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Abstract
Pentamidine is a small molecule inhibitor of the Ca2+ binding protein S100B and disrupts the S100B-
p53 protein-protein interaction; this is thought to restore wild type p53 tumour suppressor function
in melanoma. Additional anti-cancer effects may be the result of inhibition of PRL family
phosphatases.

In this study we have used a standardised ATP Tumour Chemosensitivity Assay (ATP-TCA) to
investigate the effect of pentamidine on cells derived from 18 skin melanoma samples, and 1 uveal
melanoma sample. The cells were tested at six concentrations from which the IC50 and IC90 were
calculated. To allow comparison between samples, an IndexSUM was calculated based on percentage
tumour growth inhibition at each concentration.

Of the skin melanoma samples tested, 78% exhibited an IndexSUM<300 indicating strong inhibition.
The median IndexSUM of 237 also indicates strong inhibition. The median IC90 was 79.5% of the
test drug concentration (30.2 μM) consistent with a strong response at a clinically achievable drug
concentration. The uveal melanoma sample exhibited and IndexSUM=333, indicating moderate
inhibition, and 86% inhibition at test drug concentration (30.2 μM).

These results support the prospect of a therapeutic use for pentamidine in melanoma, and a phase II
clinical trial is in progress.
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Introduction
1,5-Bis(4-amidinophenoxy)pentane (Pentamidine) is an aromatic diamidine
pharmacologically active as an antiprotazoal agent. It is used in the treatment and prevention
of Pneumocystis carinii pneumonia (PCP), particularly in patients with HIV infection, and in
the treatment of trypanosomiasis and visceral leishmaniasis. Pentamidine has recently been
highlighted as a potential anti-cancer drug, particularly in the context of melanoma where it is
thought to inhibit the S100B-p53 protein-protein interaction [1,2].

S100B is a highly conserved 21.5kDa homodimer belonging to the Ca2+-binding EF-hand
motif superfamily, structurally related to other Ca2+ binding proteins such as calmodulin and
troponin C [3,4]. S100B interacts with p53 at its C terminus in a Ca2+ dependent manner and
binds through hydrophobic interactions with exposed residues, and salt bridges [2]. In addition
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to this interaction, the C terminus of p53 has been demonstrated to be a substrate of protein
kinase C [5,6]. These findings serve to link p53 activity to calcium signaling. It is thought that
S100B inhibits the transcriptional activity of p53 by inhibiting tetramerisation and
phosphorylation of the C terminus by PKC [7,8]. p53 has long been recognized as a vital
transcriptional activator of many genes involved in apoptosis and cell cycle control;
stabilization and activation of this protein (by tetramerisation and modifications such as C
terminus phosphorylation) halts inappropriate growth and cell cycling; a tumour suppressor
function [9].

Pentamidine has been identified as a molecule that binds to the p53 binding site on S100B, and
models of pentamidine bound to S100B have been produced [2,12–14]. Pentamidine may
therefore act to prevent S100B-p53 binding and prevent loss of tetramerisation (stabilization)
and C terminus phosphorylation caused by this protein-protein interaction.

High levels of S100B are associated with melanoma and are commonly used in diagnosis by
immunohistochemistry [7,10,11]. Lin et al. [1] have demonstrated a direct relationship between
levels of p53 and S100B protein in 6 melanoma cell lines (LOX-IM, UACC-62, SK-MEL-5,
UACC-2571, C8146A, Malme-3M) with a wild type p53 genotype, where a high S100B level
is directly related to a low level of p53, and a low level of S100B is directly related to a high
level of p53 as measured by western blot [1]. Furthermore these authors develop a physiological
theory of S100B, suggesting that p53 binds the S100B promoter at levels above which are
required for most p53 transcriptional targets, and the generation of S100B acts as a negative
feedback on p53, in a functionally similar manner to hdm2 [1,7].

There is some evidence that pentamidine may also exert its anticancer effects by acting as an
inhibitor of phosphatase of regenerating liver (PRL) family phosphatases whose biological
functions are poorly understood, but which are overexpressed in many cancers [15]. Pathak et
al. report Pentamidine inhibits all three PRLs in vitro and exhibits an inhibitory effect against
WM9 human melanoma cell line xenografts in nude mice [15,16]. Wang et al. found high levels
of PRL-1 expression in five of six melanoma cell lines studied by quantitative RT-PCR [17].

However, all of the in vitro and xenograft data are based on cell lines, which are highly passaged
and adapted to the cell culture environment, resulting in high growth rates and greater
sensitivity to chemotherapeutic agents [18,19]. The use of tumour-derived cells or low passage
number cell lines can offset this disadvantage, as we have previously shown in ovarian cancer
[18] and in melanoma [Fernando et al. unpublished]. We therefore took the opportunity to
study the activity of pentamidine against human tumour-derived melanoma cells in vitro using
the ATP-TCA [20].

Materials and Methods
Tumours

A total of eighteen metastatic skin melanoma samples (10 males, 8 females), and one uveal
melanoma sample (female) were tested in the study. These samples were obtained at debulking
surgery for regional lymph node metastasis. The individual tumours are described in Table 1.
Only one patient had received previous chemotherapy (Temozolomide). In each case, only
tumour material not required for diagnosis was used in the ATP-TCA. Individual patient
consent was obtained for all samples and permission for tissue use granted by the local ethics
committee.

ATP-TCA (Tumour Chemosensitivity Assay)
The ATP-TCA assay was performed as previously described [20,21]. Cells were obtained by
enzymatic dissociation of solid tumour tissue by collagenase (Sigma, C8051). These cells were
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diluted in serum-free complete assay medium (CAM; available from DCS Innovative
Diagnostik Systeme, Hamberg, Germany) and plated in 96 well polypropylene plates (Corning
Life Sciences, High Wycombe, UK) at 20000 cells per well.

Pentamidine was added in triplicate to wells at serial dilutions of 200%, 100%, 50%, 25%,
12.5%, 6.25% Test Drug Concentration (TDC). For Pentamidine the TDC was set at 37.96
μM based on previous in vitro experiments defining the inhibition of S100B-p53 interaction
[2]. Each plate included two controls: a medium only row (MO) which contained no drug, and
a row to which a maximum inhibitor (MI: available from DCS Innovative Diagnostik Systeme)
was added, killing all cells present.

Cells were incubated for six days at 37 °C in 5% CO2. After the incubation period, cells were
lysed by the addition of a cell extraction reagent (available from DCS Innovative Diagnostik
Systeme). An aliquot of lysate (0.05 ml) from each well was added to the corresponding well
of a white 96 well microplate (Thermo Life Sciences, Basingstoke, UK), to which 0.05 ml
Luciferin-luciferase counting reagent (D-luciferin and recombinant luciferase (R&D systems
Abingdon, UK)) was then added. The light output corresponding to the level of ATP present
was measured using a luminometer (MPLX, Berthold Diagnostic Systems, Hamberg,
Germany). The light output data was transferred to a spreadsheet and the % inhibition at each
concentration was calculated using the equation: 1- (test-MI)/(MO-MI).

To compare results between tumours, a simple logarithmic sum index (Indexsum) was
calculated by summing the % inhibition at each of the six % TDC used and subtracting this
from 600: Index = 600-SUM[%Inhibition6.25, 12.5…200]. Total inhibition across all
concentrations produces an IndexSUM=0, while no inhibition produces an IndexSUM=600.

Pentamidine
The Pentamidine (Pentamidine Isethionate salt) used in the ATP-TCA assay was sourced from
Sigma Aldrich (PO547). The drug was dissolved in DMSO at 0.18 g/μl, and stock aliquots
stored at −20 °C. The stock was diluted in CAM for testing in the ATP-TCA at six
concentrations ranging from 6.25% TDC (2.37 μM) to 200% TDC (75.92 μM)

Data Analysis
The data for the 19 samples was input to an Access database (Microsoft) and transferred to
Excel (Microsoft) for further analysis. The median % inhibition and interquartile range was
calculated at each % TDC. The % TDC was converted to μM concentrations and a
Concentration-Response curve plotted using the natural logarithmic scale produced by serial
drug dilution. The IC50 and IC90 for Pentamidine in each tumour sample were calculated by
the trapezoidal rule.

Results
Pentamidine exhibited strong inhibition in all of the melanoma tumour samples tested, though
with some heterogeneity between samples and less activity than reported in cell lines. There
was increasing inhibition with increasing drug concentration (Fig 1). In all, 50% of the skin
melanoma samples tested exhibited greater than 95% inhibition at 100% TDC (37.96 μM)
while 22% (4/18) exhibited greater than 95% inhibition at 50% TDC (11.25 μM). Pentamidine
exhibited increasing inhibition of the uveal melanoma sample at increasing concentrations, and
86% inhibition at 100% TDC (37.96 μM). There was heterogeneity of response (shown in fig
2). Heterogeneity of response to single agents has been observed previously in melanoma
[22], and was expected in this study. Indexsum<300 corresponding to 50% inhibition across
the range of concentrations tested is a useful way to compare samples, and 78% (14/18) of the
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skin melanoma samples exhibited an Indexsum<300 indicating strong inhibition (Fig 2). The
median Indexsum=237, and the median IC90 of 79.5% TDC (30.2 μM) also demonstrate a
strong response in skin melanoma samples. However a considerable range of IC90 values
(11.0–55.4 μM) was observed (Fig 3). The uveal melanoma sample exhibited an
IndexSUM=333 indicating moderate inhibition (Fig 2) and an IC90 of 132% TDC (30.2 μM)
(Fig 3).

Discussion
Several studies have linked pentamidine to anti-cancer effects in melanoma [1,2,7,14,16],
however these effects have been observed in cell lines whose characteristics are not directly
comparable to the original tissue [18]. This study investigated the effects of pentamidine on
tumour-derived melanoma cells in the ATP-TCA, and as a result gives a more accurate
indication of the potential effect of pentamidine on melanoma in vivo than can be achieved
with cell lines. Despite heterogeneity of response, the median Indexsum remained low (<300),
and at high concentrations (100% TDC) the interquartile range of inhibition was low (fig 2),
showing a decreased heterogeneity of response at higher concentrations and considerable
pentamidine activity at the concentrations measured.

The results of this study show pentamidine to be active against melanoma over a range of
concentrations which are probably just clinically attainable. It has been shown that in patients
with leishmaniasis, a peak plasma concentration (Cmax) on day 7 of 751 nmol/L is achievable
(AUC: 6,738 nmol/h/L), based on a dose of 3–9 mg/kg/day given by IV infusion over 4 hours
once daily [23]. Others have shown higher values within 8 hours of administation. In
trypanosomiasis patients, given a 2 hour IV infusion of 3.0 to 4.8 mg/kg, Cmax was noted to
be 713 – 2,461 nmol/L (median 923 nmol/L) [24]. Other studies show similar figures for both
Cmax and AUC [25,26]. Metabolism is by cytochrome P450 and excretion is mainly via the
kidney [24]. This compares with our data showing IC90 values of 11.0 – 55.4 μM, suggesting
that the concentrations observed to be active could be achieved in patients. However, little
protein is present in CAM, and pentamidine is 70% protein bound in plasma. Much depends
on the degree to which pentamidine is taken up by tumour tissue, and this is unknown.

There may be several mechanisms by which pentamidine exerts its anticancer effects: The
binding of pentamidine to S100B has been rigorously established [1,2,14] and it is likely that
pentamidine restores wild type p53 tumour suppressor function. A second potential
mechanism, inhibition of PRL family phosphatases, may halt cell cycle progression; PRL-1
has been shown to be required for normal cell cycle progression [17], and Lee et al. [27] report
that when used in conjunction with chlorpromazine, pentamidine has a synergistic effect in
halting mitosis in tumours. Both mechanisms likely play a role in tumour suppression, and
further mechanistic studies must be conducted to conclude which is the most important, and
which can be best targeted. Both of these targets are involved in cell cycle progression, however
given the extremely important role of p53 as an upstream regulator of the cell cycle, this target
is likely to be the most significant.

This study shows pentamidine to be active in vitro against tumour derived melanoma cells and
supports the prospect of its future therapeutic use in patients with metastatic melanoma, though
the concentration required is only just clinically achievable. Its frequent and serious side
effects, particularly renal and pancreatic damage are a concern [28, 39, 30], but are no worse
and probably better than many anticancer agents or combinations in use for melanoma. They
may be ameliorated by careful scheduling [31]. A phase II trial is being conducted investigating
the effect of pentamidine against melanoma with wild type p53 and detectable S100B in human
participants with relapsed or refractory melanoma (www.clinicaltrials.gov Identifier:
NCT00729807).
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Figure 1.
Median percentage inhibition at increasing pentamidine concentrations, with interquartile
range, in skin melanoma samples n=18.
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Figure 2.
IndexSUM of individual samples.
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Figure 3.
IC90 for individual samples
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