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Abstract— Noncollocated sensors and actuators, and/or fast
sample rates with plants having high relative degree, can
lead to nonminimum-phase (NMP) discrete-time zero dynamics
that complicate the control system design. In this paper, we
examine three stable approximate model-inverse feedforward
control techniques, the nonmimimum-phase zeros ignore (NPZ-
Ignore), the zero-phase-error tracking controller (ZPETC) and
the zero-magnitude-error tracking controller (ZMETC), which
have frequently been used for NMP systems. We analyze how
the discrete-time NMP zero locations in the z-plane affect the
success of the NPZ-Ignore, ZPETC, and ZMETC model-inverse
techniques. We also provide simulation examples using plants
based on the system identification of an atomic force microscope
and a hard disk drive, showing the tradeoffs in performance
relative to NMP zero locations in these different application
systems.

I. INTRODUCTION

Model-inverse control has made several appearances in the

literature demonstrating its strength in improving tracking

performance, settle time, and other performance metrics; a

few examples include [1]–[13]. Specifically, [14] provides a

comparison of two typical control architectures that may be

used to implement model-inverse control. While our discus-

sion here applies equally to both the closed-loop-injection

architecture and the plant-injection architecture described

in [14], we will focus this paper on the closed-loop-injection

architecture seen in Fig. 1.

When using the closed-loop-injection architecture for

model-inverse control, we first design the feedback controller

C of Fig. 1 to maximize performance of the stand-alone

closed-loop system HCL(z) = PC
1+PC

. Next, we set FCL

equal (or approximately equal) to H−1
CL(z) for even greater

performance gains. The definition of “performance” depends

on metrics defined by the designer, but in general the

inclusion of FCL using model-inverse control methods will

usually improve rise times, settle times, phase lag, tracking

performance and more.
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Fig. 1. A block diagram of the closed-loop-injection architecture. When
model-inverse control is used, FCL is designed to represent the inverse of
the closed-loop system HCL consisting of the feedback controller C and
the plant P .

Ideally, the design of FCL would yield a filter exactly

equal to H−1
CL(z). This, for example, would reduce the

transfer function from xd(t) to x(t) (in Fig. 1) to unity,

and allow a system’s output x(t) to perfectly track a desired

trajectory xd(t). Often the existence of nonminimum-phase

(NMP) zeros in the plant force a stable approximate inverse

to be used in place of the exact inverse.

This paper focuses on discrete-time single-input single-

output (SISO) nonmimimum-phase systems. NMP zeros in a

discrete-time model can result from sampling a continuous-

time system to create the model [15]. Nonminimum-phase

zeros may also be a result of sensors and actuators being

physically noncollocated. Due to both sources, the appear-

ance of NMP zeros in discrete-time systems can be rather

common.

Various stable approximate model-inversion techniques

exist, including Tomizuka’s popular zero-phase-error track-

ing controller (ZPETC) [3]. A cousin of the ZPETC is

the comparatively named zero-magnitude-error tracking con-

troller (ZMETC) that has appeared in [2], [5], [6], [9]

and [14]. Yet another approximation method is the use

of the noncausal series expansion discussed in [7], [16]

and [17]. Using a zeroth-order series expansion is effectively

the same as choosing to ignore the nonminimum-phase zeros

(while accounting for the proper DC gain); approximating

the inverse of a system in this way offers a more simplistic

approach, but may not be as accurate [2], [18]. In contrast,

some have chosen to use the exact unstable inverse and main-

tain stability of the system by pre-loading initial conditions

or using noncausal plant inputs [1], [4], [19].

In general, using an exact unstable inverse method or a

higher-order noncausal series expansion method introduces

additional complexity when the controllers are implemented.

In contrast, the zeroth-order series or nonminimum-phase
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zeros ignore (NPZ-Ignore), ZPETC, and ZMETC approxi-

mation techniques are natural options for designers of model-

inverse controllers. This is largely due to their documented

effectiveness (especially in the case of ZPETC and ZMETC)

combined with their simplicity of design and implementa-

tion [2].

However, the proper choice of the NPZ-Ignore, ZPETC, or

ZMETC techniques for maximizing performance objectives

depends largely on the system on which it will be applied.

In this paper, we discuss how the positioning of a system’s

nonminimum-phase zeros might indicate to the designer the

more effective approximate model-inverse technique when

considering NPZ-Ignore, ZPETC, and ZMETC. The perfor-

mances of these techniques vary considerably as a function

of NMP zero location.

This paper is organized as follows. In Section II, we

provide further motivation for this paper by presenting the

results of simulations using the NPZ-Ignore, ZPETC, or

ZMETC model inverse techniques on discrete models of an

atomic force microscope and a hard disk drive. The basics of

each model-inverse technique are described in Section III. In

Section IV, we perform an analysis on a first-order system to

show the effect of nonminimum-phase zero location on the

three model-inverse methods. An extension to the complex-

conjugate, second-order zeros case is presented in Section V.

Finally in Section VI, we discuss some additional reasons

(beyond zero location) for selecting one of the three model-

inverse techniques for a control system.

II. MOTIVATION

The correct choice of the NPZ-Ignore, ZPETC, or ZMETC

techniques for maximizing performance objectives depends

largely on the system on which it will be applied. As an

example, and for motivation of this discussion, we apply

the three types of model-inverse control to two closed-loop

mechatronic systems in the literature. The first system is

a X-Y piezoscanner that is used in the operation of an

atomic force microscope (AFM). The plant model for the X
direction of this device and a corresponding PID feedback

controller are given in [5] which gives us enough information

to study a model-inverse application of the closed-loop-

injection architecture on the system. The second system is

from a hard disk drive (HDD) application. An expression

for the complete closed-loop HDD system appears in [2].

The models for both systems were developed through system

identification processes and the pole-zero maps for both are

shown in Fig. 2. The sample time for the HDD is slower than

that of the AFM and as a result the two systems can not be

directly compared. Regardless, the exact details of each are

not critical to our discussion, as we are more interested in

the relative location of the nonminimum-phase zeros of each

system and how they affect the results of the NPZ-Ignore,

ZPETC, or ZMETC techniques.

From Fig. 2, we see that both the HDD and the AFM

stage have NMP zeros. The HDD has two unstable zeros

in the left-half plane (LHP), while the AFM scanner has

three in the right-half plane (RHP). We will see that the
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Fig. 2. The pole-zero maps of the closed-loop HDD and AFM stage
discrete-time systems. The sample time of each is 68µsec and 48µsec,
respectively. The order of each is 7 (with a relative degree of 2) and 8
(with a relative degree of 1), respectively.
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Fig. 3. The simulation results for a 100Hz raster scan input (dash-dot black)
for the HDD system (solid blue) and the AFM scanner system (dashed red)
for (from top to bottom) feedback-only control and the NPZ-Ignore, ZPETC,
and ZMETC combined feedforward/feedback techniques.

difference here is fundamental to the choice for which of

the NPZ-Ignore, ZPETC, or ZMETC techniques for model-

inverse control should be used. Specifically in Fig. 3, we

provide several plots of simulation results for both systems

under four different control scenarios. The input xd (dash-

dot black) to both is a 100Hz raster scan (which is rather

common to AFM systems [20]). The corresponding outputs

x of the HDD and the AFM stage are shown in solid blue and

dashed red, respectively. The top plot is a simple feedback-

only simulation where FCL = 1 for both systems. The three

lower plots display simulation results for both systems when

using the NPZ-Ignore, ZPETC, or ZMETC techniques for

the feedforward controller FCL, respectively.

Fig. 3(a) shows us that given feedback-only control, the
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HDD struggles to track the peaks of the 100Hz raster scan

while the AFM loses all high frequency features in the scan.

In Fig. 3(b), we introduce feedforward model-inverse control

in the form of the NPZ-Ignore method. Here we see the

HDD (solid blue) tracking the input rather well, but the AFM

scanner (dashed red) experiences high-frequency ringing that

takes the trajectory out of the frame of the plot at the corners

(containing the high-frequency components) of the raster

scan. Despite the corners, the rest of the AFM stage scan

is tracked rather well. Using the ZPETC method for both

systems in Fig. 3(c), we see results similar to the NPZ-Ignore

technique. The HDD continues to track well, but in this case,

the AFM’s trouble at the corners of the raster scan have

been amplified considerably and the AFM fails to track the

scan at any time. The ZMETC method (in Fig. 3(d)) relieves

the AFM stage of its ringing problems and forces a slightly

phase-lagged tracking of the raster scan. The HDD continues

to track the raster scan despite the fundamental change in

the model-inverse procedure. In the next several sections,

we discuss why the AFM scanner with RHP nonminimum-

phase zeros struggles to track the raster scan using the NPZ-

Ignore and ZPETC techniques while the HDD with the LHP

nonminimum-phase zeros tracks the scan well regardless of

the feedforward method.

III. THREE STABLE APPROXIMATE

MODEL-INVERSION TECHNIQUES

Defining the closed-loop system in Fig. 1 as HCL(z) =
PC

1+PC
and writing out the transfer function from xd(t) to

x(t), we arrive at (1).

X(z)

Xd(z)
= HCL(z)FCL(z). (1)

Assuming HCL(z) is exactly proper and all zeros are mini-

mum phase, we could define FCL(z) = H−1
CL(z), and achieve

perfect tracking of an input signal. However, many systems

are not exactly proper and have nonmimimum-phase zeros

that require a stable approximate model inversion technique.

The design of the three techniques of focus begin with the

same basic structure. First, we write the dynamics of the

system as in (2), partitioning B(z) into the polynomial Bs(z)
containing the stable (invertible) zeros and the polynomial

Bu(z) containing the unstable (noninvertible) zeros:

HCL =
B(z)

A(z)
=

Bs(z)Bu(z)

A(z)
. (2)

The polynomial A(z) contains all the poles of the closed-

loop system model, and Bu(z) can be written in the form of

the nth-order polynomial

Bu(z) = bunzn + bu(n−1)z
n−1 + · · · + bu0, (3)

where n is the number of NMP zeros. We can then write the

basic structure for NPZ-Ignore, ZPETC, and ZMETC as:

FCL(z) = H̃−1
CL(z) =

z−qA(z)

Bs(z)B∗

u(z)
, (4)

TABLE I

APPROXIMATE INVERSES & OVERALL TRANSFER FUNCTIONS

FOR EACH APPROXIMATE INVERSE METHOD

METHOD
FCL(z) = H̃−1

CL
(z)

X(z)
Xd(z)

NPZ-Ignore
z−qA(z)

Bs(z)Bu(1)
z−qBu(z)

Bu(1)

ZPETC
z−qA(z)B

f
u(z)

Bs(z)(Bu(1))2
z−qBu(z)B

f
u(z)

(Bu(1))2

ZMETC
z−qA(z)

Bs(z)B
f
u(z)

z−qBu(z)

B
f
u(z)

where the ∼ indicates an approximate inverse of the system.

Since the number of roots of the polynomial A(z) do

not always equal the number of roots of the polynomial

(Bs(z)B∗

u(z)), q units of delay in (4) are required to en-

sure a causal implementation of FCL(z). B∗

u(z) is defined

depending on the type of stable model-inverse technique to

be used. The precise choice of B∗

u(z) will be described in

detail in the following subsections.

A. The NPZ-Ignore Technique

When using the NPZ-Ignore technique, the designer ig-

nores any nonminimum-phase zeros in the system model

and makes the proper adjustments for how this might affect

the DC gain of the overall system. In general, this is the

least precise of all the approximate model-inverse techniques

discussed here as there is no accounting for an entire portion

of the system dynamics. Nevertheless, this is the simplest

of the three and may have benefits if there are limited

computational resources for implementing the controller.

For a NPZ-Ignore design, B∗

u(z) in (4) reduces to

B∗

u:Ign(z) = Bu(z)
∣

∣

z=1
= Bu(1). (5)

Here we are ignoring the nonminimum-phase zero dynamics

and reducing B∗

u(z) to a scalar that compensates for losses

in the DC gain associated with not including the dynamics

of Bu(z). The resulting NPZ-Ignore design for H̃−1
CL:Ign(z)

appears in Table I along with the overall transfer function

that corresponds to (1). For FCL(z) to be causal, the delay

q must be equal to the order of A(z) minus the order of

Bs(z), (q = O(A(z)) − O(Bs(z))).

B. The ZPETC Technique

The structure of the ZPETC technique is very similar to the

NPZ-Ignore method, but the ZPETC is higher order because

it retains the dynamics of the nonminimum-phase zeros.

When using the ZPETC method, B∗

u(z) in (4) becomes:

B∗

u:ZP (z) =

(

Bu(z)
∣

∣

z=1

)2

Bf
u(z)

=
(Bu(1))2

Bf
u(z)

(6)

where Bf
u(z) is defined by

Bf
u(z) = bu0z

n + bu1z
n−1 + · · · + bun. (7)

Note that the difference between (3) and (7) is the “flipping”

of the coefficients. It is this action which converts the

unstable Bu(z) into the stable Bf
u(z).
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The ZPETC design for H̃−1
CL:ZP (z) appears in Table I

along with the corresponding overall transfer function. In

order for the implementation of FCL(z) to be causal, the

delay q = O(A(z)Bf
u(z)) − O(Bs(z)).

The reader should note that for both NPZ-Ignore and

ZPETC, (1) is a finite-impulse-response (FIR) filter which

can be advantageous for various applications [2], [7].

C. The ZMETC Technique

In contrast to the ZPETC method that converts NMP zeros

of the model into stable zeros of the approximate inverse, the

ZMETC technique transforms the nonminimum-phase zeros

of the model into stable poles of the approximate inverse.

When using the ZMETC method, B∗

u(z) in (4) becomes:

B∗

u:ZM (z) = Bf
u(z), (8)

where Bf
u(z) is defined in (7).

The expression for H̃−1
CL:ZM (z) appears in Table I along

with the overall transfer function that corresponds to (1). In

this case, q = O(A(z)) − O(Bs(z)Bf
u(z)).

No compensation for changes in DC gain are required for

the ZMETC method because the DC gain of (1) remains

at unity as per design. Unlike the NPZ-Ignore and ZPETC

methods, the ZMETC technique leads to an overall transfer

function that is an infinite-impulse-response (IIR) filter.

IV. ANALYSIS OF A FIRST-ORDER EXAMPLE

In this section, we will break down a simple first-order ex-

ample for each model-inverse technique. To start, we assume

a sampling time Ts = 1.0 seconds and that the parameter

representing the position of the zero a ∈ (−∞,−1)∪(1,∞)
is real and outside the unit circle in the system

HCL =
(z − a)

(z − p)
. (9)

In this case, A(z), Bs(z), Bu(z), and Bf
u(z) are defined as:

A(z) = (z − p), Bs(z) = 1, (10)

Bu(z) = (z − a), and Bf
u(z) = (−az + 1).

Using each of the three techniques described in Section III,

we can define H̃−1
CL(z) for each as shown in Table II. Looking

at the overall transfer functions in Table II, we see that the

pole p plays no role as it has been canceled out. Recall, that

as per the definition of a ∈ (−∞,−1)∪(1,∞), the equations

in Table II are not defined when −1 < a < 1. This is because

when −1 < a < 1, exact inverses can be used.

If we assume p = 0.5 and a = ∓1.1 (to achieve LHP and

RHP nonminimum-phase zeros, respectively), we can plot

pole-zero maps for each model and model-inverse method

(Fig. 4). As expected from Table II, we see that in all cases

the transfer function X(z)/Xd(z) retains the NMP zero in

the dynamics. As a result, the NMP zero still influences

the system’s dynamics near the frequency specified by its

location. Specifically, the LHP real zero in X(z)/Xd(z)|Ign

appears at an extremely high frequency. In contrast, the RHP

real zero in X(z)/Xd(z)|Ign appears at a frequency two

TABLE II

APPROXIMATE INVERSES & OVERALL TRANSFER FUNCTIONS FOR THE

1st-ORDER EXAMPLE FOR EACH APPROXIMATE INVERSE METHOD

METHOD
FCL(z) = H̃−1

CL
(z)

X(z)
Xd(z)

NPZ-Ignore
z−1(z−p)

(1−a)
(z−a)
(1−a)z

ZPETC
z−2(z−p)(−az+1)

(1−a)2
(z−a)(−az+1)

(1−a)2z2

ZMETC
(z−p)

(−az+1)
(z−a)

(−az+1)

orders of magnitude lower than that of its LHP counterpart.

As a result, the RHP nonminimum-phase zero plays a much

larger role in the dynamics of the system than the LHP zero,

specifically in the form of amplification of high-frequency

components of input signals (see Fig. 5).

In Figs. 4 and 5, we see the problem with a RHP

nonminimum-phase zero becomes worse when using the

ZPETC method. Here the low-frequency RHP nonminimum-

phase zero gets reflected into the unit circle as an additional

zero. This compounds the problems of the NPZ-Ignore

technique as another zero (albeit stable) gets placed at the

exact same frequency of the RHP nonminimum-phase zero.

This additional zero counteracts the phase drop associated

with the RHP nonminimum-phase zero, but in the magnitude

sense we get even more amplification of high-frequency

components of input signals. In contrast, the ZPETC method

suffers no ill effects of the LHP nonminimum-phase zero

as it and the additional stable zero occur at such extremely

high frequencies that their influence on dynamics is limited

to attenuating the extremely high frequency region.

In contrast, we see in Figs. 4(e) and 4(f) that the ZMETC

method reflects NMP zeros into the unit circle as poles

at the same frequency. This is how this method is able

to attain “zero-magnitude error” at all frequencies. The

increasing magnitude effects of any nonminimum-phase zero

is canceled by a stable pole. One should note that in Fig. 5,

the ZPETC method for both LHP and RHP systems does not

appear to have “zero-phase error” at all frequencies. This is

only due to the delay added to FCL to make it causal. If

no delay were required (e.g., q = 0), the ZPETC curves in

Fig. 5 would remain at 0 degrees for all frequencies.

The source of these high-frequency magnitude issues

becomes clear if we look at the real and imaginary parts of

X(ejω)/Xd(e
jω) for each model-inverse method. Defining

Γ = ℜ

[

X(ejω)

Xd(ejω)

]

and Φ = ℑ

[

X(ejω)

Xd(ejω)

]

for each model-inverse method, and utilizing some trigono-

metric identities, we can write Γ and Φ for each method (see

Table III). Looking at the magnitude for ZMETC in Table III,

it again becomes clear why this method is called the zero-

magnitude-error tracking controller as its magnitude remains

at unity for all frequencies regardless of the value of a. In

contrast, we see a very different behavior in the NPZ-Ignore

and ZPETC methods when the parameter a is varied.

Specifically, we note that as ω approaches the Nyquist
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TABLE III

SUMMARY OF X(ejω)/Xd(ejω) FOR THE FIRST-ORDER EXAMPLE FOR EACH APPROXIMATE INVERSE METHOD

METHOD
ℜ

[

X(ejω)/Xd(ejω)
]

ℑ
[

X(ejω)/Xd(ejω)
]

MAGNITUDE

(√
Γ2 + Φ2

)

NPZ-Ignore ΓIgn =
1−a cos(ω)

1−a
ΦIgn =

a sin(ω)
1−a

√

1+a2
−2a cos(ω)

(1−a)2

ZPETC ΓZP =
cos(ω)

(1−a)2
(1 + a2 − 2a cos(ω)) ΦZP =

− sin(ω)

(1−a)2
(1 + a2 − 2a cos(ω))

1+a2
−2a cos(ω)

(1−a)2

ZMETC ΓZM =
(1+a2) cos(ω)−2a

1+a2
−2a cos(ω)

ΦZM =
(1−a2) sin(ω)

1+a2
−2a cos(ω)

1
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Fig. 4. The pole-zero maps of X(z)/Xd(z) for the simple first-order
example for each model-inverse method. The three plots in the left-hand
column represent the systems with LHP nonminimum-phase zeros whereas
the right column of plots are the contrasting systems with RHP zeros. Here,
we assume p = 0.5 and a = ∓1.1.

frequency (π radians/second in the case of Ts = 1 second),

the imaginary term ΦIgn goes to zero regardless of the

value of a. That leaves the real term ΓIgn to dominate the

magnitude of X(z)/Xd(z)|Ign and

∥

∥

∥
lim
ω→π

ΓIgn(ω)
∥

∥

∥
=

∥

∥

∥

∥

1 + a

1 − a

∥

∥

∥

∥

. (11)

When −∞<a<−1, we see that (11) is less than one and as

a result we expect a “rolling off” of the magnitude near the
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Fig. 5. The Bode plots of the transfer function X(z)/Xd(z) of the
first-order example for each model-inverse method with a LHP and RHP
nonminimum-phase zero (a = −1.1 and a = 1.1, respectively).

Nyquist frequency. In contrast, when 1<a<∞, (11) achieves

a value greater than one that suggests amplification of any

high-frequency components of the input signal. A similar

analysis on the ZPETC method shows that as ω approaches

π radians/second

∥

∥

∥
lim
ω→π

ΓZP (ω)
∥

∥

∥
=

∥

∥

∥
lim
ω→π

ΓIgn(ω)
∥

∥

∥

2

=

∥

∥

∥

∥

1 + a

1 − a

∥

∥

∥

∥

2

, (12)

which indicates the squaring effects of a RHP nonminimum-

phase zero when compared to the NPZ-Ignore method (which

also can be seen in the magnitude column of Table III).

We can see this behavior graphically if we look at the

positive-frequency portion of the Nyquist plots of both

X(z)/Xd(z)|Ign and X(z)/Xd(z)|ZP for a = ∓1.1 in

Fig. 6. Specifically, in Fig. 6(a) we see how the line rep-

resenting the system with a RHP zero (dashed red) leaves

the area near zero and converges to a real value of −21
as ω converges on π radians/second. In contrast, the line

representing the system with a LHP zero (solid blue) never

leaves a ball of radius one centered on the origin. When

we turn to the ZPETC method in Fig. 6(b), we see that the

dashed red line achieves such a large value, that the solid

blue line (which always has magnitudes less than or equal

to one) is so small and not visible on this scale.

Fig. 7 is a plot of the limit of the magnitude as ω
approaches the Nyquist frequency of X(z)/Xd(z) in (9) for

each control method as a is varied. Here the region where a

value of a indicating a minimum-phase zero in (9) is marked

in shaded yellow. This region is not valid for comparison

of the three approximate model-inversion techniques as the

exact inverse can be used. Again, we see that the ZMETC

method achieves unity gain for X(z)/Xd(z)|ZM as a is

varied. We also note that for the NPZ-Ignore and ZPETC
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Fig. 6. The positive-frequency portion of the Nyquist plots of both
X(z)/Xd(z)|Ign and X(z)/Xd(z)|ZP for a = ∓1.1 in (9). Solid blue
represents a = −1.1, while dashed red represents a = 1.1. In (b), the solid
blue line (a = −1.1) is not visible due to the large scale of the dashed red
line (a = 1.1). Note that the axis scales of (a) and (b) are not the same.

methods, we see peaking magnitudes as a approaches 1
from the right; this will serve to amplify any high-frequency

components and noise in the input signal. Additionally, we

see the “rolling-off” of magnitude as a approaches −1 from

the left. Depending on the system, this rolling off may

actually be a desired design feature of these methods because

it may aid in attenuation of high-frequency noise in the

system. In contrast, the ZMETC will continue to allow this

high-frequency noise to pass through the system. We should

note that the “rolling-off” of magnitude associated with LHP

nonminimum-phase zeros in the NPZ-Ignore and ZPETC

methods does not generally affect tracking magnitudes as

tracking at such high-frequencies is often beyond what the

physical system is capable of doing. Clearly, the effect of

these NMP zeros (regardless of their existence in the LHP

or the RHP) becomes trivial as ‖a‖ becomes large.

V. EXTENSION TO COMPLEX ZEROS

Extending to an example with complex-conjugate NMP

zeros, we see the same trends of the first-order system . If we

define rz > 1 as the distance from the origin to the complex

zeros and θ as the angle (measured from the positive-real

axis in radians) defining the direction of rz , we can write

HCL =
(z − rze

jθ)(z − rze
−jθ)

Ψ(z)

=
(z2 − 2rz cos(θ)z + r2

z)

Ψ(z)
, (13)

where Ψ(z) represents a polynomial of stable poles of order

two or more. As we discovered previously, the exact poles

in the system are not of interest (assuming they are stable)

as they will be canceled in any of the three model-inverse

methods. The angle θ defines the LHP or RHP location of

the complex zeros.

Performing an analysis similar to that for the first-order

system in Section IV, we can show that the conclusions in

Section IV extend to the case of complex-conjugate zeros

by considering when ω approaches the Nyquist frequency

similar to (11) and (12). We find that the imaginary terms Φ
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Fig. 7. The limit of the magnitude of X(z)/Xd(z) as ω approaches the
Nyquist frequency for the first-order example for each control method as a
is varied. The shaded yellow region indicates the area where the zero would
become minimum phase and is not a valid area for comparison.
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Fig. 8. The limit of the magnitude of X(z)/Xd(z) as ω approaches
the Nyquist frequency for the complex-conjugate zeros example for each
control method as θ is varied and rz is a constant 1.1. θ is measured
from the positive-real axis and as a result, the left-hand portion of this plot
represents RHP complex-conjugate zeros.

go to zero and the real terms dominate the magnitude:

∥

∥

∥
lim
ω→π

ΓIgn(ω)
∥

∥

∥
=

∥

∥

∥

∥

(1 + r2
z + 2rz cos(θ))

(1 + r2
z − 2rz cos(θ))

∥

∥

∥

∥

,

∥

∥

∥
lim
ω→π

ΓZP (ω)
∥

∥

∥
=

∥

∥

∥
lim
ω→π

ΓIgn(ω)
∥

∥

∥

2

, and
∥

∥

∥
lim
ω→π

ΓZM (ω)
∥

∥

∥
= 1. (14)

These limits are only valid when rz > 1 since exact inversion

can be used when rz < 1.

Fig. 8 shows the limit of the magnitude of X(z)/Xd(z)
as ω approaches the Nyquist frequency for constant rz =
1.1 and varying θ. Again, we see that the ZMETC method

achieves unity gain for X(z)/Xd(z)|ZM as θ is varied. We

also note that for the NPZ-Ignore and ZPETC methods, the

effect of NMP zeros becomes trivial as the zeros move close

to the imaginary axis. Similar to Fig. 7, in Fig. 8 we also see

the “rolling off” effect of LHP zeros for the NPZ-Ignore and

ZPETC methods, and the amplification effect in the RHP.

VI. DISCUSSION AND CONCLUSIONS

Given the analysis in this paper, we have shown that:

(i) For systems with RHP NMP zeros near the unit

circle, ZMETC is the only viable choice of the three

feedforward methods discussed here.
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(ii) When NMP zeros are far from the unit circle (in either

the RHP or LHP), their affect on the feedforward

methods is reduced.

(iii) If the NMP zeros are in the LHP and near the unit

circle, the selection of a feedforward method should

be based on the desired control objectives.

Given our analysis, an inexperienced designer of approx-

imate model-inverse controllers might make the conclusion

that he/she will always use the ZMETC method as it guaran-

tees unity gain of HCL(z)H̃−1
CL(z) for all ω frequencies and

any LHP or RHP location of the nonminimum-phase zeros.

For NMP zeros in the LHP or far outside the unit circle,

other considerations may be important.

When NMP zeros are far outside the unit circle (case (ii)),

one should consider computational requirements and phase-

lag issues. For any implementation that has limited compu-

tational resources, the NPZ-Ignore method is the simplest

and may be the best option. In terms of phase-lag issues,

depending on the system model, a different amount of delay

(z−q) may be needed to make any of the three feedforward

filters causal. This consideration could be crucial for any

time critical applications [2], [8]. In contrast, some AFM

scan applications are not phase critical [14], so phase delays

may not be problematic.

When NMP zeros are in the LHP and near the unit circle

(case (iii)), once should consider computational require-

ments, phase lag issues, and high-frequency noise concerns.

As mentioned in Section IV, ZMETC propagates input noise

through the system. For case (iii), the ZPETC or NPZ-Ignore

methods might be a better option as they tend to “roll-off”

these high-frequency regions providing attenuation to any

high-frequency noise.

Fig. 3 demonstrates that of the three model-inverse tech-

niques, any one can be applied to the HDD application with

some level of success. Here, the designer can make a choice

of the three based on their ultimate control goals. In general,

ZMETC would not be an ideal choice for the HDD if the

ZPETC provides sufficient results as the noise attenuation of

the ZPETC method would likely be desired on an actual im-

plementation. An HDD application might also have limited

computational resources, so the NPZ-Ignore technique might

be the best option under those circumstances. Unfortunately,

the RHP zeros of the AFM limit it to only the ZMETC

method, and the performance of the control system could be

limited by high-frequency disturbances.

We should note that in [17], the authors discuss the

effectiveness of their higher-order noncausal-series approx-

imation for model-inverse control on a system with RHP

nonminimum-phase zeros. This offers another model-inverse

control method for the AFM stage system, but as we

mentioned previously will introduce additional complexity

into an implementation in the form of a very high-order

filter. Further, in the same paper, the authors preprocess the

desired trajectory signal (xd(t)) with a low-pass filter in

order to allow the use of the ZPETC method with a system

containing RHP nonminimum-phase zeros. This may also

provide an alternative to the designer, but the benefits to this

approach may be detrimental to performance in the case of an

AFM scanning stage in which tracking of the high-frequency

components of the raster scan is equally important as the

low-frequency components.

In summary, this paper has provided a better understanding

of the effect of NMP zero locations on the NMP-Ignore,

ZPETC, and ZMETC feedforward techniques.
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