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Abstract: Osmolytes are small molecules that are exploited by cells as a protective system 

against stress conditions. They favour compact protein states which makes them stabilize 

globular proteins in vitro and promote folding. Conversely, this preference for compact 

states promotes aggregation of unstructured proteins. Here we combine a brief review of 

the effect of osmolytes on protein fibrillation with a report of the effect of osmolytes on the 

unstructured peptide hormone glucagon. Our results show that osmolytes either accelerate 

the fibrillation kinetics or leave them unaffected, with the exception of the osmolyte 

taurine. Furthermore, the osmolytes that affected the shape of the fibrillation time profile 

led to fibrils with different structure as revealed by CD. The structural changes induced by 

Pro, Ser and choline-O-sulfate could be due to specific osmolytes binding to the peptides, 

stabilizing an otherwise labile fibrillation intermediate.  
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1. Introduction 

1.1. Osmolytes: Chemical Chaperones Which Can Stabilize or Destabilize Proteins 

Osmolytes are small organic molecules that have evolved throughout various taxa and increase the 

ability of cells to react to osmotic stress. In contrast to inorganic ions, which can also be used for 

adaptation to extracellular stress, osmolytes do not negatively interfere with structure or function of 

biological macromolecules. For example, inorganic ions have been shown to reduce enzymatic activity 

in the case of phosphoenolpyruvate (PEP) for pyruvatekinase (PK) of the crab, while osmolytes do not 

interfere with its activity [1]. Similarly, the disruption of the native myofilament architecture induced 

by KC1 and NaCI can be prevented by addition of the osmolyte trimethyl amine oxide (TMAO) [2]. 

Most osmolyte compounds can be divided into three chemical classes: polyhydric alcohols and sugars 

(polyols), amino acids and their derivatives and methyl ammonium compounds [3]. Osmolytes are 

widely used to stabilize and facilitate protein folding since they can act as “chemical chaperones” [4,5]. 

For many proteins, the melting temperature Tm increases with the addition of osmolytes in a 

concentration-dependent manner [3,5]. Osmolytes are generally thought to act by preferential surface 

exclusion. This means that they destabilize expanded states such as the unfolded state to a greater 

extent than more compact states (e.g., the native state) [6,7]. Thus in practice osmolytes stabilize 

globular proteins by favouring compaction. However, this phenomenon can be a disadvantage in the 

case of intrinsically disordered proteins where compaction can promote intermolecular aggregation. 

Note however that osmolytes, depending on solvent conditions can also decrease protein melting 

temperatures [8]. This is not too surprising, as evolutionary selection will favour the production of 

osmolytes only if they lead to enhanced protein function at ambient temperature. There is no 

evolutionary pressure for increased stability at physiologically irrelevant elevated temperatures. As a 

result, some osmolytes thermodynamically destabilize folded proteins but reduce aggregation at the 

same time, the most prominent example being urea [9,10]. This osmolyte, widely used for its 

destabilizing effects for protein stability and folding studies in vitro, is used by many organisms in 

combination with methylamines (ratio 2:1) for an optimal functionality of its enzymes [11]. It is 

therefore important to distinguish between “stabilization effects” that act on Tm and those that act on 

aggregation kinetics. Similarly, an increase in Tm does not necessarily relate to the reversibility of the 

folding process. For example, the Tm of lysozyme unfolding can be increased by 22 °C by addition of 

sarcosine, but as complete unfolding takes place even in the presence of osmolyte, the protein 

aggregates irreversibly, while other proteins retain their reversible unfolding [12]. 

Note also that most studies on osmolytes investigate their effect on thermodynamic stability [7,13]. 

This does not necessarily correlate with “stabilization” in the sense of preserving functionality over 

extended periods. The latter can result partially or completely from kinetic inhibition of aggregation 

and may have a large impact in industrial applications. Data about osmolytes affecting kinetic stability 

are scarce: Nayak et al. [14] determined fibrillation and nucleation rate constants of insulin in the 

presence of polyols. Osmolyte influence on RNAse A enzymatic function has been reported by  

Jamal et al. [15]. However, the molecular processes leading to the changes in Km and kcat were not 

established.  
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One parameter strongly influencing osmolyte impact is pH. According to Singh et al. [8], polyols 

show a more potent stabilizing effect towards proteins’ native state at low pH. A possible explanation 

would be that at low pH, carboxyl groups in Glu and Asp become protonated, making hydrogen bonds 

with polyols less favorable than at high pH, where carboxyl groups are deprotonated and negatively 

charged. As a result preferential surface exclusion of polyols and consequent protein stabilization 

increases at low pH [16]. The stabilizing effect of methylamines on the other hand has been found to 

be most pronounced at neutral pH, while they can be destabilizing at low pH. [15]. This observation 

has been attributed to the fact that at neutral pH, zwitterionic methylamines are excluded from the 

protein surface, i.e., act as stabilizers, while in their positively charged form at low pH, they will 

directly interact with the protein backbone, preferentially stabilizing the denatured state and decreasing 

the free energy of unfolding ΔGD-N. This effect has been described for TMAO and Betaine [17–19].  

A similar effect would be expected for amino acids and their derivatives. However, those compounds 

were found to stabilize the native state proteins almost independent of pH. It appears that here,  

effects of pH on ΔGD-N resulting from direct protein-osmolyte interaction and surface exclusion are 

balanced [15]. Protein destabilization may also occur at very high osmolyte concentrations [12,20], 

where the modestly favorable interactions between apolar parts of the osmolyte and hydrophobic side 

chains become more significant, resulting in exposure of hydrophobic residues and unfolding [12].  

The mechanistic bases for other properties of osmolytes are still subject to debate: For instance,  

it was reported that higher molecular weight polyols stabilize proteins better than their low MW 

counterparts [21]. There are also clear indications that part of the action of osmolytes can be  

protein-specific: e.g., glycine betaine at physiological pH strongly stabilizes RNase A but leads to 

aggregation or partial unfolding of green fluorescent protein [18,19]. 

1.2. Osmolytes and Protein Fibrillation 

Despite the large number of studies investigating the effect of osmolytes on protein folding, few 

investigations have been performed on the effect of osmolytes on protein fibrillation. Here we provide 

a brief review of the published work on the topic. We emphasize that the paucity of systematic 

investigations makes it difficult to make generalizations about the impact of different osmolyte classes 

on the fibrillation process, and we hope that the present work (see below) may inspire further work to 

mitigate this state of affairs. 

In general it is difficult to predict how osmolytes affect protein aggregation. Some osmolytes such 

as amino acids and methylamines, may bind relatively strongly to proteins or can alter protein hydration 

patterns and may thus influence protein-protein interactions and the structure of the ensuing aggregate, 

which can vary from oligomer(s) to fibrils to amorphous aggregates. TMAO for example, induces Aβ 

oligomerization but encourages tau fibrillation [22] though both proteins are natively unfolded.  

For globular proteins, destabilization of the most expanded state leads to correct folding, while in 

the case of intrinsically disordered proteins (IDPs) the same process can promote aggregation. This can 

occur in two situations. Aggregation of the IDP sometimes requires formation of a compact monomeric 

state that contains elements of structure favoring intermolecular contacts (cfr. the stimulation of 

aggregation of the IDP α-synuclein by salts and low pH [23] and similar observations for other 

proteins [22,24]). Alternatively, the oligomeric or fibrillar state is simply favored because it is more 
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compact than the exposed denatured state. An example of such an effect is given by the amino acid 

proline. This osmolyte inhibits aggregation of globular proteins such as lysozyme [25] and P39A 

cellular retinoic acid-binding protein [26], while mutant huntingtin exon 1 aggregates into amorphous 

aggregates [27] and we report that Pro promotes fibrillation of glucagon (see below).  

The intrinsically disordered protein α-synuclein, involved in Parkinson’s Disease, forms a relatively 

heterogeneous ensemble of compact oligomeric structures in the presence of 3 M TMAO, while at 

lower TMAO concentrations the formation of a partially folded intermediate accelerates fibrillation [28]. 

Similarly, 1 M glucose induces collapse of α-synuclein [29] (Table 1). TMAO also accelerates the 

fibrillation of S-carboxymethylated α-lactalbumin [30] and induces oligomerization of the prion 

protein [31] but inhibits conversion to the amyloidogenic form of the prion protein in vivo [32]. 

Oligomerization by TMAO is also observed for the amyloid β peptide Aβ involved in Alzheimer’s 

Disease [33], and TMAO increases the secondary structure content of the flexible and prion-determining 

region of Sup35p [34].  

The fact that osmolytes can inhibit fibrillation but induce oligomerization should be taken into 

account if the ultimate purpose is a reduction or complete inhibition of the aggregates’ toxicity: in all 

cases, the properties of the ensuing aggregates have to be studied in detail. A good example is provided 

by Aβ. Galactose and mannose induce the aggregation of Aβ40 and Aβ42 into mature fibrils, while 

glucose, sucrose and fructose make them oligomerize [24]. Other osmolytes, such as glycine and 

taurine, accelerate Aβ40 fibril formation [35] while trehalose completely inhibits its aggregation.  

As for Aβ42, 50 mM trehalose makes the peptide form toxic oligomers [36] while 250 mM trehalose 

makes it fibrillate slower than in the absence of chemical chaperones [37]. Other studies instead 

reported lower toxicity and reduced protein aggregation in the presence of trehalose in vivo [38,39]. 

Several osmolytes have been reported to inhibit fibrillation, while favouring the formation of 

oligomers or amorphous aggregates in the case of intrinsically disordered proteins (Table 1). This 

could be due to the general mechanism of destabilization of the unfolded state caused by the 

preferential exclusion from the protein surface, together with possible protein-specific interactions. In 

this context the amorphous aggregates induced by the osmolytes represent an alternative way to render 

the protein compact, which may prevail over fibrillar aggregates for reasons of kinetic accessibility.  

A cautionary note is required regarding the use of ThT fluorescence intensities to quantify the 

amount of formed fibrils, as presented in [36,40]. In fact, ThT fluorescence intensity could potentially 

be affected by interactions between ThT and the osmolyte, which is always present at many  

thousand-fold higher concentrations than ThT, as well as by competitive osmolyte binding on the fibril 

surface [41,42]. Furthermore, osmolytes can induce fibrillar polymorphism, as we report for glucagon 

(see below). In this case, ThT intensities are influenced by the fibrils’ morphology [43] and therefore 

cannot be used to quantify the amount of peptide in the fibrillar form. For these reasons, control 

experiments to evaluate possible fluorescence quenching effects and parallel use of complementary 

techniques to evaluate the amount of fibrillated material (e.g., centrifugation to determine the amount 

of aggregated protein and CD/FTIR to ascertain possible changes in structure) are always recommended. 
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Table 1. Effect of osmolytes addition to several fibrillating proteins.  

Osmolyte Aβ40 Aβ42 α-synuclein polyQ 
Immunoglobulin 

light chains 
Glucagon 1 insulin lysozyme 

Glucose oligomerization [24] oligomerization [24] collapse no effect minor effect [14] 

Sucrose oligomerization [24] oligomerization [24] 
   

no effect 
no/minor effect 

[14,44] 

reduced aggregation 

[25,45] 

Fructose no effect[24] no effect [24] minor effect [14] 

Galactose 
induced fibrillation 

[24] 

induced fibrillation 

[24]       

Mannose 
induced fibrillation 

[24] 

induced fibrillation 

[24]       

Sorbitol 
    

longer lag, more 

stable fibrils [46] 
no effect 

  

Glycerol oligomerization [33]     no effect  no effect [25] 

Trehalose 
slower/no 

fibrillation [36,37] 

oligomerization 

(toxic) [36]  

reduced 

aggregation in 

mice [47] 
 

no effect 

reduced/slower 

fibrillation 

[14,44] 

increasing B1 [48], 

reduced aggregation [45] 

Gly 
faster fibrillation 

[35]     

faster 

fibrilation  
no effect [25] 

Pro 
   

amorphous 

aggregates [27]  
polymorphism 

 
inhibits aggregation [25] 

Taurine 
faster fibrillation 

[35]     

slower 

fibrillation   

Ectoine 
 

longer lag time, 

more oligomers, 

lower toxicity[40] 
   

faster 

fibrilation 

highly reduced 

fibrillation [44]  
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Table 1. Cont. 

Osmolyte Aβ40 Aβ42 α-synuclein polyQ 
Immunoglobulin 

light chains 
Glucagon 1 insulin lysozyme 

Betaine 
   

faster fibrillation 

[27] 

longer lag, more 

stable fibrils [46] 

faster 

fibrilation 

highly reduced 

fibrillation [44] 
increasing B2 [48] 

Sarcosine 
     

faster 

fibrillation, 

polymorphism 
 

Tm of unfolding 

increases by 22°, but the 

unfolded lysozyme 

aggregates [12] 

TMAO 
little effect [37]; 

oligomerization [33]  

folded 

oligomer/ 

enhanced 

fibrillation 

[28] 

amorphous 

aggregates [27]     

Notes: 1 Based on results in this study. 2 B: osmotic second virial coefficient. An increasing value means more attractive forces between molecules. 
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1.3. Glucagon: A Model System for Fibrillation 

As a complete and systematic study of the effects of osmolytes on intrinsically disordered proteins 

is lacking, we performed a study on the natively unfolded peptide glucagon in which we compare the 

effects of many osmolytes belonging to the three different classes. Glucagon is an intrinsically 

disordered peptide hormone, which has been shown to readily fibrillate in vitro into fibrillar aggregates 

with different structure and morphology depending on the conditions used for fibrillation, such as 

protein concentration and salt [49]. Under acidic conditions, glucagon fibrillation is particularly 

sensitive to the presence of anions, with effects following the electroselectivity series, rather than the 

Hofmeister series. In particular, addition of sulfates results in faster fibrillation into a stable fibrillar 

structure showing an “α-like” CD spectrum. Our results confirm that proteins lacking a globular 

structure can aggregate more easily in the presence of osmolytes and that these cosolutes can affect 

glucagon fibrils’ structure.  

2. Results 

2.1. Glucagon Fibrillation Is Either Accelerated or Unaffected by Osmolytes  

Here we describe a systematic study of the effects of osmolytes on glucagon fibrillation.  

A representative sample of osmolytes was selected from Table (6.1) in Hochachka et al. [50].  

For the polyols class we present results for trehalose, sucrose, mannitol, sorbitol, erythritol, glucose,  

myo-inositol and glycerol; for the class containing the amino acids and their derivatives we present 

results for Pro, Ala, Gly, Ser, taurine, ectoine and OH-ectoine; for the methylamines class we report 

data for glycine betaine, sarcosine and choline-O-sulfate (COS). 

To explore the kinetics of glucagon fibrillation in the presence of osmolytes, ThT emission was 

measured over time for samples with a constant glucagon concentration (1 mg/mL) and 125–400 mM 

osmolytes. The raw ThT data immediately show that no osmolyte was able to inhibit glucagon 

fibrillation. Figure 1 shows the effect of including 125 mM osmolyte in the glucagon solution on the 

fibrillation lag time. The sugars and polyols class generally show very little effect on the lag time of 

fibrillation. The amino acids class generally reduce the lag time, particularly Ala, Gly and Ser. Pro has 

a very modest effect, while ectoines (ectoine and OH-ectoine) significantly decrease the lag time. The 

only osmolyte that showed a protective effect by increasing the lag time is taurine. In the methylamines 

class, betaine and sarcosine decrease the lag time. 

Increasing concentrations of osmolytes generally only had a modest effect on the onset of 

fibrillation (Figure 2). The polyols class, which at 125 mM osmolyte showed very little effect, did not 

show any change when the cosolute concentration was doubled or increased up to 400 mM. Increasing 

the amino acids concentration produced only a very modest, and often statistically insignificant, 

decrease in the lag time. Similar behaviour was shown for the methylamines class: the only osmolyte 

that gave a significant reduction of the lag time upon increasing its concentration from 125 to 250 mM 

was sarcosine. 
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Figure 1. (A) Typical fibrillation kinetic trace in buffer alone and in the presence of the 

osmolytes taurine, OH-ectoine and proline. (B) Lag times for glucagon fibrillation in the 

presence of 125 mM polyols, which leaves glucagon fibrillation mostly unaffected.  

(C) 125 mM of the amino acids and ectoines accelerate glucagon fibrillation, while taurine 

is the only osmolyte that shows a longer lag time compared to the control. (D) 125 mM 

methylamines generally shorten the lag time for glucagon fibrillation.  

 

 

Figure 2. Effect of osmolyte concentration on the lag time for glucagon fibrillation,  

on the different cosolute classes: (A) polyols, (B) amino acids and their derivatives,  

(C) methylamines. 

 



Int. J. Mol. Sci. 2012, 13 

 

 

3809

Figure 2. Cont. 

 

The shape of the ThT time profile showed more variation among the osmolytes than the lag time 

(Figure 1A). Osmolytes with limited ability to change the lag time gave rise to very different fibrillation 

kinetics, as shown by the overshoot parameter O described in Equation 1 (Figure 3). For example, 

proline showed only a 10% reduction in the lag time, while it was able to increase the O factor from 

0.1 to 0.7.  

Figure 3. Effect of 125 mM osmolytes on the appearance of the ThT kinetic traces, as 

shown by the O parameter. 
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The overshoot phenomenon in glucagon fibrillation was first reported by Pedersen et al. [51] and 

confirmed by more recent studies [52]. This overshoot correlated with the transient accumulation of a 

high ThT-staining fibrillation intermediate (type B fibrils), which subsequently interconverts into the 

most stable fibrillar form (low stress or type B fibrils). The shape of the ThT signal can therefore be 

used as an indication of the pathway taken by the fibrillation reaction. A lack of overshoot (seen in the 

absence of osmolytes) is consistent with a lack of type B fibrils; rather, glucagon fibrillates directly to 

the so-called high-stress fibrils [53]. This is a mechanism that was specifically investigated in the case 

of glucagon and might not be transferable to other proteins without prior tests. 

Adding 125 mM amino acids led to an increase of the O factor, with the exception of taurine. The 

more prominent presence of an overshoot was also seen when adding betaine and sarcosine, while the 

polyols left the O factor mostly unaffected. Increasing the polyol concentration led in the case of 

erythritol to an increase in the O factor and a decrease in reproducibility; the other polyols again 

showed no effects even at 400 mM (Figure 4A). Increasing concentrations of Gly, Ala, taurine and 

OH-ectoine gave no additional effect, while Pro and Ser caused a slight decrease in the O factor and 

ectoine a modest increase (Figure 4B). Increasing the concentration of methylamines up to 400 mM 

gave no further change in the O factor (Figure 4C).  

Figure 4. Effect of increasing osmolyte concentrations on the O parameter for (A) polyols, 

(B) amino acids and (C) methylamines. 
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2.2. CD Reveals Glucagon Polymorphism in the Presence of Osmolytes 

To evaluate whether the differences in lag time and overshoot factor indeed could be attributed to 

the formation of different fibrillar types, we acquired CD spectra of the samples in the presence of  

125 mM osmolytes (except for ectoine and OH ectoine where high background absorbance interfered 

with spectral recording).  

All our fibrillation studies are carried out under agitated conditions (shaking at 720 rpm). 

Accordingly, the osmolyte-free fibrils show the β-sheet like spectrum observed for glucagon fibrils in 

the presence of high mechanical stress [54] with a negative peak at 215 nm and a positive peak at  

232 nm, that we attribute to aromatic contributions to the CD spectrum [55]. Adding polyols not only 

leaves the ThT traces unaffected, as shown both for the lag time and the O parameter, but also shows 

almost no effect on the CD spectra, except for a small red-shift of the minimum and reduction of the 

intensity of minimum and maximum in the presence of glucose (Figure 5A).  

Figure 5. CD spectra of glucagon samples in the presence of 125 mM (A) polyols,  

(B) amino acids and (C) methylamines. It was not possible to acquire CD spectra of the 

ectoine samples, as their absorbance saturated the detector, while strong dilution would not 

allow the fibril detection. The three replica wells of the choline-O-sulfate (COS) samples 

are displayed as they showed different spectra which correlated with their fibrillation traces 

(panel D).  
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Adding amino acids or their derivatives dramatically changes the fibrils’ morphology (Figure 5B). 

Despite the high degree of shaking, Pro and Ser lead to CD spectra typical of glucagon fibrils in the 

presence of low mechanical stress [54], also known as type B fibrils [43], with a positive peak at  

203 nm and a negative peak at 230 nm. Remarkably, Ala shows a spectrum typical of type D fibrils [43] 

grown in the presence of high NaCl concentration, characterized by a broad minimum at around 220 nm. 

Gly was previously used at 50 mM (pH 2.5) as standard buffer in previous studies [43,54,56], but  

175 mM Gly made glucagon fibrillate into a β-sheet-like structure, with a shoulder at around 225 nm; 

taurine instead shows the same CD spectrum as the control (negative peak at 215 nm and a positive 

peak at 232 nm).  

The methylamines created variations in the spectra as well: while betaine shows a spectrum identical 

to osmolyte-free glucagon, sarcosine shows a low stress type B spectrum. An anomalous behaviour 

was shown only in the case of Choline-O-Sulfate (COS): the three replica wells showed different 

spectra (Figure 5C) which tie in with the variation in the kinetic time profiles (Figure 5D). Two of the 

three wells gave the low stress fibrillar type, though with different peak intensities, while the third well 

shows a flat spectrum with a very shallow minimum at 218 nm, which remains at MRE values just 

below zero up to 250 nm.  

The effects of the osmolytes, both in terms of kinetics and structure are summarized in Table 1 

(column “Glucagon”). 

3. Discussion 

In this study we have examined the effect of osmolytes on glucagon fibrillation. Glucagon is a short 

peptide lacking a folded native structure; for the peptide to aggregate, we have previously proposed 

that a partially folded intermediate must form in which residues 6–10 and 23–27 come in close vicinity 

to each other [57]. Thus fibrillation requires the peptide to become more compact. We observe that 

different types of osmolytes cannot inhibit aggregation, similarly to results reported for other intrinsically 

disordered proteins, such as Aβ and tau [22,24]. With few exceptions, osmolytes promote faster 

fibrillation of glucagon or have no effect at all. Exceptions also occur for other peptides and proteins: 

trehalose was able to inhibit Aβ fibrillation [36] while polyols slowed down the fibrillation of  

insulin [14]. The only osmolyte that showed a delay of glucagon’s fibrillation onset and no effect on 

glucagon fibrillar morphology is the amino acid derivative taurine, which was previously reported to 

accelerate Aβ aggregation [35] and to generally promote protein compaction [15]. Other amino acids 

derivatives, such as ectoine, had the opposite effect to taurine. Thus the same osmolyte can have 

different effects depending on the specific protein used in the study.  

Each protein can therefore have a reduced or increased tendency to fibrillate, depending on the 

osmolyte used. Some osmolytes indeed have similar effects on very different proteins. The polyol 

fructose has no effect on the aggregation behaviour of folded proteins as insulin [14] or the 

unstructured peptide Aβ [24], while osmolytes such as trehalose and TMAO mostly show inhibitory 

effects on the formation of amyloid-like fibrils formed by different proteins (Table 1).  

Osmolytes belonging to the polyol class showed very little or no effect on glucagon fibrillation 

kinetics and CD spectra, even though they are reported to be most effective at low pH [8], as used in 

this study. Amino acids and methylamines on the other hand showed an effect both on the fibrillation 
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kinetics and on the fibrils’ structure. Moreover, methylamines are reported to destabilize at low  

pH [15], and in this study they lead to faster aggregation of glucagon. Amino acids are thought to 

balance hydration (preferential exclusion) and binding effects. In particular, the polyols class is  

known to act through these hydration effects. However, these effects clearly have little influence on  

the fibrillation of glucagon. This leaves osmolyte binding as a possible mediator of glucagon  

fibril polymorphism. 

The overshoot factor was a more sensitive detector than the lag time for the presence of different 

fibrillar morphologies for the different samples analyzed. For example, while Pro showed a 10% 

reduction of the lag time, changing completely the CD spectrum (O parameter going from 0.1 in the 

absence of osmolyte to 0.7 in the presence of Pro), mannitol showed a 15% reduction of the lag time, 

but left the O parameter and the CD spectrum unaffected. Generally, an O parameter <0.4 leads to an 

osmolyte-free CD spectrum while O parameters >0.4 changes the morphology towards other fibrillar 

types, such as the low stress (also known as type B) and type D fibrils [43]. In the case of COS there is 

a particularly close correlation between the shape of the curve and the resulting morphology. This 

osmolyte gives the lowest reproducibility, both in terms of lag time and overshoot factor, and different 

kinetic profiles (Figure 5D) lead to different fibril morphologies according to CD spectra (Figure 5C). 

The role of the osmolytes on the selection of the fibril structure is a fascinating issue. Pro, Ser and 

COS modify the structure of glucagon fibrils from the typical structure in the presence of high 

mechanical stress to the one present in the exact same conditions, but under low stress. This can be 

rationalized by a protection effect exerted by the osmolytes on glucagon, “shielding” the effect of 

mechanical perturbation, particularly as amino acids preferentially bind to proteins [8] (Figure 6). This 

would happen as osmolytes could allow the formation of the labile intermediate, which is required for 

the formation of low stress fibrils, even under high stress conditions, in which the formation of the 

labile intermediate is normally inhibited and therefore leads to another type of fibril [54]. 

Figure 6. Suggested fibrillation mechanism. Left panel: the absence of osmolytes leads to 

high stress (HS) fibrils. Right panel: the presence of Pro, Ser or COS is suggested to lead to 

the formation of the labile type A intermediate as the osmolytes bind glucagon, “shielding” 

it from the high stress conditions. The resulting fibrils are here called low stress (LS). 
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It is difficult to explain the appearance of the type D fibrils in the presence of Ala and sarcosine, but 

we suggest that specific interactions between the peptide and these chemical chaperones could 

intervene in the fibrillation process, thus leading to another structure. 

The very low concentration dependence on the effect of osmolytes generally makes their effect 

resemble electrostatic interactions where the effect saturates at an ionic strength corresponding to  

100–200 mM, rather than a crowding effect, for which increasing osmolyte concentration will have a 

increasing effect at concentrations up to several molar [58,59]. 

In summary, it is evident that neither osmolytes in general nor those belonging to a particular 

compound class influence glucagon aggregation in a uniform manner. The distinct effects of compounds 

such as taurine, COS or Ala more likely result from direct interaction of the compounds with the 

protein than from non-specific solvent effects. Direct interaction might also be the reason for effects 

observed here that are not consistent with other published work, simply because they could be  

protein-specific. Since the molecular basis of aggregation is diverse, more model systems able to 

distinguish between those pathways will be needed to obtain a clearer picture. Also, larger sets of 

osmolytes as well as model proteins need to be screened to draw conclusions on their general 

mechanism of action, due to the specificity of some osmolyte-protein interactions. 

4. Experimental Section  

4.1. Glucagon Fibrillation in the Plate Reader 

Glucagon powder was dissolved in 10 mM HCl (pH 2) and filtered through a 0.2 µm filter. The actual 

glucagon concentration in solution was determined from absorbance measurements on a Nanodrop 

(Thermo Fisher Scientific, Waltham, MA) using an extinction coefficient ε280 nm
1mg/mL = 2.369. The 

stock solution was subsequently diluted in 50 mM Gly buffer pH 2.5 containing 40 µM ThT, with or 

without the presence of osmolytes, to a final glucagon concentration of 1 mg/mL. 

Solutions were transferred to a 96 wells plate with transparent bottoms for fluorescence reading 

(Nunc, Thermo Scientific, Roskilde, Denmark), sealed with transparent tape (Nunc) to avoid 

evaporation. Each condition was present in three replica wells. 

The plates were incubated in a Tecan GeniosPro plate reader at 29 °C. ThT emission was measured 

(excitation wavelength 448 nm, emission 485 nm) every 10 min. During each interval linear shaking 

was performed at 720 rpm for 8 min. 

To analyze the kinetic profiles, we extracted the lag time for all samples. The lag time was defined 

as the time required for the development of 5% of the maximum fluorescence intensity. We also 

calculated an overshoot factor O using the following equation: 

 
(1)

in which M is the maximum ThT fluorescence, i is the initial ThT fluorescence and E is the end 

point fluorescence value, in order to describe the shape of the kinetic trace, where O = 0 indicates the 

complete absence of overshoot and O = 1 an overshoot that leads back to the initial intensity value. 

Errors were calculated as standard deviations. 
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4.2. Circular Dichroism 

Fibrillated glucagon samples with or without osmolyte presence were sonicated for 2 s with a 

Bandelin Sonopuls sonicator (Bandelin Electronic GmbH, Germany) to disperse aggregates efficiently, 

and subsequently diluted to a final concentration of 0.2 mg/mL glucagon in 25 mM glycine buffer.  

The samples were measured on a Jasco J-810 (Tokyo, Japan) spectrometer using a 1 mm quartz 

cuvette (Hellma GmbH, Germany). At least 5 accumulations were acquired, using a scanning  

speed of 100 nm/min and 0.2 nm data pitch. The data are reported as Mean Residue Ellipticity:  

MRE = 100θ/(cdN), where θ is the measured ellipticity in degrees, c is the protein concentration in 

mol/L, d is the light path in cm, and N is the number of residues. Background spectra including 

appropriate concentrations of osmolytes are subtracted from each spectrum. 

The CD spectrum shown for the control is the one reported for glucagon in the presence of high 

mechanical stress [54]. Unlike the previous study [54], no glass bead was added. We attribute the 

formation of high stress fibrils to the usage of a new protein batch compared to the two batches used 

previously [54]. To facilitate comparison, all experiments were performed with the same batch. 

5. Conclutions 

It is evident that neither osmolytes in general nor those belonging to a particular compound class 

influence glucagon aggregation in a uniform manner. The distinct effects of compounds such as 

taurine, COS or Ala more likely result from direct interaction of the compounds with the protein than 

from non-specific solvent effects. Direct interaction might also be the reason for effects observed here 

that are not consistent with other published work, simply because they could be protein-specific. Since 

the molecular basis of aggregation is diverse, more model systems able to distinguish between those 

pathways will be needed to obtain a clearer picture. Also, larger sets of osmolytes as well as model 

proteins need to be screened to draw conclusions on their general mechanism of action, due to the 

specificity of some osmolyte-protein interactions. 
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