set of results.

The experimental system is shown in Fig. 8 and is derived from a Bytronic Pendulum Control System. This device is

composed of a belt driven linear slider that moves in a track. The belt is actuated by a control signal applied to the DC

motor. A multi-turn potentiometer monitors the position of the belt, hence the position of the linear slider. A displacement

feedback controller ensures that the displacement is proportional to the control signal. The linear slider has low inertia

and there is no return spring (as in an electromagnetic shaker), and this means that the base motion is affected by small

imperfections in the linear track. In addition, since the system is driven by the forcing of the DC motor only (i.e. no

return spring), the actual excitation deviates from the desired harmonic excitation near ż = 0 condition. Both of these

imperfections in the excitation waveform are measured by the potentiometer; however their effects on the general motion

and the power output of the harvester are initially assumed negligible. The input dynamics of the linear actuator can be

represented by the displacement-to-voltage-input frequency response which is shown in Fig. 9. The measurement of input-

dynamics confirms that the static response of the linear actuator is as expected. Attenuation occurs as the desired output

displacement magnitude is increased. For the current tests, where the random noise bandwidth is 5 Hz, the attenuation will

be small.

A clamping mechanism, which applies uniform pressure across the clamped surface of the beam, is attached to the

linear slider. Note that all experiments presented in this paper are conducted without removing the beam from the clamp;

therefore consistent boundary conditions are achieved across all cases. A beam made of spring steel of thickness 0.245 mm,

width 15.88 mm and free length 293 mm is used as the inverted cantilever. The tip mass is implemented using several disk-

like neodymium magnets with a diameter of 10 mm, a height of 5 mm and an approximate weight of 1.75 g each, whose

positions could be moved easily. In the model the tip mass is assumed to be at the end of the beam; the portion of the beam

above the magnets in the experiment is assumed to have negligible effect on the dynamic behavior of the system but could

be included in the model if desired. For this demonstration a single tip mass of 10.5 g (i.e. six magnets), was used, giving

an effective beam length of 287 mm. This tip mass is just below the buckling threshold of the beam.

A single piezocomposite patch, the Macro-Fiber Composite (MFC) model M2814-P2 manufactured by Smart Material

Corp., of active length 28 mm and active width 14 mm is bonded to the beam near the clamped end in a unimorph configu-

ration. The patch is aligned to the beam symmetrically in the widthwise direction and as close to the base as possible. The

MFC is adhered to the beam using a 3M DP460 type two-part epoxy and cured under a vacuum.

The response of the beam is characterised by its transverse displacement and power output through a resistive shunt. A

load resistor is used to characterise the energy harvesting performance instead of other passive or active circuits; therefore

the analysis is focused on the fundamental nonlinear dynamic behaviour of the cantilever energy harvester. The signals of

interest are measured using a National Instruments (NI) 9215 analog-to-digital (A/D) module with 16 bit resolution (set to

±10 V range) at a fixed sampling rate of 100 Hz. Two signals are measured: the potentiometer output which is proportional

to the base displacement; and the voltage output of the MFC piezocomposite device. The control signal was produced by

an NI 9263 cDAQ module with 16 bit resolution (set to ±10 V range) at a generation rate of 10 kHz. This control signal

was low-pass (LP) filtered using a Kemo (Type VBF/24) elliptic filter with a 5 Hz cut-off frequency to minimise the high

frequency noise from the digital-to-analog converter (DAC).
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Fig. 9 Displacement to voltage frequency response of the

feedback-controlled linear actuator. The three lines correspond to

different peak displacement amplitudes of the actuator.

Fig. 10 The measured average harvested power for a tip mass

of Mt = 10.5 g, and a base excitation with amplitudes of z0 = 5

(solid), 10 (dashed), 15 (dash-dot) and 20 mm (dotted) at a range

of frequencies. Rl = 9.944 MΩ for z0 = 5 and 10 mm, and

Rl = 3.344 MΩ for z0 = 15 and 20 mm.

The deterministic response to harmonic excitation is demonstrated first. The frequency of excitation was swept in both

increasing and decreasing directions, and this process was repeated for a range of base excitation amplitudes. The beam

was excited for 30 complete cycles (of base excitation) but only the last 10 cycles were recorded and analysed, to minimise

the effect of transient motion. Since the frequency was incremented in small steps and the waveform was continuous

between each frequency, the disturbance (e.g. rapid accelerations) to the beam was minimised. This is important since such

disturbances may trigger a premature transition to the alternative solution as the frequency is increased and decreased.

Figure 10 shows the resulting response for a number of base excitation amplitudes. Note the characteristic amplitude jumps

caused by the frequency induced bifurcations.

We now demonstrate the effect of noise on the steady state response and the probability of jumping from one solution

to the other. Figure 11 shows the average power generated as a function of the amplitude of the random noise excitation

quantified by the average of the absolute base acceleration. The coding of the markers and the line types is used to identify

0 1000 2000 3000 4000 5000

10
0

10
1

10
2

Average Base Acceleration Amplitude (mm/s
2
)

A
v
er

ag
e

P
o
w

er
(µ

W
)

0.5Hz, 20mm

0.5Hz, 10mm

1Hz, 20mm

1Hz, 10mm

Fig. 11 The measured average harvested power

for a combined random and harmonic base ex-

citation, as a function of increasing amplitude

of random acceleration, for the final 24% of the

acquisition period. The lines represent the fre-

quency and amplitude of the harmonic excitation,

as given in the legend. The load resistance was

RL = 5.05 MΩ and the random excitation filter

cut-off was 5 Hz.
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different characteristics of the experimental system, and most of the features in the figure are readily explained. Clearly the

power harvested increases significantly when the harmonic excitation is close to the resonance (i.e. excitation at 0.5 Hz).

The average power also increases with noise amplitude, and this increase is more marked when the sinusoidal excitation is

away from resonance. As expected, more power is generated when the amplitude of the harmonic excitation is larger. The

load resistance is fixed at 5.05 MΩ, although because the electromechanical coupling is low, the effect of the load resistance

is negligible in most cases. There is one data point in Fig. 11 that does not follow the expected trends, namely the base

excitation at about 4000 mm/s2 for the harmonic base excitation at 0.5 Hz with 10 mm amplitude. This is the case with the

noise amplitude at just the right level to cause jumping between the multiple steady state solutions.This agrees qualitatively

with the simulated results which highlighted that jumping between solutions occurred at higher noise levels, although in

the experiments it is difficult to control which solution the system initially exhibits. Furthermore, the simulations will

contain modelling errors, for example the deformation shape of the beam does not correspond perfectly to the single mode

approximation, and the nonlinear response is very sensitive to system parameters and the excitation frequency.

The harmonic excitation signal is now fixed at 10 mm amplitude and 0.5 Hz frequency, and a 9.994 MΩ load resistor is

used. White noise displacement with a range of amplitudes and band limited to 5 Hz is added to the harmonic signal. Figure

12 shows the measured voltage as the base excitation noise level increases. For low noise levels, i.e. a standard deviation

of 7.1 mm and below, the beam responds in the high amplitude solution. When the standard deviation increases to 10.4 mm

the beam initially responds in the low amplitude solution but jumps to the high amplitude solution at about 150 s. This

result confirms the non-resonant solution destabilisation at a certain level of noise amplitude, and this case corresponds

qualitatively to Fig. 7(a), where the basin of attraction of the low amplitude solution (with the smallest area, see Fig. 6)

is disturbed by noise. The power generated is directly related to the amplitude of response and hence these results are

consistent with the observations on Fig. 11.

5 Conclusion

The proposed energy harvesting system addresses a very difficult problem where energy is required from a structure with

low excitation frequency and high displacement, such as a highway bridge. A resonant linear harvester based on a cantilever

beam is difficult to implement because the low natural frequency requires a very large or a very flexible beam. In this paper,

a low frequency piezoelectric energy harvester is investigated using an inverted elastic beam-mass system subjected to a
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Fig. 12 The voltage response of the inverted cantilever beam with harmonic excitation of amplitude 10 mm and frequency

0.5 Hz, and additive white noise base displacement with increasing standard deviation (SD): a) no noise b) SD 3.3 mm c)

SD 7.1 mm d) SD 10.4 mm.
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combined sinusoidal and random base excitation. For certain ranges of frequency of sinusoidal excitation the device has

two periodic solutions, and the high amplitude response is preferred as the energy harvested will be greater. The addition

of random noise causes the response to jump between the low to high amplitude solutions, and the probability of each

solution occurring depends on the parameters of the system. To ensure the maximum harvested energy either an active

control system should be used to cause the device to jump to the high amplitude solution, or the device should be designed

so that the high amplitude solution is preferred. Further work is required to investigate the relationship between the basins

of attraction of the deterministic system and the probability of the high amplitude solution occurring, and the impact on the

design and operation of the harvester.
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