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In a cold homogeneous plasma, fast mode and transverse mode MHD waves can be independently 
excited. Inhomogeneities couple the modes and allow the excitation of field line resonances by compres- 
sional (fast mode) perturbations of the magnetosphere. Past discussions have focused on inhomogeneities 
in the radial direction (or its equivalent in simpler geometries), ignoring gradients of the Alfv6n velocity 
along the unperturbed field direction. The nature of the coupling and the effectiveness of excitation are 
significantly modified by the presence of such gradients. One essential change is that the compressional 
and transverse field perturbations differ in their structure along the field. This reduces the effectiveness of 
the coupling between the fast (global) mode and standing (localized) field line resonances for identical 
harmonics of the parallel structure but allows different harmonics to couple. A fast mode wave propagat- 
ing in from the outer boundary can, therefore, drive field line resonances in the region exterior to its 
turning point, or effective reflection point, where its amplitude has not yet decayed. 

INTRODUCTION MODEL 

In a cold magnetized plasma, the two low-frequency mag- 
netohydrodynamic modes can be coupled by inhomogeneity. 
In magnetospheric physics the coupling gives rise to field line 
resonance [Chen and Hasegawa, 1974' Southwood, 1974]. 
Fairly simple theories of field line resonance have had con- 
siderable success in describing the large-scale Spatial phase 
and amplitude structure of geomagnetic pulsations, small- 
amplitude fluctuations in the earth's field, in the ultralow- 
frequency band (see, for example, Lanzerotti and Southwood 
[1979]). The mode coupling has been regarded as important 
in other areas of solar terrestrial physics. In solar coronal 
physics, for example, similar theories have been derived to 
explain the heating of the corona (see, for example, Ionson 
[1978], Wentzel [1979], and Rae and Roberts [1981]). In a 
recent paper we have shown that the theoretical problem 
posed by the coupled hydromagnetic equations has a history 
extending back as far as the 1930s. The coUPled equations for 
the hydromagnetic waves are directly paralleled by equations 
,describing the propagation of an electromagnetic wave 
obliquely incident on a stratified unmagnetized plasma [Kivel- 
son and Southwood, 1986, and references therein]. In this guise 
the problem has been studied in the contexts of ionospheric 
physics and laser fusion. 

In this paper we extend the hydromagne•tic box model in- 
troduced by Southwood [1974] for the study of mode coupling 
in an inhomogeneous cold plasma to examine the conse- 
quences of Alfv6n velocity variations along the magnetic field 
direction. As we show, in extreme circumstances the coupling 
of large-scale fast mode signals to field line resonances (local- 
ized transverse modes) is substantially modified in comparison 
with existing models [Southwood, 1974, 1975; Kivelson and 
Southwood, 1985, 1986]. 
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The basic model consists of a cold plasma embedded in a 
uniform magnetic field B in the z direction [Southwood, 1974]. 
The plasma is of finite extent in the z direction with the 
boundaries at z = _+l and in the x direction with boundaries 
at x- c and x- a > c and periodic in y, as illustrated in 
Figure 1. Boundaries are assumed to be weakly absorptive 
unless we specify otherwise. Although the field is required to 
be uniform, we allow the density p to vary in both x and z. 
Note that in previous use of the model, the inhomogeneity has 
been restricted to the x direction [e.g., Kivelson and South- 
wood, 1985-]. The central interest of this paper is in the effect of 
the inhomogeneity in z (along the background field). 

From Faraday's law, the momentum equation, and frozen- 
in fields [e.g., Southwood and Hughes, 1983], the governing 
equations for small-.amplitude hydromagnetic waves in the 
model plasma may be obtained in the form 

((_O2/-/0P/B 2 d- •2/•22)• x -- B- • Ob•/Ox (1) 

(L02/./0p/B2 q- 02/C•22)•y = i,1B-•b z (2) 

bz/B = --O•,,/Ox -- (3) 

where •,, and •y are x and y components of the plasma dis- 
placement vector and bz is the compressional field pertur- 
bation. Here 3. is the wave number in y, and co is the angular 
frequency. The wave field components have been assumed to 
vary as exp (i,1y -icot). If we eliminate •x and •y from (1)-(3), 
we find a fourth-order partial differential equation for bz: 

•2 (•K2'• K 2 -- ,l 2 bz- (4) + -571 
where K 2-- c02[aop/B 2-- c02/A 2 where A(x, z) is the local 
Alfv6n speed. 

Tim UNCOUPLED MODES 

The presence of two differential operators on the left-hand 
side of (4) indicates that it describes two coupled wave modes. 
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Fig. 1. Schematic of the box model coordinate system. 

Note that the coupling appears to be introduced by the depen- 
dence of K 2 on the x coordinate. We can show this explicitly 
by considering the case where there is no dependence on x in 
the unperturbed system. 

By taking the x derivative of (1), multiplying (2) by i2, 
adding the resulting equations, and substituting for be from (3) 
one finds the following equation for b:: 

( (-D2 •2 •2 ) + + b-7z - x2 (5) 
Similarly, one may derive an equation governing the parallel 
vorticity f• by eliminating b• from (1) and (2) and by substitut- 
ing 

(6) 
One finds that the parallel vorticity is governed by 

+ b-7z n=0 (7) 
The existence of the two indei•efident differential equations (5) 
and (7) shows that there ar• two uncoupled hydromagnetic 
modes when the only field inhomogeneity is in the z direction. 
As in the uniform case these are the hst (equation (5)) and 
transverse (equation (7)), modes. The fast (compressional) mode 
is characterized by the field component bz, and the transverse 
mode is characterized by the parallel vorticity f•. As discussed 
for the uniform case by Dungey [1968], for instance, the fast 
mode can propagaie •nergy in any direction relative to the 
field subject to the form of the Alfv6n velocity distribution in 

, 

z. Energy in the transverse mode is strictly field guided as is 
shown by the presence of derivatives only in z in (7). 

QUALITATIVE FEATURES OF THE SOLUTIONS 

Let us now return io the coupled wave case. In some cir- 
cumstances, we,can eliminate the z derivatives in (4). All ear- 
lier work has been done for cases when one may do so. 
Assume for the moment that K 2 is a function of x alone and 

that the boundhry conditions at z = +l are independent of x. 
For this, Kivelson and Southwood [1985, 1986] derive the 
second-order ordinary differential equation 

d2b: dK2/dx dbe + [K2(x)- k 2 - •23b: = 0 (8) 
dx 2 K2(x)- k 2 dx 

where the explicit dependence of the wave field on z (e in: 
+ e -in:) has been suppressed for now. 

Let us examine the derivation Of i8). In order to satisfy the 
equation, the wave field must al•o satisfy a One-dimensional 
eigenvalue equation with the form 

• + k 2 fl/,(x, z) = 0 (9) 
at each value of x. The field b: is thus proportional to fln(x, z), 
the eigenfunction. The parameter k, introduced as the root of 
the eigenvalue, is •the parallel wave number. 

Note that the function fin(x, z) is not an eigenfunction of the 
decoupled transverse mode, but it is closely related to one. 
The transverse mode dispersion relation is satisfied only Where 

K(x) = 
,: 

Condition (10) holds only foi- Particular values of x, i.e., at 
particular magnetic• shells or field line resonances. The vari- 
ation of an idealized decoupled transverse signal ihus exhibits 
singular behavior; it has a delta function behavior in the x 
coordinate direction while its variation along the field is given 
by an eigenfunction of (9), i.e., the transverse mode eigenfunc- 
tion varies as fk(x, z)8(x - Xo) where Xo is a solution of (10). 

Now when (8) is valid, the coupling between transverse and 
fast modes is represented by the occurrence of a Singularity in 
the differential equation at any point where (10) holds. 

Physically, the singularity implies the occurrence 0f energy 
absorption at the resonance. Energy is fed irreversibly into the 
resonance region at a rate that is independent of the local 
dissipation rate. As a consequence, the global part of the 
signal described by (8) is damped [Kivelson and Southwood, 
•98•]. 

In deriging (8) and eliminating the z derivatives that occur 
in (4), we assumed that the field satisfying (8) also satisfies the' 
differential equatiofi (9). The latter requirement implies that 
the z variation of the fast mode matches the amplitude vari- 
ation of an isolated transverse mode signal with the same 
frequency. Note that it does so at all points of the resonant 
magnehc shell. For this to be assured, the solution must be 
separable in x and z. In very simple geometries, separable 
solutions are obtainable, but there is no a priori guarantee of 
their existence, as we show below. Normally, when K 2 is a 
function of both x and z, separation of the fast mode solution 
is not possible, and the coupling process is more subtle. 

Let us consider now what happens if K 2 is regarded as a 
function of x and z. The eigenvalue equation for the transverse 
mode operator, the operator in the first parentheses of (4), 
may then be written in a modified form in which the x, z 
variation of K2 is contained in the Alfvbn velocity, A(x, z), 

A 2(x, z) •z 2 + ror2(x) fir(x, z) = 0 (11) 

In (11), f•r(X, z) is the eigenfunction corresponding to the ei- 
genfrequency Wr(X). The allowed values of mr(X) are quantized 
by the z boundaries as were those of k 2 before. The possible x 
dependence of the e{genvalue is allowable because the differ- 
ential part of the operator depends only on z (one conse- 
quence of the field guidance of the transverse mode). 

As in the previous case, the transverse mode equation can 
be satisfied only on isolated magnetic shells, namely at values 
of x such that 

602 = tor2(x) (12) 

Equation (12) gives the resonant magnetic shells. As before, an 
eigenfunction for the idealized decoupled transverse mode will 
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exist only on a resonant shell and thus has a delta function 
variation in the x direction; i.e., the eigenfunction is of the 
form f•r(x, z)6(x - Xo) where Xo is the resonant shell. 

The uncoupled fast mode equation, derived from the oper- 
ator in the second parentheses in (4), can be written 

(cf. also equation (8)). 
The eigenvalues of (13), to F, are constant and are quantized 

by the combination of x and z boundary conditions. The ei- 
genfunctions will have a well-defined variation in x and z, but 
note that the form of the dependence on z on any particular 
shell differs from that of the transverse mode solution derived 

from (11). To demonstrate this point, we substitute a trans- 
verse mode eigenfunction into the eigenvalue equation (13). 
One finds 

[A2(x, 2)( 3 -- )•2)- •T2(X)+ •F2]•T(X, Z)=0 (14) 
Note how the substitution has not removed all z dependence 
from the operator. One concludes that the dependence on z of 
an eigenfunction for the fast mode equation will not generally 
match that of a transverse mode eigenfunction along any par- 
ticular field line. The consequences of this are best pursued by 
first looking at a simpler density model. 

SOLUTION FOR DENSITY INDEPENDENT OF X 

Let us now return to the problem posed by the box model 
with density variation only along the field in the z direction. 
In this section we shall assume that all boundaries of the box 

are perfectly reflecting. The coupling of modes is completely 
removed if K2(x, z) is independent of x as we discussed earlier. 

The transverse mode is governed by (10). Thus its eigenfunc- 
ticns fir must satisfy the following equation: 

A2(Z) • + •T 2 nT(X , Z) = 0 (15) 
The eigenvalues of (15), mr, are constant, as the system con- 
tains no x dependence; the lack of specific reference to x in the 
transverse operator also implies that the variation with x of 
the transverse mode is arbitrary rather than singular as in the 
previous case. 

The governing equation for the fast mode eigenfunctions is 
(8) and can be written in the form 

It is possible to find separable solutions analogous to those 
found above for both (15) and (16). For the fast mode we may 
assume a sinusoidal variation in x characterized by a wave 
number v. We thus obtain an equation in z alone, 

and again the dependence on the suppressed variables is un- 
derstood. 

The solutions to (17) are analogous in structure to solutions 
to (8), for they are spatially oscillatory in limited regions and 
damp (or grow monotonically) elsewhere. The turning point, 
where the nature of the solutions changes, is given in each case 
by the locus of points for which the coefficient of the term not 

containing any derivatives is zero. In the latter case, the turn- 
ing points of the equation are given by particular values of x. 
In the former case, the condition yields a set of z values such 
that 

(-o2/A2(zv2) = V 2 '4- 12 (18) 

If we suppose that the dense plasma is concentrated near 
z = 0, in rough analogy to the concentration of plasma near 
the equator under some magnetospheric conditions (as, for 
example, near Io in the Jovian magnetosphere), then the solu- 
tions are oscillatory for [z[ < zvz and damp for [z[ > 

Let us assume a particular density model. Suppose that near 
the center of the field lines, ]z] < z o, p = Po and for ]z[ > z o, 
P = P l and that the corresponding Alfv6n speed for each 
region is A o and A1, respectively. For given v, 2, the lowest- 
frequency fast mode solution is that with the slowest variation 
along z. Let us take b z to be zero at the boundaries. As the 
system is symmetric about z = 0, solutions are either even or 
odd functions of z. An even solution would take the form 

b: = C sinh [Ki(/- Zo) ] COS KoZ Izl _< Zo 
(19) 

bz = C sinh [Ki(I- Izl)] cos Koz o Zo < Izl 

where C is an arbitrary amplitude constant. An odd solution 
is antisymmetric about z = 0 and for positive z varies as 

b= - C sinh [•:1(/- Zo)] sin Ko z 0 < z < z o 
(20) 

bz = C sinh [•c1(/- z)] sin Kozo Zo < z 
In both cases 

Ko 2 (-DF2 •2__ V 2 2 22 v 2 tør 2 (21) Ao 2 K1 + A12 
The eigenvalues are determined by the roots of the following 
two equations: 

Ko tan Kozo - •Cl coth [•:1(1- Zo)] (22) 

K0 cot KoZo = -•:• coth [•:1(1- Zo)] (23) 

All eigenfrequencies derived from (22) and (23) depend on 
and )., but that is not important to our discussion here. The 
structure parallel to the field is important, and we should 
briefly discuss it, assuming that v and 2 are fixed. Equation 
(22) always has the smallest root, so the lowest-frequency ei- 
genmode is symmetric about z = 0, i.e., is an even function. A 
sketch of the z variation of b= is given in Figure 2. The next 
higher frequency corresponds to an eigenmode of (23), i.e., 
antisymmetric about z -0, and successively higher-frequency 

Compressional Mode for {f-z0}/A•. << z0/A 0 

b,. I' 

-g -z0 z0 
Fig. 2. The parallel magnetic perturbation for the fundamental 

harmonic of the structure along the background magnetic field in the 
box model of an inhomogeneous plasma with density Po for [z[ < Zo 
and density p• << Po for [z[ > Zo. The perturbation field is plotted 
versus distance along the field line between boundaries at k I. The 
case illustrated corresponds to the limit of •(I - Zo) >> 1 discussed in 
the text. 
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Transverse Mode for {t'-Zo}/A• >> zo/Ao 

-f -Zo 0 Zo /' 
z 

Fig. 3. The plasma displacement for the first three harmonics of 
the structure along the background magnetic field in the box model 
with density distribution as in Figure 2. The case illustrated corre- 
sponds to the limit of (l o - z)/A 1 >> zola o. 

solutions continue to alternate between even and odd sym- 
metry. At some point the frequency will be high enough that 
the variation in the low-density region will become sinusoidal 
instead of hyperbolic. 

In general, (22) and (23) are transcendental, but there is one 
interesting limit. If •c•(l - Zo) >> 1, the wave amplitude is essen- 
tially confined to the region ]z] < z o. For fixed v and ,• the 
lowest eigenfrequency is given by 

Koz o • re/2 

that is, 

tot 2 <• o [4Zo 2 + + (24) 
and the inequality is weak provided Zo/l is of order unity. 

Now let us return to consider the transverse mode described 

by (15). Let us assume that the wave field in the equation is a 
component of the plasma displacement and that it is zero at 
the boundaries. The solutions of (15) can now be found and 
can also be classified by their odd or even symmetry with 
respect to z = 0. A solution with even symmetry takes the 
form 

sin [to(/- Zo)/A•] cos (toz/Ao) 

sin [to(/- Izl)/A•] cos (tozo/Ao) 

Izl Zo 
(25) 

Zo < Izl 

The odd mode is antisymmetric with respect to z = 0 and for 
z > 0 takes the form 

sin [to(/- Zo)/A•] sin (toz/Ao) 

sin [to(/- z)/A•] sin (tozo/Ao) 

O <_z_< z o 
(26) 

Zo<Z 

The eigenfrequencies are given by the solutions of the follow- 
ing two equations: 

Ao-• tan (torzo/Ao) = A•- • cot [tot(/- Zo)/A•] (27) 

Ao - • cot (torZo/Ao) = - A • - • cot [tor(l - Zo)/A •] (28) 

Equations (27) and (28) correspond to even (symmetric in z) 
modes and odd (antisymmetric in z), respectively. As with the 
fast mode, the symmetric case (27) yields the lowest eigenfre- 
quency, i.e., characterizes the fundamental. Unlike the fast 
mode case, the eigenfrequencies are not affected by the signal 
variation across the field. 

Two extreme cases merit consideration. The limits are 

(1- Zo)/A• much greater than or much less than zo/Ao and 
correspond to the Alfv6n travel time being much larger inside 
or outside the high-density region. Sketches of the eigenfunc- 
tions are shown in Figures 3 and 4. 

Figure 3 shows what occurs if (l- Zo)/A • >> zo/Ao. The am- 
plitude of the displacement changes little in the central region, 
and the frequencies of the lowest harmonic structures along 
the field are determined by the field line length 21. In the 
opposite extreme, (l- Zo)/A • << zo/A o, the scale of the high- 
density region, Zo, determines the eigenfrequency structure, 
and the mode is more effectively confined to the high-density 
part of the flux tube. In this case, sketches are shown of the 
transverse field component as well as the plasma displacement. 

COUPLED MODE SOLUTIONS 

Let us now return to consider (4). We shall assume that 
there are strong gradients in density parallel to the field at 
some point on each flux tube. Later when we specialize, we 
will return to a model similar to that in the previous section. 
The parallel density gradients preclude us from using the ap- 
proach outlined for (8). 

Let G(x, z; z') be the Green's function for the transverse 
mode operator in (11). Because the operator is self-adjoint, its 
eigenfunctions form a complete set for functions satisfying the 
boundary conditions imposed at the z boundaries. As a result 
the Green's function can be expressed formally in terms of a 
series of the normalized eigenfunctions, flri(x, z), with eigen- 
values toTi as 

flri(x, z)flri(x, z') (29) (;(x, z; z') = tø i • toTi 

Transverse Mode for {g-Zo}/Ax << zo/Ao 

/ •;:' "•' '• '•i n=l 
-f -z o 0 z o f 

Fig. 4. The plasma displacement (solid curves) and the transverse 
magnetic perturbation field (dashed curves) for the first th/ee harmon- 
ics of the transverse mode as in Figure 3. The case illustrated corre- 
sponds to the limit of (l- Zo)/A 1 << zo/A o. 
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Replacing z by z' in (4), we multiply it by G(x, z; z') and 
integrate the resulting expression with respect to z' over the 
length of the flux tubes. We thus obtain the following formal 
inversion of the transverse operator in (4); 

• • ] A 

OK 2 I t 63bz(x, z') dz' G(x, z' z') + boundary terms (30) 

Now consider the term involving the Green's function. It can 
be written 

63I( 2 f•ri(X, 63X 
ab•(x, z') 

f•ri(X, 2) •/ 032 2(X) f•ri ß • 03Ti (31) 
Although the summation is over all eigenvalues, near any field 
line such that 032 _ 03rn2(X), the nth term will dominate unless 
the bracket, (tim 163bz/63x), vanishes. 

Formally, one should be able to write 

bz = • fir,(x, Z)(fiT, I bz) (32) 
i 

Near the resonant shell, flT,(X , Z) will vary smoothly with x. 
We thus can approximate it by its value on the resonant shell. 
By extracting from (30) only those terms varying as flr,(x, z), 
we obtain a differential equation for the nth coefficient in the 
series (32): 

032 2(X ) • 03Tn 

A'-(x, z) 

(33) 

where the small boundary terms have been omitted. Near the 
resonance the second term on the left side of the equation may 
be dropped. If, in addition, A 2 is a separable function of x and 
z, the z dependence disappears, and the equation has the same 
form as (4) near its resonant point, K 2 = k 2. 

The solutions of (4) near the singularity have been discussed 
by several authors [Kivelson and Southwood, 1986, and refer- 
ences therein]. The compressional field perturbation b z re- 
mains finite at the singular point, but it is nonanalytic, and its 
second derivative is discontinuous. 

Let us now return to (2). Near the resonance, bz is finite, and 
thus the amplitude of the plasma displacement, •yn, of the nth 
harmonic is approximately given by the formal solution 

B b z,(x,o,)flr,(x,o,, z) 
gY" = •oo i2 [032 __ 03Tn2(X)]•O(Xron) (34) 

with 

bzn = (f•Tn(Xton, z) l bz(x,on, z)) (35) 

where x,o n satisfies 032.__ 03Tn2(Xton). The displacement •,,n will 
vary logarithmically with x near the resonance [Kivelson and 
Southwood, 1986], and a formal solution can be found by 
using (34) in (3} and noting that in the latter equation the term 
in bz is negligible near the singularity. 

There is an overt similarity between the form of the solu- 
tions of (8) and those given in 03) and (34}. Note, however, 
that the solutions given in (33) and 04) are approximate solu- 

tions to the fully coupled equation (4). They represent the 
dominant resonant terms near the shell where the compres- 
sional global mode frequency matches one of the local eigen- 
frequencies of the transverse mode. In different regions, differ- 
ent harmonics of the transverse mode can match the global 
mode frequency. A given global mode with a fixed frequency 
may match the fundamental transverse mode (field line reso- 
nance) frequency in the highest-density regions and then 
match successive harmonics of that frequency as one moves to 
larger values of x. Let us now explore the consequences of 
such coupling further. 

DISCUSSION OF THE COUPLED SOLUTION 

The formal approach of the preceding section should not be 
allowed to hide some simple conclusions. An important new 
effect has emerged. In the case where there is significant inho- 
mogeneity along the magnetic field, a fast mode signal at a 
particular frequency with a given structure along the magnetic 
field can generally excite multiple transverse mode field line 
resonances. All will have a common frequency 03 but will cor- 
respond to different harmonics of structure parallel to the 
field. In a system in which the density varies monotonically 
with x, the fast mode signal will excite the different harmonics 
in well-separated localized regions. However, we should now 
recognize that it will not excite all harmonics in a system that 
is symmetric about the field line equator. The symmetry in z 
of the plasma displacement of the localized mode must be the 
same as that of the compressional component bz (cf. equations 
(2) and (3)). 

Let us now consider a situation akin to that discussed ear- 

lier in which there is a high-density region concentrated 
around z = 0. The bz structure we expect is shown in Figure 2, 
with the amplitude largest in the high-density region. Its fre- 
quency is given by (24). The transverse mode structure de- 
pends on the ratio of Alfv6n travel times for the high- and 
low-density regions. In the case where the Alfv6n travel time is 
largest in the low-density regions, the lowest Alfv•n wave har- 
monics have frequencies controlled by the field line length, 21. 
Now the lowest fast mode frequency is larger than r•Ao/2Z o 
(equation (24)). Unless Zo is of the order of l, we can conclude 
that the frequency matching will be possible only for high 
transverse mode harmonics. One does not expect coupling of 
high harmonics to be very efficient in view of the difference in 
functional form of such harmonics to the fundamental struc- 

ture for b z (Figure 2). 
In contrast, in the case where the Alfv•n travel time is larger 

in the high-density region near z = 0, the frequency of the 
fundamental and first few harmonics is governed by Zo, and if 
we assume that for the fast mode v 2, 2 2 are of the order of 
(r•Ao/2Zo) 2, then it is not unreasonable to expect frequency 
matching with the lower harmonics of the transverse mode at 
some point in the system. In the case of (8), only the funda- 
mental transverse mode resonance can be excited by the fun- 
damental compressional mode, and this occurs on a shell 
where the fast mode is nonpropagating, i.e., field line reso- 
nance occurs beyond the turning point. The fast mode, if it is 
propagating, inevitably has a frequency higher than the local 
fundamental transverse mode frequency. We should thus in- 
quire if one could expect efficient coupling between the fast 
mode fundamental and, say, second or third harmonics of the 
transverse mode which could occur in the region where the 
fast mode propagates. Such coupling could not occur in the 
case where (8) holds. 
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A measure of the strength of the coupling is the size of the 
term in brackets, bzn (cf. equation (35)). 

Comparison of Figures 2 and 4 shows that coupling to the 
n = 2 mode is impossible because of the opposite symmetry 
but coupling to the n = 3 mode could be quite efficient. 

CONCLUSIONS 

In this paper we have investigated the effect on the field line 
resonance problem of gradients in Alfv/•n speed parallel to the 
background field. Even in the hydromagnetic box model, the 
general governing equation is a partial differential equation of 
fourth order. By dint of examining special density distri- 
butions, we have shown that the field line resonance phenome- 
non is still expected to occur as in the case where the gradients 
are solely across the field. One essential change is that the 
compressional and transverse field perturbations differ in their 
structure along the field. This reduces the effectiveness of the 
coupling between the fast (global) mode and standing (local- 
ized) field line resonances for identical harmonics of the paral- 
lel structure but allows different harmonics to couple. A fast 
mode wave propagating in from the outer boundary can, 
therefor e' drive field line resonances in the region exterior to 
its turning point, or effective reflection point, where its ampli- 
tude has not yet decayed. 

We have particularly emphasized the effectiveness of cou- 
pling of the fast mode to the third harmonic Alfv•n mode in a 
model where a high-density region is confined near the center 
of the field line. This case is potentially applicable to hy- 
dromagnetic wave structures in the Jovian magnetosphere 
where the centrifugal distortion of the density distribution 
creates a high-density zone about the field line equator. 

The relevance of the extreme density configurations we have 
invoked here to the terrestrial magnetosphere is less apparent. 
However, the principles we have outlined surely apply to the 
inhomogeneous terrestrial system and may be useful con- 
ceptually in attacking the full coupled-mode problem in a 
dipole background field. Many dayside compressional waves 
in the terrestrial magnetosphere appear consistent with strong 
localization near the magnetic equator [e.g., Barfield and Lin, 
1983; Nagano and Araki, 1983; Engebretson et al., 1986], as we 
would expect if the low-latitude plasma density is high. Fur- 
ther work is needed to test the applicability of our conclusions 
to the observed wave properties, but it is already clear that it 
will be important to organize the wave data not only by mag- 
netic shell values but also by magnetic latitude. 
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