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Abstract

Palmitic acid is a saturated fatty acid whose blood concentration is elevated in obese patients. This causes inflammatory 
responses, where toll-like receptors (TLR), TLR2 and TLR4, play an important role. Nevertheless, palmitic acid is not only 
a TLR agonist. In the cell, this fatty acid is converted into phospholipids, diacylglycerol and ceramides. They trigger the 
activation of various signaling pathways that are common for LPS-mediated TLR4 activation. In particular, metabolic prod-
ucts of palmitic acid affect the activation of various PKCs, ER stress and cause an increase in ROS generation. Thanks to 
this, palmitic acid also strengthens the TLR4-induced signaling. In this review, we discuss the mechanisms of inflammatory 
response induced by palmitic acid. In particular, we focus on describing its effect on ER stress and IRE1α, and the mecha-
nisms of NF-κB activation. We also present the mechanisms of inflammasome NLRP3 activation and the effect of palmitic 
acid on enhanced inflammatory response by increasing the expression of FABP4/aP2. Finally, we focus on the consequences 
of inflammatory responses, in particular, the effect of TNF-α, IL-1β and IL-6 on insulin resistance. Due to the high impor-
tance of macrophages and the production of proinflammatory cytokines by them, this work mainly focuses on these cells.
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Abbreviations

ATF  Activating transcription factor
CHOP  C/EBP homologous protein
CCL  CC motif chemokine ligand
JNK  c-Jun  NH2-terminal kinase
CD36  Cluster of differentiation 36
DAG  Diacylglycerol
DGAT   Diglyceride acyltransferase
ER  Endoplasmic reticulum
eIF2α  Eukaryotic initiation factor 2α
FABP4  Fatty acid-binding protein 4

GSK-3β  Glycogen synthase kinase-3β
IκB  Inhibitor of NF-kB
IKK  Inhibitor of NF-kB kinase
IRE1α  Inositol-requiring enzyme 1α
IRS  Insulin receptor substrate
IL  Interleukin
LPS  Lipopolysaccharide
MAPK  Mitogen-activated protein kinase
MUFA  Monounsaturated fatty acids
MyD88  Myeloid differentiation factor 88
NLRP3  NOD-like receptor pyrin domain containing 3
NF-κB  Nuclear factor κB
PPAR  Peroxisome proliferator-activated receptor
PI3K  Phosphatidylinositol 3-kinase
PUFA  Polyunsaturated fatty acids
PKB  Protein kinase B
PERK  Protein kinase RNA-like endoplasmic reticu-

lum kinase
PKC  Protein kinases C
PP2A  Protein phosphatase 2A
ROS  Reactive oxygen species
RANTES  Regulated on activation, normal T cell 

expressed and secreted
SFA  Saturated fatty acid
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SPT  Serine palmitoyltransferase
SIRT  Sirtuin
XBP-1s  Spliced X-box-binding protein-1
TXNIP  Thioredoxin-interacting protein
TRAF  TNF receptor-associated factor
TLR  Toll-like receptor
TAG   Triacylglycerol
TNF-α  Tumor necrosis factor-α
UCP2  Uncoupling protein 2

Introduction

In developed countries, an overweight and obesity is a grow-
ing epidemiological problem. It is estimated that in the 
North America and Europe nearly 60% of the population 
is overweight and 15% are obese [1–3]. This percentage is 
increasing steadily for over 30 years.

Obese patients have significantly increased free fatty acid 
(FFA) levels in the blood [4–8]. The FFA includes palmitic 
acid (PA) and other fatty acids such as stearic acid, mono-
unsaturated fatty acids (MUFA) (oleic acid) and polyunsatu-
rated fatty acids (PUFA) (linoleic acid) [8, 9]. Consuming 
large amounts of saturated fatty acids (SFA), in particular 
PA, and metabolism disorders, increases the concentration 
of these fatty acids in the blood. This leads to inflammatory 
responses, which are an important factor in the develop-
ment of diseases associated with obesity, for instance, insu-
lin resistance [10].

PA induces inflammatory responses; however, it does so 
by activating different signaling pathways. Some pathways 
may interact, while others may only occur in specific cells. 
This work focuses mainly on macrophages, due to their 
high importance and role in proinflammatory cytokines 
production.

The impact of the palmitic acid on the cell 
functions

When PA gets into the cell, it is metabolized to saturated 
phospholipids (mainly to lysophosphatidylcholine) [11–14], 
diacylglycerol (DAG) [11, 15–18] and ceramides [17, 
19–23].

In general, fatty acids such as MUFA are metabolized 
and then accumulated in the form of low-toxic triacylglyc-
erol (TAG). However, a large amount of PA inhibits the 
TAG synthesis at the DAG stage, which is then accumu-
lated in the cell. The exact mechanism of this process is still 
poorly understood. Probably the diglyceride acyltransferase 
(DGAT), an enzyme involved in the synthesis of TAG from 
DAG and acyl-CoA, has less activity when the substrates are 
saturated DAG and saturated acyl-CoA [20, 24, 25]. Another 

possible explanation is that PA induces the production of 
reactive oxygen species (ROS), which inhibits the DGAT2 
activity [26].

Palmitate is mainly incorporated into DAG because its 
incorporation into TAG is reduced by the fall in the expres-
sion of DGAT2. It was shown that after 12 h incubation with 
150 μM of PA, the DGAT2 mRNA expression was reduced 
in the murine proximal tubular epithelial cell model [27] 
and after 16 h of incubation with 500 μM PA in murine 
C2C12 myoblasts [28]. However, after 24-h incubation with 
300–900 μM PA, the expression of DGAT1 and DGAT2 
increased in anserine primary hepatocytes [29]. In turn, 
when they treated those hepatocytes with even higher con-
centration of PA, DGAT1 and DGAT2 expression started to 
decrease to the control level.

In addition to DGAT1 and DGAT2, PA does not change 
the activity of diacylglycerol kinases involved in DAG 
metabolism, which was shown in vascular smooth-muscle 
cells [30]. Further, DAG activates protein kinases C (PKC), 
which is important in TLR2 and TLR4 activation, as well as 
in the activation of nuclear factor κB (NF-κB).

It is known that DAG is the activator of conventional 
PKC (cPKC) and novel PKC (nPKC). However, differ-
ent DAGs may activate different PKCs [31]. For example, 
PKCδ is poorly activated by 16:0/16:0-DAG, but strongly 
by other DAGs containing unsaturated fatty acids in its 
structure. In turn, PKCε is poorly activated by all DAGs. 
PKCθ, on the other hand, is strongly activated by all types 
of DAGs. In addition to the activation, also palmitoyl-CoA 
can cause acylation of PKC, which increases the activity 
of the kinases of this group [32]. However, DAG does not 
activate PKCζ [33]. Activators for this kinase are ceramides 
[34, 35]. Nevertheless, the importance of individual PKCs 
depends on the level of its expression in the tissue. PKCζ 
and PKCδ expression occurs in all tissues [36]. The expres-
sion of PKCε occurs mostly in the brain, kidneys and heart, 
and in other tissues, it is very low [36, 37]. In contrast, PKCθ 
expression is specific for muscle but is not expressed in adi-
pocytes, macrophages or liver cells [38].

The PA, along with PKC activation, can also affect the 
endoplasmic reticulum (ER) stress (Fig. 1). PA is metabo-
lised to phospholipids (mainly to lysophosphatidylcholine) 
and to the DAG. Both of these substances contain saturated 
hydrocarbon chains. High concentration of PA leads to sat-
urated DAG and saturated lysophosphatidylcholine accu-
mulation in the ER [14, 18, 39], which causes destructive 
changes in its structure. These changes are detected by trans-
membrane domain of inositol-requiring enzyme 1α (IRE1α) 
and protein kinase RNA-like endoplasmic reticulum kinase 
(PERK) but not by activating transcription factor (ATF)6 
[40–42]. This leads to the activation of ER stress sensors; 
however, under the influence of saturated lipids, there is no 
formation of large cluster with IRE1α, but only dimerization 
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of this ER stress sensor. IRE1α is a kinase and endonuclease 
that catalyzes the excision of an intron from X-box-binding 
protein-1 (XBP-1) mRNA to form splice XBP-1 (XBP-1s) 
[14, 43].

PERK, on the other hand, is a kinase that phosphoryl-
ates eukaryotic initiation factor 2α (eIF2α), what causes the 
repression of translation. Nevertheless, PERK activation 
by ER stress increases translation of C/EBP homologous 
protein (CHOP) and ATF4 and then CHOP- and ATF4-
dependent autophagy genes, which are involved in increas-
ing the capacity to maintain autophagy in stressed cells [14, 
43–47]. Autophagy also depends on c-Jun NH2-terminal 
kinase (JNK)–mitogen-activated protein kinase (MAPK). 
Autophagy is a key mechanism to protect the cell against 
lipotoxicity. Nevertheless, the prolonged exposure of the 
cells to the lipotoxic environment causes the mammalian tar-
get of rapamycin (mTOR)-dependent autophagy inhibition 
[48] and leads to cell apoptosis. CHOP is involved in apop-
tosis induction in hepatocytes [49, 50]. Although activation 
of JNK–MAPK by glycogen synthase kinase-3β (GSK-3β) 
is also important in the induction of apoptosis [12, 49, 51, 
52], the exact mechanism of GSK-3β activation through PA 
is still unclear. It can not only be activated by the ER stress, 
but also independently of the ER. Despite apoptosis induc-
tion, ER stress is important in the induction of inflammatory 
response [53, 54]. It activates NF-κB and NOD-like recep-
tor pyrin domain containing 3 (NLRP3) inflammasome, 
which results in increased production of proinflammatory 
cytokines.

Various functions of mitochondria are strongly affected 
by PA treatment. Normally, ROS generation is relatively 
low, but in the presence of PA it increases significantly. This 
increase is mostly due to the partial inhibition of complexes I 

and complexes III of the respiratory chain [55–58]. Another 
effect of PA is the inhibition of the mitochondrial adenine 
nucleotide translocator activity, which causes accumulation 
of ATP in these organelles and increased production of ROS 
[59, 60]. ROS functions as specific second messenger that 
participates in the induction of inflammatory response, for 
example, it may trigger the activation of NF-κB.

The other lipids synthesized from PA are ceramides. Their 
increased amount causes an up-regulation in the expression 
and increased activity of neutral sphingomyelinase (nSMase) 
and serine palmitoyltransferase (SPT) [23]. Probably, it hap-
pens through the activation of NF-κB and increased expres-
sion of its downstream genes [61] or through the ER stress, 
which activates the IRE1α => XBP-1s pathway [62]. This 
results in an increased de novo synthesis of ceramides as 
well as increased release of sphingosine from the cell mem-
brane, which is transformed into ceramides. Also, incubation 
of the cells with PA causes the accumulation of palmitoyl-
CoA, which is a substrate for ceramide production. It seems 
that the production of de novo ceramides under the influence 
of PA is important for enhancing the signal transduction 
through TLR4 [21, 22].

Macrophages in obesity

One of the molecular symptoms of obesity is the occur-
rence of chronic low-grade inflammation. Macrophages 
play an important role in these processes in adipose tis-
sue [63–65] and to a lesser extent in the liver [66]. This 
immune system cells can be tissue-resident macrophages 
such as microglia in the brain and Kupffer cells in the liver 
or be recruited into the tissues from the blood monocytes. In 
this process, monocytes differentiate and then polarize into 
specific macrophage phenotypes, depending on the factors 
acting on these cells [67]. There are two major macrophage 
sub-populations with different functions: inflammatory M1 
and anti-inflammatory M2 macrophages. Functionally, the 
M1 macrophages produce pro-inflammatory cytokines and 
participate in the removal of pathogens and cancer cells. In 
turn, M2 macrophages produce anti-inflammatory cytokines, 
e.g., interleukin (IL)-10 and participate in the remodeling of 
the tissue during wound healing, regulation of the immune 
system and dampening of inflammation.

In lean animals and healthy people, resident macrophages 
in adipose tissue are polarized toward anti-inflammatory 
M2 state [64, 68–70]. Nevertheless, in obesity, adipocytes 
and these adipose tissue-resident macrophages produce 
chemokines that cause the recruitment of pro-inflammatory 
macrophages [64, 69–72]. This is a C–C motif chemokine 
receptor (CCR)2, CCR5, CCR7 and C–X3–C motif recep-
tor 1 (CX3CR1) chemokine-dependent process. These pro-
inflammatory macrophages localize in the environment of 

Fig. 1  The consequences of PA-induced ER stress. At high concen-
trations, PA is converted to saturated lysophosphatidylcholine and 
DAG, which are incorporated into the ER. This causes ER stress and 
activation of ER stress sensors: IRE1α and PERK. The same path-
ways are activated during the detection of unfolded proteins. In par-
ticular, eIF2α phosphorylation, represses the translation of many 
genes with the exception of few, such as CHOP or ATF4. Then 
NF-κB is activated, which leads to apoptosis suppression and induc-
tion of inflammatory reactions. Activation of ER stress sensors is 
involved in increasing the capacity to maintain autophagy in stressed 
cells; however, severe ER stress leads to cell apoptosis
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necrotic adipocytes, forming so-called crown-like struc-
tures [64, 71, 73] and start to produce pro-inflammatory 
cytokines [68]. Nevertheless, in humans, these macrophages 
have mixed phenotype [74]. The surface marker expression 
(integrin αvβ5, CD163, CD200, CD206, CD209, CD1b 
and CD1c) on these cells is similar to that on M2-polarized 
macrophages. At the same time, they show very high basal 
production of pro-inflammatory cytokines, even higher 
than in M1 macrophages. This mixed phenotype is asso-
ciated with various factors that affect these macrophages. 
In adipose tissue, cell debris and free lipid droplets from 
necrotic adipocytes enhance inflammatory reactions and 
polarization of M1 macrophages [71, 73, 75]. Also in obe-
sity, adipose tissue hypoxia induces pro-inflammatory M1 
activation [76, 77]. Other pro-inflammatory factors affect-
ing macrophages in advanced obesity are hyperglycemia 
[78, 79] and hyperinsulinemia [80, 81]. Nevertheless, in the 
described macrophages, there is a high expression of the 
peroxisome proliferator-activated receptor (PPAR)γ, which 
limits inflammation [82, 83].

Palmitic acid is a toll‑like receptor agonist

In many studies, where specific inhibitors and siRNAs have 
been used, the results showed that TLR2 and TLR4 are acti-
vated by SFA, such as PA [61, 84–92] and lauric acid [93, 
94]. The effect was especially visible in cells incubated for 
more than 12 h with a given SFA.

PA induces the activation and dimerization of TLR2 with 
TLR1, TLR2 with TLR6 or TLR4 [88, 90]. After TLR4 
or TLR2 activation, the receptor dimerization and recruit-
ment to lipid rafts take place. This is followed by signal 
transduction through MyD88 and NADPH oxidase activa-
tion [93–95]. The signal is transmitted through two path-
ways, the myeloid differentiation factor 88 (MyD88) => IL-1 
receptor-associated kinase (IRAK) => TNF receptor-associ-
ated factor (TRAF)6 and the phosphatidylinositol 3-kinase 
(PI3K) => protein kinase B (PKB)/Akt pathway [93, 94]. 
As a consequence, it activates NF-κB. However, also the 
SFA-mediated TLR4 activation may initiate the MyD88-
independent signaling pathway: TLR4 => IFNβ-mediated 
transcription factor (TRIF) => interferon regulator factor 
(IRF)3 (Fig. 2) [94]. The signaling mechanism induced by 
SFAs is mediated by TLR4, but activation of TLR4 requires 
complex formation with an accessory protein called mye-
loid differentiation protein 2 (MD2). PA, as well as natural 
TLR4 agonist, LPS, associates with the hydrophobic binding 
pocket of this TLR4 adaptor protein MD2, which activates 
signal transduction [96, 97].

Notably, a number of groups have independently pro-
posed that SFAs, including PA may also indirectly stimu-
late TLR-dependent signaling [98–100], especially after a 

very short exposure time of the cells to a given SFA [98]. 
Moreover, PA treatment at either time point induces only 
8% of the genes induced by LPS [54]. Molecular simulation 
of PA interactions with TLR4-MD2 also questions whether 
PA is an agonist of this receptor [100]. In turn, some papers 
showed the TLR4-dependent effect of PA on inflammatory 
responses, but at a different time point than the effect of its 
agonist, LPS alone [101, 102]. This may indicate the indirect 
PA activation of TLR4, by increasing the production of some 
noncanonical TLR4 activators. The explanation may also 
be that PA enhances the signal transduction, or that TLR4 
forms complexes with other receptors, e.g., with cluster of 
differentiation 36 (CD36), through which TLR4 may be acti-
vated by PA [103]. Nevertheless, it is possible that PA may 
directly activate TLR4, as well as indirectly by inducing the 
same signaling pathways causing ER stress and generation 
of DAGs and ceramides in the cell.

Palmitic acids produce activators for toll‑like 
receptors

In addition to LPS, other substances can also activate TLR4. 
For example, extracellular ceramides in electronegative LDL 
or extracellular histones. Electronegative LDL is the LDL 
fraction whose blood levels are elevated in obese people 
[104]. Electronegative LDL presents a PLC-like activity 
[105], which is related to high ceramide content. This is 
important in inducing inflammatory reactions through CD14 
and TLR4 in macrophages and monocytes [106–108]. Nev-
ertheless, the incubation of hepatocytes with PA causes the 

Fig. 2  TLR4 activation via PA and signal transduction. PA activates 
TLR4 directly, but it can also activate this receptor indirectly. Con-
suming large amounts of fats causes disorder in intestinal functions, 
which leads to increased amount of LPS in the blood. After TLR4 
activation, the signal transduction takes place via the IRAK and 
PI3K =>PKB/Akt pathways. They lead to the activation of NF-κB 
and the induction of inflammatory reactions
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release of very similar particles: extracellular vesicles, which 
contain ceramides. The hepatocyte exposure to PA causes 
the ER stress. It activates the IRE1α => XBP-1s pathway 
and thus increases the expression of SPT1. This results in 
increased de novo ceramide production, which is secreted in 
extracellular vesicles outside the cell [62]. The formation of 
the extracellular vesicles also depends on IRE1α activation. 
Extracellular vesicles, which contain ceramides, may be pro-
inflammatory; however, this hypothesis requires confirma-
tion and careful research.

Another possible mechanism for activating TLR by PA is 
the increase of extracellular histone release. It was already 
shown that PA induces the release of histone H3 from acti-
vated macrophage RAW 264.7 cell line [109], but this pro-
cess is not related to cell death. PA induces the release of 
histone H3 from macrophages, in part, through the ROS gen-
eration and the JNK–MAPK signaling pathway [109]. Extra-
cellular histones directly bind and activate TLR2 [110–113], 
TLR4/MD2 [110–113] and TLR9 [114]. Although histones 
in the complex with DNA activate TLR much better than 
histones alone [111], this TLR activation causes MyD88-
dependent activation of NF-κB and thus increases the pro-
duction of proinflammatory cytokines. Extracellular histones 
induce the expression of adhesion molecules, intracellular 
adhesion molecule-1 (ICAM-1) and vascular cell adhesion 
molecule-1 (VCAM-1), in endothelial cells [109]. This 
results in the trafficking of monocytes and macrophages 
across the vessel wall and recruitment of these cells to the 
tissues. However, it is postulated that extracellular histones 
are actually a component derived from neutrophil extracellu-
lar traps (NET) [115]. NET is the process by which immune 
cells, mainly neutrophils, defend the organism against patho-
gens. It involves the release of the cell nucleus content or 
mitochondrial DNA, outside of the cell. Due to the fact that 
histones are proteins associated with DNA, in this process, 
they are removed out of the cell as well.

Indirect effect of palmitic acid on toll‑like receptor 4 
activation: increase in lipopolysaccharide levels

PA may indirectly act on TLR4. In particular, it may help 
to activate this receptor by increasing the amount of LPS in 
the blood. High lipid concentration in the intestines causes 
impairment in intestinal barrier function [116, 117]. This 
facilitates the passage of bacteria and LPS through the 
intestinal wall. LPS goes to chylomicrons and through the 
portal vein enters the bloodstream [118]. At the same time, 
in obese and diabetic people, there are changes in the com-
position of gut microbiota, which affect the function of the 
intestines and the amount of LPS entering the blood [116, 
119, 120]. Hence, consuming food with a large amount of 
SFA, and with a small amount of fiber and 3-n PUFA, causes 
an increase of LPS concentration in the blood [121–124]. 

Also people with obesity, atherosclerosis or type 2 diabetes 
mellitus (T2DM) have increased concentration of LPS in 
their blood [121, 125–128]. Consumption of large amounts 
of PA results in increased levels of PA and LPS in the blood. 
Due to the fact that LPS is a TLR4 agonist, large amounts of 
PA may indirectly activate TLR4.

Indirect effect of palmitic acid on toll‑like 
receptors activation

In the cells, PA can act in different ways, activating many 
TLR-dependent signaling pathways. As a consequence, TLR 
can be repeatedly activated during multi-day treatment of 
the cells with this SFA [87]. PA may increase the mRNA 
expression and protein levels of TLR4, which enhances the 
signal transduction of this receptor [129–131]. It can also 
support the activation of TLR4. After activation by LPS, 
TLR4 is translocated into the lipid raft to assemble the com-
plex involved in signal transduction. At this first stage, most 
important is the composition of lipids in the cell membrane, 
in particular, endogenous cholesterol synthesis. Thanks to 
the fact that PA, the same as LSP, increases the expression of 
the fatty acid synthase (FAS), and thus increases production 
of substrates for the production of cholesterol and facilitates 
the activation of TLR4 [132, 133].

Role of protein kinase C in toll‑like 
receptor‑mediated signaling pathway

After LPS-mediated TLR4 activation, a signal transduc-
tion occurs. This results in the activation of NF-κB and an 
increased production of proinflammatory cytokines. PKC is 
involved in the transmission of this signal. PKCζ is impor-
tant in the translocation of TLR4 into the lipid rafts and 
NF-κB activation, which was proofed in the myometrial cell 
model [134], THP-1 macrophages [135] and human periph-
eral blood monocytes and macrophages [136]. After the acti-
vation of TLR4, PKCζ is activated by RhoA. Next, the PKCζ 
activates the transforming growth factor beta-activated 
kinase (TAK)1, which is then involved in the activation of 
NF-κB. Identical signal transduction occurs via TLR2 [137]. 
However, experiments on RAW264.7 macrophages showed 
that TLR2 and TLR4 activate PKCδ which then binds to 
Toll–Interleukin 1 Receptor Domain Containing Adaptor 
Protein (TIRAP)/Mal. This is important in the p38 MAPK 
and NF-κB activation [138]. Also in the same macrophages, 
activation of TLR4 (through the MyD88-depending path-
way) causes binding and phosphorylate of PKCε, which is 
important in the activation of NF-κB [139]. Because PA 
increases the concentration of PKC activators: DAG and 
ceramides, it can enhance, by synergy effect, the TLR4- and 
TLR2-mediated signaling pathways [22, 140, 141].
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Significance of endoplasmic reticulum stress 
in toll‑like receptor‑mediated signaling pathway

One of the ER stress sensors activated by TLR is IRE1α. 
Interestingly, TLR does not activate other ER stress sen-
sors, such as ATF6 nor PERK [142]. TRAF6 plays a key 
role in TLR-mediated IRE1α activation by catalyzing IRE1α 
ubiquitination and blocking the recruitment of protein phos-
phatase 2A (PP2A) (Fig. 3) [143]. Phosphorylation of IRE1α 
and thereby increased activation of this protein result in 
the XBP-1 mRNA splicing, which results in the creation 
of XBP-1s. Activation of this pathway does not cause the 
expression of the ER stress proteins, or even decrease the 
activation of ATF6 and PERK. The consequence of TLR-
induced IRE1α activation is the production of proinflam-
matory cytokines [53, 142, 143], in particular IL-1β and 
CC motif chemokine ligand (CCL)5/regulated on activation, 
normal T cell expressed and secreted (RANTES) and, in 
part, tumor necrosis factor-α (TNF-α).

SFA treatment also displays ER stress and activates the 
ER stress sensor, IRE1α. This, in turn, activates NF-κB 
and increases IL-1β production [53, 54]. However, in this 
model, TNF-α expression is, in part, dependent on the 
IRE1α =>XBP-1s pathway.

Unlike TLR, PERK can be activated by SFA, which 
may be an argument that SFAs do not act as TLR agonist, 
but they induce signaling pathways with the same effect as 
TLR activation [54, 142, 143], although, in the hepatocyte 
HepG2 cell line, activation of IRE1α by PA is TLR4 depend-
ent [144]. Most probably, PA participates in two processes 

simultaneously. First, it integrates with the ER, causing the 
activation of IRE1α and PERK, and second, induces TLR4-
mediated IRE1α activation.

Activation of nuclear factor κB and NOD‑like 
receptor pyrin domain containing 3 inflammasome

Two factors play an important role in increasing IL-1β pro-
duction: increased expression of pre-IL-1β, and activation 
of inflammasome. In the latter, the pre-IL-1β proteolysis to 
IL-1β occurs.

ER stress and activation of IRE1α are responsible for 
the production of IL-1β in macrophages under the PA 
treatment (Fig. 4) [53, 54]. NF-κB activation is respon-
sible for the increase of pre-IL-1β expression. During the 
ER stress, activated IRE1α forms a complex with inhibi-
tor of NF-kB (IκB) kinase (IKK) and TRAF2, which 
results in the activation of IKK and subsequent activation 
of NF-κB [145]. In turn, PERK phosphorylates eIF2α, 
which represses the translation of certain genes including 
IκBα [146]. IκBα is a protein with a short half-life. With 
repressed translation, the amount of IκBα is reduced and 
hence the activation of NF-κB. In the ER stress, activa-
tion of GSK-3β results in increased production of IL-1β 

Fig. 3  Mechanism of NF-κB activation by PA. PA and TLR4 share 
some of the signaling pathways. Both activates IRE1α, but in a dif-
ferent way. TLR4 activates this ER stress sensor via TRAF6. In turn, 
activation through PA depends on the damage of ER membranes and 
incorporation into them. Then IRE1α activates JNK–MAPK pathway, 
which destabilizes the lysosomes. Cathepsin B is released, which is 
involved in the NF-κB activation. IRE1α also activates IKK, which 
participates in the canonical activation of NF-κB. PA can also cause 
activation of PERK, which inhibits translation and thereby reduces 
the level of IκBα that leads, as well, to the NF-κB activation

Fig. 4  PA results in increased production of IL-1β. PA increases the 
production of IL-1β at various levels of this cytokine synthesis. First, 
PA activates NF-κB, which increases the expression levels of pre-
IL-1β mRNA. Second, PA can increase the stability of this transcript 
by destabilizing lysosomes, releasing from them the  Ca2+ ions and 
thereby activating calcineurin. Finally, PA activates NLRP3 inflam-
masome, which is associated with increased TXNIP expression, or 
released mitochondrial DNA to the cytoplasm
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[53]. Nevertheless, the role of GSK-3β in inflammatory 
responses induced by PA is still unclear. Probably this 
kinase phosphorylates IKKγ/NEMO, which causes activa-
tion of NF-κB [147].

The ER stress induced by PA causes inflammatory 
responses through the destabilization of lysosomes. This 
happens by translocating Bax to lysosomes and destabilizing 
the lysosomal membrane [148–150]. It may depend on the 
JNK–MAPK activation [49, 151]. However, the mechanism 
of JNK–MAPK activation by PA is still unknown. It may 
also depend on IRE1α [152] or be activated by GSK-3β, 
independently of the ER stress [12]. Without a doubt, the 
process of lysosomes destabilization is independent of cer-
amides and cathepsin B. Destabilization of the lysosome 
membrane releases cathepsins into the cytoplasm. When 
this proteases, including cathepsin B, can perform the sir-
tuin (SIRT)1 proteolysis and the activity of this NF-κB 
deacetylase is decreased. As a consequence, the acetylation 
increases and thus the activation of p65 NF-κB [153]. This 
pathway is also known to be important in the activation of 
TLR4-mediated NF-κB signaling.

As shown by the experiments on high-fat choline-defi-
cient food-fed mice, the activation of NLRP3 inflammasome 
alone may not depend on cathepsin B [153]. Even more, 
in macrophages, activating NLRP3 inflammasome can 
destabilize lysosomes [154]. Nevertheless, mainly it is pos-
sible to activate NLRP3 inflammasome by cathepsin B, as 
demonstrated by experiments on microvascular endothelial 
cells treated with PA [155]. In addition to cathepsins, also 
the  Ca2+ ions are released from lysosomes, which causes 
the activation of calcineurin, increases the stability of pre-
IL-1β mRNA and increases the expression of this polypep-
tide [156].

However, the PA may trigger the activation of NLRP3 
inflammasome through other mechanisms. For example, PA 
damages the mitochondria, by reducing membrane potential 
and increasing ROS production. This results in mitochon-
drial DNA release into the cytoplasm [157], which leads to 
an activation of AIM2 inflammasome [158]. As a conse-
quence, there is a cell membrane perforation, efflux of  K+ 
ions and activation of NLRP3 inflammasome.

Another way to activate NLRP3 inflammasome is the 
PA-induced ER stress, leading to thioredoxin interacting 
protein (TXNIP) protein expression [159, 160] Activation 
of IRE1α reduces the expression of miR-17 which normally 
destabilizes TXNIP mRNA. Thanks to this, PA increases 
the expression of TXNIP protein by inducing ER stress. In 
the mitochondria, TXNIP binds and disturbs the action of 
thioredoxin H-type 1 (TRX1), and increases the generation 
of ROS. ROS is involved in the activation of NLRP3 inflam-
masome [161]. Moreover, TXNIP can directly bind to the 
NLRP3 inflammasome, which results in the activation of this 
inflammasome and the formation of IL-1β [161].

Fatty acid‑binding protein 4/aP2 
and peroxisome proliferator‑activated 
receptor γ

Another important role of PA-induced inflammatory 
response is the increase of fatty acid-binding protein 4 
(FABP4)/aP2 expression (Fig. 5). In macrophages, the PA 
increases the expression of FABP4/aP2 protein, but not 
FABP4/aP2 mRNA [162, 163] and this process is related to 
the ER stress induction. In turn, LPS increases mRNA and 
protein levels of FABP4/aP2 found in macrophages, which 
shows that PA does not affect the expression of this protein 
via TLR4, only through the ER stress induction [164]. The 
FABP4/aP2, another name for adipocyte fatty acid-binding 
protein (A-FABP), is a fatty acid-binding protein. Never-
theless, unlike other FABPs, FABP4/aP2 has the same 

Fig. 5  Role of FABP4/aP2 in PA activity. PA-induced ER stress 
increase the expression of FABP4/aP2. It is a protein that binds 
MUFA and PUFA that prevents the activation of PPARγ. FABP4/
aP2 also binds LXRα, disrupting the expression of PPARγ-dependent 
genes. This reduces the expression of SIRT3 and UCP2, which in 
turn results in increased generation of ROS that is involved in inflam-
matory responses. Moreover, PPARγ inhibits NF-κB activation; 
therefore, functional disorders in PPARγ, results in increased activa-
tion of NF-κB
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affinities to PA as to oleic acid and docosahexaenoic acid 
(DHA) [165]. As a result, the concentration of free MUFA 
and PUFA in the cells is reduced by FABP4/aP2 [166].

Increased FABP4/aP2 expression by PA, results in 
the lower expression of many proteins, including SIRT3, 
uncoupling protein 2 (UCP2) and peroxisome prolifera-
tor receptor-γ coactivator 1 (PGC-1)α, which interferes 
with mitochondrial function [163, 166–168]. This leads 
to increased ROS generation and increased inflammatory 
responses. This has been confirmed in C2C12 skeletal 
muscle cells where palmitate reduces PGC-1α expression 
through a mechanism involving NF-κB activation [169].

FABP4/aP2 binds LXRα, MUFA and PUFA which results 
in the reduction of the expression of LXRα-dependent and 
PPARγ-dependent genes [170]. PPARγ is a transcription 
factor and a nuclear receptor which is activated by MUFA 
and PUFA. Inhibiting the function of PPARγ reduces the 
expression of ATP-binding cassette subfamily A member 
1 (ABCA1) and ATP-binding cassette subfamily G mem-
ber 1 (ABCG1), proteins involved in the clearance of cho-
lesterol from macrophages [162, 171]. Also, the stearoyl-
coenzyme A desaturase (SCD) expression, which is SFA 
processing desaturase, protecting from negative effects of 
PA, is inhibited. Inhibition of PPARγ enhances the activ-
ity of IKK and NF-κB [170] and reduces the expression 
of CD36 [170, 172]. However, it should be noted that PA 
increases the expression of CD36 by inducing the ER stress 
[43, 83, 103, 173].

The experiments on macrophages showed that the 
expression of ABCA1 and ABCG1 is increased in the cells 
treated with PA [83, 174]. This is related to the other effect 

caused by PA, in particular, the ER stress and increased 
PPARγ expression. Probably, increased PPARγ expression 
depends on the ER stress activation of the IRE1α =>XBP-
1s pathway [175].

FABP4/aP2 can also decrease the expression of UCP2. 
It is an uncoupling protein that reduces the generation 
of ROS in the mitochondria. However, increasing ROS 
production by PA treatment results in increased expres-
sion of UCP2 [45, 168, 176–178]. Nevertheless, increased 
expression of FABP4/aP2 in macrophages abolishes this 
effect, or even reduces the expression of UCP2, which 
enhances the generation of ROS and induces inflammatory 
responses [166, 178]. The reduced expression of UCP2 is 
due to reduced PPARγ activation [168].

Another protein whose expression in macrophages is 
reduced under the influence of FABP4/aP2 is SIRT3 [166]. 
It is a mitochondrial protein that causes deacetylation of 
superoxide dismutase (SOD)2, which increases the activity 
of this antioxidant enzyme and thus reduces the concentra-
tion of ROS [179]. Reduction in SIRT3 expression results 
in decreased activity of SOD2 which leads to increased 
generation of ROS in the mitochondria.

Fig. 6  Activation of FFA1/
GPR40 receptor. FFA1/GPR40 
is the PA receptor whose 
activation enhances inflamma-
tory reactions in neutrophils 
(a). This receptor causes signal 
transduction through PLC and 
PI3K, which activates IKK 
and consequently NF-κB. This 
transcription factor is involved 
in inflammatory reactions; how-
ever, activation of FFA1/GPR40 
in pancreatic β-cells results in 
the release of insulin (b). Acti-
vation of PLC and PKC causes 
the release of  Ca2+ from the ER 
to the cytoplasm. Higher cyto-
plasmic concentration of  Ca2+ 
leads then to insulin release by 
pancreatic β-cells. However, 
continuous activation of FFA1/
GPR40 results in  Ca2+ depletion 
from ER and consequently the 
ER stress and pancreatic β-cells 
apoptosis
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Free fatty acid receptor 1/G protein‑coupled 
receptor 40 plays a role as a receptor 
for palmitic acid in inflammatory responses

In addition to the presented way of action, PA may also 
activate its own free fatty acid receptor 1 (FFA1)/G 
protein-coupled receptor 40 (GPR40) receptor, which 
enhances inflammatory response (Fig. 6).

The highest expression of FFA1/GPR40 occurs in the 
brain, pancreas and monocytes, least in muscles, liver and 
adipose tissue [180]. Activation of FFA1/GPR40 causes 
signal transduction through the PI3K =>PKB/Akt path-
way, and the PLC =>PKC => p38/ERK–MAPK pathway, 
which causes phosphorylation and degradation of IκBα 
[181]. This leads to the NF-κB activation. As a conse-
quence, the expression of IL-8/C–X–C motif chemokine 
ligand (CXCL)8 and cyclooxygenase-2 (COX-2) increases 
in neutrophils [181] and IL-6 increases in human cardiac 
microvascular endothelial cells [140].

Consequences of the proinflammatory 
action of palmitic acid

Palmitic acid increases proinflammatory cytokine 
production

PA can activate TLR4-mediated proinflammatory signal-
ing pathways through the MyD88-dependent [92, 182] 
and MyD88-independent [88] activation of NF-κB. As 
a consequence, in macrophages and monocytes, there 
is an increased expression of cytokines such as IL-1β 
[85], TNF-α [86, 88], CCL2/monocyte chemoattractant 
protein-1 (MCP-1) [91, 130, 182], CCL4/macrophage 
inflammatory protein 1β (MIP-1β) [183] and increase in 
COX-2 [84, 136] and matrix metallopeptidase 9 (MMP-
9) expression [85, 92]. PA also increases the LPS effect 
on the IL-1β [130], CXCL2 [131] and TNF-α production 
[130, 131]. However, PA can also induce TNF-α expres-
sion independently of TLR4 activation [54].

Nevertheless, in some cells, PA can increase the expres-
sion of proinflammatory cytokines. For example, CCL2/
MCP-1 is secreted in adipocytes [86, 184]. In contrast, in 
TLR4-dependent manner, PA causes the increased expres-
sion of CCL2/MCP-1 and CXCL1 in pancreatic β-cells 
[185]. Also in the experiments on C2C12 myoblasts, PA 
causes TLR4-dependent increase in the IL-6 and TNF-α 
expression [102]. However, this effect is significant only 
after 6 h of incubation with PA. After 24 h, the importance 
of TLR4 is negligible.

In hepatocytes, PA causes IRE1α and JNK MAPK-
dependent increase in the production of extracellular 
vesicles [62, 186]. These extracellular vesicles contain 
sphingosine-1-phosphate (S1P) [62, 187]. Also PA by the 
activation of the mixed lineage kinase 3 (MLK3) =>MAPK 
kinase (MKK)3/6 =>p38 MAPK =>signal transducer and 
activator of transcription 1 (STAT1) pathway increases 
the expression of CXCL10/IP-10 in extracellular vesicles 
[186, 188]. Activation of MLK3 may depend on DAG 
and PKC [189]. Other signaling molecule produced by 
hepatocytes under the influence of PA is tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL) [190]. 
It is a ligand for death receptor 5 (DR5)/TNFRSF10B that 
activates macrophages and NF-κB, which increases the 
production of IL-1β and IL-6 by these cells.

The increased concentration of PA causes the produc-
tion of chemokines by the cells. In particular, hepatocytes 
produce CXCL10/IP-10 [186, 188] and S1P [62, 187], 
adipocytes produce CCL2/MCP-1 [86, 184], and pancre-
atic β-cells the CCL2/MCP-1 [185]. All these chemokines 
cause recruitment of macrophages in the environment of 
these cells [64, 185, 191, 192]. Macrophages begin to form 
so-called crown-like structures in adipose tissue [64, 71, 73] 
and start to produce the proinflammatory cytokines involved 
in inflammatory responses and in insulin resistance [185, 
191–193], such as TNF-α, IL-1β and IL-6 (Fig. 7).

Consequences of high palmitic acid levels 
in the blood: insulin resistance

Under the influence of PA, macrophages accumulated in the 
tissues start to produce proinflammatory cytokines, which 
leads to insulin resistance (Tab. 1) [10]. The most important 
cytokines that cause insulin resistance are TNF-α [193, 194], 
IL-1β [195, 196] and IL-6 [190, 197].

TNF-α causes insulin resistance in different ways. In 
hepatocytes, it causes the activation of JNK–MAPK signal-
ing pathway, which phosphorylates insulin receptor substrate 
(IRS)-1 [198]. Also in myocytes [199] and adipocytes [200], 
there is a higher expression of protein tyrosine phosphatase 
1B (PTP1B), which inhibits the effect of insulin receptor 
(IR). In adipocytes, the TNF-α leads to the increase of sup-
pressor of cytokine signaling 3 (SOCS-3) expression [201]. 
This protein suppresses the action of cytokines, but also 
binds to the IR, disrupting the function of this receptor. 
SOCS-3 may also cause the proteolytic degradation of IRS-1 
[202]. Furthermore, TNF-α causes an IKK2-dependent 
increase in the ribosomal protein S6 kinase (S6K1) expres-
sion in adipocytes and hepatocytes [203]. S6K1 phospho-
rylates IRS-1 causing disruption in IR signal transduction. 
However, IKK itself can also phosphorylate IRS-1, which 
causes insulin resistance in muscles [204].
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Another important cytokine involved in PA-induced 
insulin resistance is IL-1β [195]. This cytokine reduces 
in adipocytes the expression of IRS-1, IRS-2 and glucose 

transporter 4 (GLUT4) [196, 205]. IL-1β is cytotoxic to 
pancreatic β-cells, causing apoptosis of these cells [195, 
206]. However, it should not be forgotten that PA alone acts 
cytotoxically on pancreatic β-cells as well. It activates its 
FFA1/GPR40 receptor, which causes the release of  Ca2+ 
ions from the ER [207]. This is the signal to start releasing 
insulin. However, the chronic activation of FFA1/GPR40 by 
PA causes the ER  Ca2+ depletion, and consequently the ER 
stress and apoptosis of pancreatic β-cells [208].

In turn, IL-6 [77, 190, 197] causes the PKCδ-dependent 
phosphorylation of IRS-1 in muscles, which leads to insulin 
resistance [209]. Nevertheless, this effect is tissue specific. 
In hepatocytes, IL-6 works by inducing the expression of 
SOCS-3 [210].

It should be remembered that the production of proin-
flammatory cytokines by macrophages is only one of the 
possible mechanisms of PA-induced insulin resistance. Very 
important are also signaling pathways which are directly 
induced by PA. In particular, an increased amount of DAG 
causes phosphorylation of IRS-1 by PKCδ [211, 212], PKCε 
[213] and PKCθ [214, 215]. PKCθ and PKCε activate IKK, 
which also phosphorylates IRS-1 [213]. Another way lead-
ing to PA-induced insulin resistance is the increased amount 
of ceramides in the cell. This causes activation of PP2A and 
dephosphorylation of PKB/Akt [19, 216, 217]. Ceramides 
can also activate PKCζ, which binds and phosphorylates 
PKB/Akt [218, 219]. Beside its influence on PKC, PA leads 
to ER stress and activation of JNK–MAPK pathway, which 
phosphorylate IRS-1. This makes PA a very important factor 
contributing to insulin resistance [213, 220, 221].

Conclusion

In obesity, a high concentration of PA causes insulin resist-
ance which leads to diabetes. This state is called “diabesity”. 
There are many known PA-induced insulin resistance mech-
anisms. For instance, PA may induce signaling pathways that 
interfere with IR signal transduction. PA may also indirectly 
lead to insulin resistance by causing inflammatory reactions 
in macrophages. This results in increased proinflammatory 
cytokine production that causes insulin resistance in the cells 
closely located to activated macrophages. It seems that an 
important factor inducing the PA-mediated inflammatory 
response is the activation of TLR2- and TLR4-mediated 
signaling pathway.

However, in the cell, PA is metabolized to saturated 
DAG, ceramides and lysophosphatidylcholine. They can 
cause various effects, leading to inflammatory reactions. 
In particular, a high concentration of PA in macrophages 
leads to ER stress. Also, PKC activation by DAG and cera-
mides strengthens inflammatory reactions. Another way to 
induce inflammatory reactions by PA is to increase the ROS 

Fig. 7  Role of macrophages in PA-induced insulin resistance. 
Healthy tissues contain a very small number of macrophages. How-
ever, under the influence of PA, hepatocytes, pancreatic β-cells and 
adipocytes begin to produce chamokines. This causes recruitment of 
macrophages to the liver, pancreas and adipose tissue. In turn, mac-
rophages in these tissues begin to accumulate PA that causes inflam-
matory reactions. Increased production of proinflammatory cytokines 
results in insulin resistance in cells that are near the activated mac-
rophages

Table 1  Mechanisms of PA-induced insulin resistance caused by the 
most important proinflammatory cytokines produced by macrophages

Cytokines Cellular mechanisms for insulin resistance

IL-1β Reduction of the IRS-1, IRS-2 and GLUT4 expression
Apoptosis of pancreatic β-cells

IL-6 PKCδ-dependent phosphorylation of IRS-1
Increase of SOCS-3 expression

TNF-α JNK–MAPK-dependent phosphorylation of IRS-1
Increase of PTP1B expression
Increase of SOCS-3 expression
IKK2-dependent increase in the S6K1 expression
IKK-dependent phosphorylation of IRS-1
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generation, which contributes to the disruption of the mito-
chondrial function.

Because PA can induce and enhance the inflammatory 
reactions through many mechanisms, it is very difficult to 
interfere with these reactions in people with obesity, mainly 
because of the fact that changes in one path are balanced by 
other proinflammatory pathways. Therefore, the best way 
to reduce the inflammatory response in obese patients is 
to reduce the free blood FA concentration. To do this, you 
should apply the appropriate diet or drugs that cause nor-
malization of lipid metabolism.
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