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The Effect of Pressure on the

Mechanical Properties of Polymers

R. W. FILLERS* and N. W. TSCHOEGL, Division of Chemistry

and Chemical Engineering, California Institute of Technology, Pasa

dena, California 91125

Synopsis

Stress relaxation measurements were made as a function of temperature and

hydrostatic pressure on two lightly filled elastomers (Hypalon 40 and Viton B),

one highly filled elastomer (Neoprene WB), and on an EPDM rubber. The

latter was not piezorheologioally simple. The lightly filled elastomers showed

piezorheologically simple behavior, i.e. their response curves under different

hydrostatic pressures could be superposed empirically by a simple horizontal

shift along the logarithmic axis. The filled elastomer was piezorheologically

simple only in the rubbery region and in the beginning of the transition region.

The dependence of the empirical shift distances, log ap , on P could not be de

scribed by either the Ferry-Stratton or the Bueche-O'Reilly equation. By con

sidering the bulk modulus to be linearly related to pressure, a new equation has

been developed for log ar,r which describes the pressure dependence well and

contains the WLF equation as a limiting case. Published data on the response of

poly(vinyl chloride) under superposed hydrostatic pressure are shown to obey

the new equation also.

The theoretical importance of the new equation lies in the fact that com

bination of the usual isobaric measurements at atmospheric pressure as function

of temperature with isothermal measurements as function of pressure allows, in

principle, all the molecular parameters required by the free volume theory to be

determined unambiguously.

INTRODUCTION

While the effect of temperature on the mechanical properties of

amorphous solid polymers is fairly well understood, relatively little

information is available on the effect of pressure. It is well estab-
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lished that the viscosity of simple liquids increases with the applica

tion of a hydrostatic pressure.': 2 Tensile measurements on elasto

mers by Patterson 3 under superposed hydrostatic pressure clearly

showed that the effect of increasing pressure on Young's modulus

was similar to the effect of decreasing temperature, i.e., glass-like

behavior is encountered above a transition pressure Pg (more accu

rately a transition interval characterized by Pg). The existence of a

pressure transition in polymers has been discussed by various au

thors 4-
6 and now appears to be universally accepted,

The pressure dependence of the mechanical response has been

predicted theoretically on the basis of the free volume approach by

Ferry and Stratton? who derived the pressure analog of the well

known WLF equations:" in the form

I
(B/2.303jo) (P - Po)

og ap = ,
fO/K! - (P - Po)

(1)

where a» is the ratio of the relaxation times at pressure P to the

relaxation times at a reference pressure Pc; B is a constant assumed

to be of the order of unity; fa is the fractional free volume at the

reference pressure; and K! is the isothermal compressibility of the

free volume. Other investigatorst-!" have proposed the equation

log ap = C(P - Po), (2)

where C is a constant. Neither equation has so far been subject to

extensive mechanical testing on solid polymers.

Zosel" made shear stress relaxation measurements in a torsion

pendulum to study the effect of superposed hydrostatic pressures up

to 1,000 atmospheres on the mechanical properties of poly(vinyl

chloride). His results could not be described satisfactorily by either

eq. (1) or eq. (2).

Other investigations have also utilized the torsion pendulum to

study the effect of pressure on the isochronal shear modulus and loss

tangent of a variety of polymers, including elastomcrs.P-P Stress

relaxation and creep measurements on polyethylene have also been

carried outl 4 at pressures up to 2 kbar. Again, these measurements

have not been extensive enough to allow testing of eqs. (1) and (2).

O'Reilly found'? that eq. (2) described the pressure dependence of

his dielectric relaxation data on poly(vinyl acetate). However,
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Sasabe" concluded from dielectric measurements on several polymers

that eq. (2) fails at higher pressures.

The complex bulk modulus (or the complex bulk compliance) of

several polymers, including some elastomers, has been the subject of

important investigations by McKinney, Belcher, and Marvin.w"

In the work reported here we are concerned with the effect of pressure

on the (time-dependent) shear or tensile modulus. Thus the work

of Marvin and collaborators, as well as the many investigations con

cerned with the establishment of PVT relations,18-27 is not of direct

interest to us here. The same applies to studies of the ultimate

behavior of polymers which have recently been reviewed by Rad

cliffe.28 In general, these investigations have not been concerned

with the time-dependent properties, but specifically with the influ

ence of pressure on the elastic response and the yield and fracture

criteria.

This paper reports on stress relaxation measurements in simple

tension performed under superposed hydrostatic pressures up to

5 kbar and temperatures generally ranging between - 25° and 44°C

on four elastomers: Hypalon 40®, Viton B®, Neoprene WB®, and

EPDM. These materials were chosen because their pressure tran

sitions lay within the useful pressure range of the apparatus. The

measurements led to the development of a time-temperature-pressure

superposition principle expressible in the form of a new equation

which includes the WLF equation as a limiting case. It is also shown

that combination of the usual isobaric measurements at atmospheric

pressure as function of temperature with isothermal measurements

as function of pressure allows the unambiguous determination of B

and !o, and of the expansivity and the compressibility parameters of

the free volume.

EXPERIMENTAL

Materials

Hypalon 40, Viton B, and Neoprene WB were graciously supplied

by E. I. du Pont de Nemours and Co., Inc. Their compounding

recipes are reported in Appendix I; a more complete discussion of

these materials is given by Stevenson. 29 Briefly, Hypalon 40, a

® Trademark of E. 1. du Pont de Nemours Co., Inc.
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chlorosulfonated polyethylene, is lightly filled with 4 phr SRF car

bon black. Viton B, a copolymer of vinylidene fluoride and hexa

fluoropropylene, is also lightly filled with 20 phr MT carbon black.

The Neoprene WB is a polychloroprene rubber which contains 100 phr

MT carbon black and 25 phr hard clay, and it was included to ob

tain the response of a highly filled system. The EPDM elastomer

was prepared by curing 100 parts D.S. Rubber Co. Royalene 301T®

with a 3 phr Di-cup R®. Royalene 301T is an ethylene-propylene

copolymer containing a controlled amount of non-conjugated diene.

Di-cup R is a 98-99% active dicumyl peroxide manufactured by

Hercules, Inc.

Specimens were cut with a knife edge mill blade. Their dimen

sions were 14.0 cm (5.5 inch) long, 0.20 cm (0.080 inch) thick, and

ranged from 0.20 to 0.95 cm (0.080 to 0.375 inch) in width. If-shaped

copper clips were cemented over approximately 0.64 cm (0.25 inch)

at each end.

Apparatus

On the basis of the work of Patterson 3 the apparatus was designed

to measure stress relaxation up to 8 kbar to enable measurements to

be made on natural rubber and on styrene-butadiene rubber. Un

fortunately, the trigger mechanism would not operate reliably above

approximately 5 kbar. To avoid a time consuming major redesign

of the relaxometer, the work was switched to the four elastomers

listed in the preceding section.

The experimental arrangement is shown in Figure 1 below. PI in

dicates a thermostat containing the pressure vessel which houses the

stress relaxometer. The pressure is applied using a low pressure

hand pump (Hi) for the initial compression and a high pressure hand

pump (H 2) for the final compression. A Bourdon tube gage (G)

monitors the pressure on the low pressure side of the system. A

reservoir (R 2) contains a supply of hydraulic fluid for the pumps.

A 10: 1 intensifier (I) yields a pressure boost of approximately 9: 1

after accounting for frictional losses. The high pressure side of the

system must be primed to about 350 bar before using the intensifier.

The 1: 1 separator (S) allows the system to be primed without con

tamination of the silicone oil used as pressurizing fluid in the high

pressure side of the system with the hydraulic fluid used in the low

pressure side. Another reservoir (Ri) contains a supply of the sili-
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Fig. 1. Experimental arrangement.

cone oil. The pressure on the high pressure side is measured by a

high pressure gage (see below) placed into a second high pressure

vessel (P2). A rupture disk (D) functions as a safety valve.

The pressure vessel is submerged in a continuously stirred silicone

fluid bath whose temperature is controlled within ±.02°C by a pro

portional controller. A platinum resistance thermometer placed in

side the pressure vessel serves to calibrate the thermallag across its

walls; once determined, the temperature is measured with either a

mercury thermometer or with a differential thermocouple placed in

the bath. The high pressure gage consists of a 64 ohm manganin

coil prepared and seasoned according to Babbs and Scott."? This

coil is maintained at O°C. Its resistance is measured with a Mueller

bridge and a galvanometer. The high pressure measuring system

was calibrated with a Heiss Bourdon tube gage. This arrangement

is estimated to yield an absolute error of 0.1%, with a relative error

of 0.05% between 1 bar and 5 kbar pressure, since the manganin

coil is much more sensitive than the Bourdon tube gage.

The stress relaxometer and the pressure vessel in which it is installed

are shown in Figure 2. The stress relaxometer (Fig. 2a) consists of

two spring-loaded concentric cylinders (1 and 0) between which the

specimen (E) is held. A removable snap-ring (SR) allows springs

of various stiffness to be inserted between the cylinders, depending

upon the force required. A small hole (H) drilled through the copper

strips cemented to the ends of the specimen allows its attachment to

the removable end cap (C). The specimen is then lowered into the
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Fig. 2. Stress relaxometer (a) and pressure vessel (b).

cylinders and attached to the bottom clevis (G) with a screw-pin.

The bottom clevis assembly is attached to the outer cylinder via a

dowel pin (P). The inner cylinder is slotted for this pin, allowing

vertical travel without rotation. Pre-stressing the spring (8) forces

the two cylinders apart until the bottom cap engages the dowel pin.

Spacers of various thickness are inserted in this space to change the

amount of travel, and consequently, the displacement of the speci

men. When the two cylinders are pressed together, a hook machined

on the bottom cap engages the latch (L). The latch is shaped in

such a manner that the mechanism is triggered when the solenoid

(D) is activated. In practice, the proper combination of spring and

spacer is chosen so that the energy of the compressed spring is greater

than the energy required to extend the specimen. When this con

dition is satisfied, the cylinders are extended until the bottom cap of

the inner cylinder engages the dowel pin. The specimen is extended

simultaneously and held fixed throughout the experiment. The (re

laxing) force generated in the specimen by the extension is then

measured via two strain gages incorporated in the lower clevis as

sembly (G). The gages were calibrated at various pressures and

temperatures by replacing the specimen with a coil spring of known

spring constant.
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The pressure vessel (Fig. 2b) consists of a 40.64 cm (16 inch) long

beryllium copper cylinder of 12.7 cm (5 inch) outer and 2.54 cm

(1 inch) inner diameter. The relaxometer (R) is held in position by

the closure plug (CP) which, in turn, is secured by the stainless steel

nut (N). Both vessels use special cone connections (A) for con

necting the vessels to the high pressure line.

The bottom closure plug (CP) contains the electrical leads for the

strain gages and the solenoid. The pressure seal is fashioned ac

cording to Warschauer and Paul. 31 A standard O-ring forms the

initial seal. Expansion of a beveled ring with increasing pressure

forms a seal at the higher pressures. The plug, ring, and cones are

made of beryllium copper. The seals endured about 40 pressuriza

tion cycles after which they had to be routinely rebuilt.

More details of the construction of the apparatus are given else

where. 32

Experimental Procedure and Data Reduction

All experiments were performed after the establishment of equi

librium at each temperature and pressure. The approach to equi

librium was monitored by the strain gage output since lowering the

temperature or increasing the pressure always slightly preloaded the

specimen because of volume contraction. Most experiments were

performed twice at each temperature and pressure, using different

extensions to check the linearity of the response.

The experimentally measured quantities were the initial length,

Lo, of the specimen, its stretched length, L, and the output voltage

of the strain gage measuring the time-dependent force, f (t). The

strain, ~ o , was obtained from

to = (L - Lo)/Lo. (3)

The stress, rT(t), was determined by dividing the force by the cross

sectional area of the specimen. Equation (19), which is discussed

in the results section, was used to correct the initial cross-sectional

area of the specimen to the area existing at the experimental tem

perature and pressure, Since the extension of the specimen requires

a finite time, tl, initial portions of the response, covering a time in

terval of about 10t l to 25tl, were discarded.
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The time-dependent tensile moduli at the temperature and pressure

of the experiment, E(t), were obtained from

E(t) = u(t)!€o (4)

and were reduced to the shear moduli at the same temperature and

pressure, G(t), for the reasons and in the manner explained in the

next section. The shear moduli at temperature T and pressure P

were then referred to the values they would have at the reference

temperature To and the reference pressure P«. According to the

theory ofreduced variables.s 33 the modulus in the reference state,R(t),

is obtained from G(t) by

(5)

where p is the density at temperature T and P, and POD is the density

at the reference pressure and temperature. We have applied this

correction although it is questionable whether it should be used at

temperatures at which the material shows transition or glassy be

havior. Because of the relatively small temperature range (at most

70°C) the temperature correction is slight in any case.

We took the effect of pressure into account by considering that

poOlP = V!VOO where V is the volume at temperature T and pressure

P and Voo is the volume in the reference state, and applying the

Murnaghan equation (19) to obtain the volume at pressure P.

Sharda and Tschocgl" ' have recently shown that POD!P should be re

placed by (V !VOO)-~, where l' is a material parameter whose value

is 0.2 for natural rubber. We do not know the value of l' for our

materials. In any case, the difference between V!VOO and (V !VOO)-~

is quite small because V!VOO is close to unity.

Reduction to Shear Relaxation Modulus

The tensile mode was chosen for its experimental simplicity. For

the establishment of a time-temperature-pressure superposition prin

ciple this mode, unfortunately, has theoretical drawbacks. For iso

thermal-isobaric segments of E(I) to superpose by horizontal shifts

along the logarithmic time axis it is necessary that changes in tem

perature and pressure affect all relaxation times in the same manner.

This, however, is a necessary, but not a sufficient condition. In

addition, the effect of temperature and pressure on the modulus at
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any fixed time must be known to allow correction of the isothermal

isobaric segments before shifting.

It is shown in elasticity theory that the tensile modulus, E, is

given in terms of the shear and bulk moduli, C; and K, by

E = 9KG .

3K + C;

Thus the tensile modulus is a combination of the two fundamental

moduli, () and K, which refer to changes in shape and size, respec

tively. In the rubbery region it is reasonable to assume that G «K,
i.e. that the rubber is incompressible. In this case E = 3G and the

temperature and pressure dependence of E wiII be the same as that

of G regardless of the temperature and pressure dependence of K.

In the rubbery region, therefore, E(I) and 3G(t) can be used inter

changeably. This simplification is not available in the transition

and glassy regions. In particular, while the shear relaxation modu

lus, G(t), may be considered to be independent of the pressure, at

least in a first approximation, this is clearly not true of K(t), the

bulk relaxation modulus. It appears preferable, therefore, to base

any investigation of the time-temperature-pressure superposition of

the mechanical properties of a polymer on shear relaxation data.

For this reason our E(t) data at any given temperature, T, and

pressure, P, were converted to G(t) data at the same temperature

and pressure by the use of the equation

G(t) "-' E (t)
- 3[1 - E(t)j9K(T, P)] , (7)

which is discussed in Appendix 11. Equation (7) is not exact. The

cause of this will be discussed later. In eq. (7)

K(T, P) = K*(T) + /CP, (8a)

where le is a material constant presumed to be independent of tem

perature and K*(T) is the bulk modulus at temperature T and zero

pressure. Equation (Sa) expresses the well-established experimental

observation." that the equilibrium bulk modulus is a linear function

of the pressure. The temperature dependence of the zero-pressure

equilibrium modulus may be given with excellent approximation 36. 25

by

K*(T) = K*o exp [-ma*(T - To)], (8b)
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where m is another material constant, a* is the thermal expansivity

at zero pressure, and K*o is the equilibrium bulk modulus at zero

pressure and at the reference temperature To. The values of the

various material constants employed in the conversion from E(t) to

G(t) by eq. (7) are tabulated for the four test materials in Table 1.

Effect of Pressurizing Medium

Dow Corning 200 silicone oil of 5 centistoke viscosity served as

the pressurizing fluid. It is possible that the silicone oil would swell

the specimen (particularly at higher pressures) and that this might

affect the relaxation behavior. We do not know of any way to test

this possibility directly. We obtained reassuring evidence to the

contrary by comparing the weights of natural rubber specimens that

were merely immersed in the silicone oil with those of others that were

subjected to pressures of 7 kbar for several days. The latter were

weighed immediately after they were recovered from the pressure

vessel, before any appreciable diffusion could have taken place.

Analysis of the data showed no statistically significant difference in

weights.

Relaxation measurements were also made in an Instron tester on

specimens treated in a similar way. The measurements were made

at -55° and -60°C, i.e. in the transition region close to the glass

transition temperature of natural rubber where the response is

steepest. There was essentially no difference between the curves

determined on unpressurized and on pressurized specimens. The

largest shift observed corresponded to that caused by a temperature

difference of about 1°C.

RESULTS

The reduced isothermal-isobaric moduli, GR(t), are plotted as func

tions of time, t, in logarithmic coordinates in Figures 3 to 6 for

Hypalon 40 and in Figures 7 to 10 for Viton B. Figures 3 and 7

show data segments obtained under different pressures at 25°C.

Figures 4 and 8, 5 and 9, and 6 and 10, respectively, show data seg

ments obtained at different temperatures at the pressures of 1, 1000,

and 2000 bar, respectively.

Mastercurves were constructed by shifting the isothermal-isobaric

data segments into superposition along the log t axis. Curves (A),
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(B), and (C) in Figure 11 are derived from the segments shown in

Figures 4, 5, and 6. They represent the behavior of Hypalon 40 at

25°C at the pressures of 1, 1000, and 2000 bars, respectively. The

empirical shift distances, log aT.1> log ar .1000, and log aT.2000 as func

tions of the temperature, T, are represented by the circles in the in

sert. Curve (A) is repeated in Figure 12 for comparison with curve

(D) derived from the segments shown in Figure 3. The insert dis

plays the empirical shift distances, log a26.p, employed in constructing

curve (D). Taking the appropriate shift distances from the insert

in Figure 12, curves (A), (B), and (C) may be brought into super

position with each other.

Curves (A) and (D) contain the same information: the time de

pendence of the shear relaxation modulus over 12 decades of time at

25.0°C and 1.0 bar (i.e. atmospheric) pressure. Their coincidence in

the rubbery and in most of the transition region indicates the mate

rial to be piezo- and thermorheologically simple. The slight differ

ence in the glassy region is not surprising. Glasses formed by the

application of pressure are generally found to be denser than those

formed by lowering the temperaturev-" and we expect the denser

glass to display the greater shear modulus.

The data on Viton B are treated analogously. The mastercurves

are displayed on Figures 13 and 14. Curves (A), (B), and (C) are

constructed from the segments shown in Figures 8,9, and 10, respec

tively, and curve (D) from those displayed in Figure 7. The shift

distances are again shown in the inserts. Comparison of Figures 12

and 14 demonstrates that the effect of pressure on Viton B is about

twice that on Hypalon 40.

To effect superposition it was necessary, in some cases, to apply

small vertical shifts in addition to those demanded by eq. (5). These

vertical shifts were required only in the upper transition and glassy

region. We suspect that they reflect, in a manner which is not clear

at this time, both the inadequacy of eq. (5) in these regions and the

consequences of the fact that eq. (7) does not represent the exact

conversion of the tensile to the shear relaxation modulus. These

shifts, which we designate by tJ.Gc, are shown in Figure 15 for Hypalon

40 and in Figure 16 for Viton B. They are small on the logarithmic

scale, never exceeding ±0.24 units.
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Fig. 15. Hypalon 40: vertical shifts, log lJ.Ge , incorporated in data reduction;

arrows indicated onset of glassy behavior.

The vertical shift factors, AGe, are already contained in Figures 3

to 10. For the purposes of these figures, therefore, eq. (5) should

be interpreted as

(9)

The plus sign (+) in these figures indicates the first segment to which

an additional shift, log AGe, was applied. The arrows in the figures

displaying the data segments indicate the pressure or temperature

at which the shift factors, log aT.p, deviate from the solid lines in

the inserts in Figures 11-14. This point, although not the glass

transition, T g , as defined in the classical sense (i.e. by volumetric

measurements), may be thought of as the onset of glassy behavior

and will be referred to here as the inflection temperature, T i . It is

undoubtedly closely related to T g • The data points in Figures 15

and 16 seem to lie on smooth curves displaying maxima in the

vicinity of T i .

It should be noted that the empirical vertical shifts are not com

pletely arbitrary. In the region where the vertical shifts were ap-
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Fig. 16. Viton: vertical shifts, log I!J.Gc, incorporated in data reduction; arrows

indicated onset of glassy behavior.

plied, the curvature of the isothermal-isobaric data segments was

such that both the vertical and the horizontal shifts were unambigu

ous. Furthermore, since two mastercurves are to be constructed,

one from time-temperature superpositioning and a second from time

pressure superpositioning, the shifting procedure must be consistent,

otherwise the two master curves will be different.

The empirical vertical shifts applied to the two materials are quite

different. Those for Hypalon 40 are positive in all cases. Those for

Viton B resulting from reducing the pressure data exhibit a maximum,

whereas the shifts resulting from shifting the temperature data ex

hibit a minimum except at the higher pressures. The time-tempera

ture data at the elevated pressures exhibit hardly any shifts at all.

Thus the vertical shifts appear to be internally consistent.

The measurements on Neoprene WB are displayed in Figure 17.

Data were obtained at different pressures at 25°C only.

Compressibility measurements by Weir," when plotted in terms

of the bulk modulus, and measurements of the tensile modulus by

Patterson," both showed the glass transition in Neoprene to occur at
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approximately 3.6 kbar pressure at 25°0. The relaxation curves in

Figure 17 seem to indicate that 4.6 kbar pressure still has not induced

glassy behavior. However, the initial portions of the curves at the

highest pressures tend to bend over indicating the onset of glassy

response.

The isothermal-isobaric data segments did not superpose well in

the upper transition region. This is seen in the mastercurve shown

in Figure 18. The reason for this partial lack of superposition is not

clear. The shift distances, log a», are again plotted as functions of

the pressure, P, in the insert in Figure 18.

The data on Neoprene WB are interesting because of the high

percentage of filler which this material contains. The behavior of a

highly filled elastomer typically deviates from that of the pure elas

tomer in two major ways: (1) the entire master curve is shifted to

higher moduli and to somewhat longer times; and (2) non-linear

stress-strain behavior is observed at much lower strains. The modu

lus enhancement can be seen by comparing Figure 17 with Figures

12 and 14.

The results on EPDM are given in Figures 19 and 20. Here, no

vertical shift was applied to the segments (b.Gc "'" 0) since the data

would not superpose even in the rubber region. Figure 19 shows

the results of measurements at 25.0°0 as a function of pressure.

The inability to apply time-pressure superposition to the segments

is exhibited by the extreme downward curvature of the ends of the

segments, and is particularly evidenced in segments (1) to (4). The

lack of superposition is again found for the measurements at 1.0 bar

as a function of temperature reported in Figure 20. These segments

display similar behavior to the segments measured as a function of

pressure. In both cases, the relaxation times are affected differently

by either a change in temperature, or a change in pressure. Lack

of time-temperature superposition in EPDM has been noted previ

ously and has been attributed to crystallization. 37 Blockiness could

also contribute.

We remark that, in shifting the usual isobaric temperature seg

ments obtained at atmospheric pressure, one is commonly guided by

the WLF equation derived from data in the transition region because

in the rubbery region the segments are usually too flat to allow un

ambiguous shifting. By contrast, in constructing our master curves

we let ourselves be guided by requiring that the isobaric and the iso-
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thermal master curves coincide in this region It is possible that the

effect of temperature and pressure on entanglements, whose contri

bution would show up in this region, is different. However, in the

absence of any information on this point we followed the course

which seemed most expedient to us.

DISCUSSION

The data presented in the preceding section demonstrate that

Hypalon 40, Viton B, and Neoprene WB (partially) are piezorheo

logically simple materials. In such materials the effect of time and

pressure superpose, i.e.

(10)

where Ti(P) is the ith relaxation time at pressure P, Ti(PO) is the

same relaxation time at the reference pressure Pi; and apo(P) is a

function of P for a given reference pressure. The full symbol is

customarily abbreviated by ap. For a material to be piezorheo

logically simple, eq. (10) must be valid for all relaxation times.

Empirically determined shift distances, log ap, plotted against the

pressure, P, appear to lie on smooth curves as shown in the inserts

in Figures 12, 14, and 18. However, only the shift distances obtained

on Neoprene WB could be moderately well described by eq. (2).

Equation (1) failed to describe any of the results. This equation

was developed by Ferry and Stratton" on the basis of the free volume

approach. The authors assumed the compressibility of the free vol

ume to be independent of pressure. We shall show that the incor

poration of the correct pressure dependence of the compressibility

leads to a new equation which very satisfactorily describes the pres

sure dependence of the mechanical response of Hypalon 40, Viton B,

Neoprene WB, and the published data of Zosel" on poly(vinyl

chloride).

We shall derive the new equation for the general case of combined

temperature and pressure effects. In doing so we will follow the

free volume approach. There is some indication that a better de

scription might be obtained using the excess entropy or excess en

thalpy.15,28-4o The matter does not appear to have been definitely

settled at this time.
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Theory

We consider that the general shift factor, aT.p, can be related to

the steady-flow viscosity, .", at the temperature T and the pressure P

by

aT,p = "'/"'0, (11)

where 1/lJ is the steady-flow viscosity in the reference state. In

principle, the ratio on the right of eq. (11) should be multiplied by

the same factor, ToPoo/Tp, which appeared in eq. (5). This factor,

however, is commonly omitted from consideration."

We assume that the temperature and pressure dependence of the

steady-flow viscosity can be described by the temperature and pres

sure dependence of the free volume through the Doolittle equation, 41

." = A exp (BV ~/VI), (12)

where Vq, and VI are the occupied and free volumes, respectively,

and A and B are unspecified parameters. The sum of Vq, and VI is

the total volume, V. We combine the Doolittle equation with eq.

(11) to obtain

(13)

where j (T, P) is the fractional free volume at temperature T and

pressure P.

j (T, P) = Vt/V "" Vt/V q,. (14)

The second equation on the right follows because VI « Vq,. We

now turn our attention to the effect of temperature and pressure on

the fractional free volume, j (T, P).

Since we are interested in the change in the fractional free volume

with pressure and temperature, we differentiate j to obtain

and then integrate eq. (15), choosing the path shown below:

~ T . P JP ( ?Jj ) fT ( ?Jj )df= - dP+ - dT
To,Po Po oP To To oT p •

(15)

(16)
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As will be shown later, the choice of this path requires that we know

the pressure dependence of the expansivity. Had we chosen the

alternative path, integrating (ofjoT)po from To to T, and (ofjoP)r

from Po to P, we would have to consider the temperature dependence

of the compressibility. There is no difference in principle but the

first path is slightly simpler, particularly since it is not known whether

the parameter k in eq. (8a) is indeed independent of temperature.

We now consider the partial differentials in eq. (16). Since VI =

V - V.., differentiation with respect to temperature at constant

pressure yields

1(0VI) 1(0V) 1(0V.. )
V oT p = V oT p - V ~ p . (17)

We write

01.[ = 01., - 01... ,

where, by the definition of the volume expansivity,

(18)

(19)

01.[, 01." and 01... are the isobaric expansivities of the free volume, the

rubber, and the occupied volume, respectively. Differentiation of

eq. (14) with respect to temperature at constant pressure gives

Neglecting f 01., then leads to

( Of ) 1 (OVI )
aT p ,...., 11 bT p = OI.rCP).

Defining the isothermal compressibility in the usual way as

KT = - !(~)
V oP T'

(20)

(21)

(22)

differentiation of eq. (14) with respect to pressure at constant tem

perature yields

K[ = K, - K.. , (23)
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where "r, Kr , and K", are the compressibilities of the free volume, the

rubber, and the occupied volume, respectively. Differentiating eq.

(14) similarly leads to

(24)

We may now substitute eqs. (21) and (24) into eq. (16) to obtain

f (T, P) - f (To, Po) = - JP K[(T o) dP + i" a[(P) dT, (25)
Po Jro

where K[(To) is the compressibility of the free volume at the reference

temperature, To, and Ci[(P) is the expansivity of the free volume at

the test pressure, P. Using eq. (23), we write the first term on the

right of eq. (25) as

Jp K[(To) dP = h.(P) = JP ",(To) dP - JP K",(To) dP. (26)
~ ~ ~

We will consider the indicated integration further on. For the second

term we have

I T af(P) dT = fp(T) = C'if(P)[T - To]. (27)
To

This term can be integrated immediately because the temperature

dependence of af(P) may be neglected.

Now, using the abbreviation

10 = f (To, Po) (28)

for the fractional free volume at the reference temperature and

pressure, combining eqs. (25), (26), and (27) gives

f (T, P) = fa + fp(To) - ho(P). (29)

Substituting eqs. (28) and (29) into eq. (13) then finally yields

I B [fp(T) - ho(P) ] (30)
og aT,p = - 2.303/0 10 + fp(T) - ho(P) ,

which is our new equation for the shift distance, log ar».
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If we set P = Po, where P is any constant pressure, in eq. (30),

we recover the WLF equation. Setting T = To and assuming that

the compressibilities do not depend on pressure, we obtain

(31)

and regain the Ferry-Stratton equation. If, on the other hand, it is

assumed that the fractional free volume is simply inversely propor

tional to the pressure," i.e. that

f (To, P) = fo - fro(P) = llfo/(P + IT), (32)

where IT (=!l' - Po) is an empirical constant, then we obtain eq.

(2). The difference between eqs. (2) and (30) is that we apply the

inverse pressure dependence to the compressibility, not the free

volume.

To apply eq. (30) we must return to the integrations indicated in

eq, (25). The compressibility is the reciprocal of the bulk modulus.

Hence, by eq. (8a),

1

KT = K*(T) + u-: (33)

Assuming that the pressure dependence of the compressibility of the

occupied volume has the same form as that of the rubber, integration

of eq. (25) yields

1 K*, + krP 1 K*" + k"P
fTo(P) = k,: In K*. + krPo - kq, In K* q, + k"Po' (34)

where K*rand K*" are the bulk moduli of the rubber and the occu

pied volume, respectively, at zero pressure and at the reference tem

perature, To.

The parameters E"; and k; may be obtained from volume-pres

sure measurements on the rubber through a fit 3 4 to Murnaghan's

equation,

_ 0[ K*(T) + kP J-Ilk
V - V K*(T) + /cPo ' '

(35)

where VO is the volume at the reference pressure Po and the tem

perature T. Equation (35) was used successfully by Murnaghan 42

to fit Bridgman's data ' S on various solids and was shown to hold for
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rubbers also. 3 4
•
35 It is obtained by combining eqs. (22) and (33)

into

dP
d In V = - K*(T) + kP (36)

(37)

(38)

and integrating at constant temperature between the limits VO and

Po, and V and P, respectively.

If the compressibility is defined by

~T = - :0 (~~ )T'
combination with eq. (33) and integration yields the Tait equa
tion 34.43,44

V = VO [1 + In (K*t + ktP)-l/ktJ
K", + ktPo .

This equation fits volume-pressure data on rubbers equally well. 34

The quantities K* and K on the one hand, and K", and Kt on the

other, are, of course, different. Values of ho(P) calculated with

either pair differ negligibly, however.

We note that, because of our choice of the path of integration in

eq. (16), KT (and Kq,) are to be taken at the reference temperature.

Hence, eq. (34) remains valid even if k; (and kq,) should depend on

temperature, as long as they were determined at the temperature

chosen as reference.

Equation (31) may be recast in the more convenient form:

log ar,r =
cl[T - To - 8(P)]

C2 + T - To - 8(P) ,
(39a)

Cl = B/2.303jo,

C2 = fo/OIf(P) ,

C3 = l/kTOIf(P) ,

c, = kT / K*r,

C6 = l/k4>OIJCP),

Ce = k4>/K*4>'

(39b)

(40a)

(40b)

(41a)

(41b)

(41c)

(41d)
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At the reference pressure, IJ(P) = 0 and eq. (39a) reduces to the WLF

equation containing only the "temperature parameters" Cl and C2.

Thus, the form of the WLF equation is preserved for isobaric measure

ments at any pressure However, Cl and C2 are functions of pressure

because

I (To, P) = 10 - ho(P) (42)

by eq. (29), and af(P) must also be taken at the test pressure P.

To obtain the pressure dependence of the thermal expansivity at the

reference temperature, we set Po = 0 in eq. (35). This gives

v = V*[l + kP/K*(T)]-IIk, (43)

where V* is the volume at zero pressure and temperature T. We

then differentiate this expression for V with respect to T at constant

pressure, making use of eq. (8b). Provided that k is independent of

temperature, this yields

1 (OV) 1 (OV*)
V oT p = V* oT p

ma*P

K*(T) + kP'
(44)

Using eq. (19) we then obtain the pressure dependence of the volume

expansivity of the rubber at the reference temperature as 36

(15)

where a*r is the expansivity of the rubber at zero pressure. From

eq. (45) we derive an expression for the pressure dependence of the

expansivity of the free volume by again assuming that the pressure

dependence of the occupied volume follows an equation of the same

form as that of the rubber, containing the same parameter m. Thus,

we write

(
mP)

a",(P) = a*", 1 - K*", + k",P . (46)

Blatz has shown 36 that the same m holds for the rubber and the glass.

Hence, our assumption appears reasonable. Using eq. (18) we obtain

ar(P) = a*r (1 - K*rm:krP)

- a*",mP (K*r: krP - K*q, : kq,P) , (47)

which we have cast in this particular form for convenience later on.
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(48)

The free volume interpretation of the "temperature parameters"

Cl and C2 describes them in terms of three unknowns, B, io, and a(P).

The fractional free volume in the reference state can therefore be

obtained from measurements of Cl and C2 at atmospheric pressure

only if it is assumed either that B is unity or that af = ~a = aT - ago

There is no independent experimental evidence for the first assump

tion. The second requires, in view of eq. (18), that aq, = ago In

explaining crazing phenomena in polypropylene in a nitrogen environ

ment, Peterlin 4S assumes that the fractional free volume in the glassy

state is not constant but proportional to the absolute temperature.

From this one infers that a g must be larger than aq,.

This vexing ambiguity is at once removed, at least in principle,

by the determination of the "pressure parameters" C4 through C6 in

isothermal measurements as function of pressure. For such measure

ments we have

Cl(J(P)/Ca
log aTo.P =

cdca - 8(P)/ca'

because Ca now scales the other parameters and consequently must

be divided out. We then have

c-Jc« = iok T ,

Cs/Ca = krk...

(49a)

(49b)

Furthermore, C4 is known because K*T and k; can be determined in a

separate independent experiment. Hence, we have four equations,

(40a), (41d), (49a), and (49b), for the four unknowns, B, io, k.., and

K*",. If, in addition, isobaric measurements are made at atmospheric

pressure, af can be obtained from eq. (40b) and, if a r is determined

in a separate independent measurement, a", may also be found, using

eq. (18).

Hence, we conclude that by combining isothermal measurements

of the response functions of polymers at different pressures with the

usual isobaric ones at atmospheric pressure all the molecular param

eters, B, io, af, k"" and K*.., may be determined unambiguously,

provided always that the experiments can be made with sufficient

accuracy.

Applkations

We are now ready to consider eq. (39) in the light of our experi

mental data. The applicability of eq. (39) can, of course, be verified
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by means of the data without any attempt at a molecular interpre

tation of the c's, In such an interpretation we are hampered by

the absence of direct measurements of an K*n k.; and m on the ma

terials we have investigated. We thought it worthwhile, however,

to estimate the molecular papameters by means of informed guesses

regarding the missing parameters. We emphasize that these esti

mates must be considered with caution. They can be refined when

direct measurements of the expansivity and compressibility param

eters of the rubbers become available.

We take the results on Neoprene WB first. These data were ob

tained at 25°C at fifteen pressures between 1 and 4600 bars. As

with the other materials to be discussed later, atmospheric pressure

(1 bar) was taken as the reference pressure. The pressure param

eters, Cl, C2/Ca, C4, C6/Ca, and C6 were obtained from the empirical

shift distances, log aTe.e, plotted in the insert of Figure 18, through

a non-linear least squares fit to eq. (39). The solid line in the insert

represents the equation with the following numerical values of the

parameters: Cl = 7.94, c-Jc« = 0.1940, C4 = 0.4695, C6/Ca = 0.9248,

and C6 = 0.4409. The fit is very satisfactory. We calculated the

molecular parameters by assuming that the value of k, = 10.8 as

determined from the data of Weir'? for an unfilled neoprene would

apply to our filled material as well. In fact, the value of Ca = 1/10.8

was held fixed during the least-squares fitting. The calculated pa

rameters are assembled in Table 1. They depend on the chosen

value of k; and this is indicated by underscoring this value in the

table. It is interesting that the value of K* r is the same as that which

we determined from Weir's'? data on his unfilled neoprene. The

compressibility parameters of the occupied volume are larger than

those of the rubber, as expected, but not much larger. Particularly

noteworthy is the finding that B is far from unity.

In the cases of Hypalon 40 and Viton B we had no ready estimate

for either k, of K"; Therefore, the experimental shift distances

were fitted to eq. (39), holding none of the parameters constant.

The data obtained at atmospheric pressure as function of temperature

and those obtained at 25°C as a function of pressure were fitted

simultaneously. The resulting numerical values are: Cl = 2.66, C2 =
60.0, Ca = 152.0, Cl = 0.526, Co = 105.8, C6 = 0.576 for Hypalon 40;

and Cl = 2.24, C2 = 59.4, Ca = 145.6, Cl = 0.402, Co = 69.4, and

C6 = 0.39.5 for Viton B. The solid lines in the inserts of Figures 12
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TABLE I

Molecular Parameters'

Parameter Neoprene WB Hypalon 40 Vitron B PVC

B 0.329 0.230 0.175 0.608

fo 0.0180 0.0375 0.0338 0.0401

Oi/ 6.25 5.69

k, 10.8 10.5 12.1 6.0
-- -

K,· 23.0 20.0 30.0 22.4
--

k ~ 11. 7 15.1 25.3 11.0

K",· 26.5 26.3 64.0 41.9

m 2.3 4.6

Oi, (7.30) (6.15)

Oi.. (1.05) (0.49)

Oig (4.40)

• Values of Oi/ are in 10- 4 reciprocal degrees Celsius; values of K· are in kbar;

the other quantities are dimensionless.

and 14 and those for P = 1.0 bar in the inserts of Figures 11 and 13

represent eq. (39) with the above values of the c's for the isothermal

and isobaric measurements, respectively. The fit is excellent. No

satisfactory fit could be obtained with either eqs. (1) or (2). The

deviations at low temperatures and high pressures mark the onset of

the glass transition.

For both materials we have six equations, eqs. (40) and (41), for

the seven unknowns: B, fo, ar, K*" k., K*"', and k",. For Hypalon

40 we calculated the molecular parameters listed in Table I by as

suming the "universal" value of 20.0 kbar for K*r' This value also

gave a satisfactory fit to the data obtained at 1 and 2 kbar pressure,

respectively, which will be considered presently. For Viton B this

choice yielded an unreasonably high value for at and did not allow

a satisfactory fit to the 1 kbar and 2 kbar data. We therefore se

lected K"; = 30.0 as a suitable value. The underscoring in Table I

again denotes those values that were introduced to allow calculation

of the others in the absence of experimental values for K* r- We

note that, in principle, the experimental determination of K"; is

sufficient to allow the calculation of the others without ambiguity.

Thus, it is not strictly necessary to know k, also, although knowledge
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of it should increase the precision with which the other parameters

may be found.

For Hypalon 40, we attempted to estimate aq, from af and the

value." of aT for Hypalon 20 shown in Table 1. For Viton B we

used the value for Viton A determined by Frensdorff.v Hypalon

20 and Viton A have different compositions from our materials but

the expansivities are not expected to be grossly different. Because

they apply to different materials, these parameters are put in paren

theses in Table n. We have no values of the expansivity of the

glass for Viton B or A. However, a g for Hypalon 20 is given by Yin

and Pariser.:" It seems safe to conjucture that a" < Olg for Hy

palon 40, as required by Peterlin. 45

The practical usefulness of eq. (39) lies in its predictive power.

We test this by means of the measurements which we made on Hy

palon 40 and on Viton B as function of temperature at 1 kbar and

2 kbar pressure, respectively. Since these are isobaric measurements,

we need the "temperature parameters" Cl and c, at the pressure P.

We should have

CI
P = B/2.303f (To, P), (5Ia)

C2 P
= f (To, P)/Olf(P), (5Ib)

where f (To, P) and Olf(P) must be found from eqs. (42) and (47),

respectively. Equation (47) requires knowledge of Ol*h Ol*", and m.

We used Olf for Ol*f. The difference should be negligible. Not having

properly determined values of Olq, available, we simply omitted the

second term in eq. (47). Using the values for Olq, listed in Table r.

TABLE II

Parameters at Elevated Pressures'

Material P f(To,P) O!f(P) Cl
P c,P

Hypalon 40 0.001 0.0375 6.25 2.64 56.0

1 0.0274 5.78 3.64 47.4

2 0.0199 5.56 5.01 35.8

Viton B 0.001 0.0338 5.69 2.24 59.4

1 0.0190 5.07 4.00 37.4

2 0.0079 4.73 9.61 16.7

• Pressures are in kbar; O!f(P) in 10-4 reciprocal degrees Celsius; and c, in °c.
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it can be ascertained that this small correction is negligible. Suitable

values of m were found by trial and error. We then calculated CI
P

and C2
P at 1 kbar and 2 kbar pressure, respectively, using the pa

rameters listed in Table 1. The values of f (To, P), f.X/(P), CI
P, and

C2
P thus obtained are tabulated in Table n and compared with those

at the reference pressure of 0.001 kbar.

The solid lines for P = 1 and P = 2 kbar in the inserts in Figures

11 and 13 show the fit of eq. (39) with O(P) = 0 and CI
P and C2

P as

listed in Table n. The fit is the more remarkable because of the

assumptions that had to be made to obtain the molecular parameters

at atmospheric pressure. It lends confidence to these assumptions

and displays the predictive power of eq. (39).

With pressure as an additional variable, the WLF line in the shift

distance-temperature plane now becomes a surface in shift distance

temperature-pressure space. The three-dimensional character of eq.

(33) is displayed in Figures 21 and 22 for Hypalon 40 and Viton E,

respectively. The glassy behavior is mostly conjectural since little

information was obtained in this region. It is seen that the tempera

ture at which the behavior becomes glassy occurs at a constant value

of log aT .r- This is consistent with the experimental results and

implies that time-pressure superposition yields the same results as

time-temperature superposition.

HYPALON 40

5

lL
I': 4
•
a>

~ 2

o ~-l._...J..._..1--_L::::-.J'

-25 -15 -5 5 15

Temperature, T-oC

Fig. 21. Hypalon 40: shift factors, log aT.p; dependence on temperature and

pressure.
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Fig. 22. Viton B: shift factors, log aT,p; dependence on temperature and

pressure.

The intersection of the regions of rubbery and glassy behavior is a

straight line for Viton B and is nearly so for Hypalon 40. This

implies that dTg/dP is nearly constant for these materials over this

range of temperature and pressure. The value for Viton B is about

one and a half times that for Hypalon 40. This is in accordance with

the observed behavior. As shown by a comparison of Figures 11

and 13, pressure has about one and a half to two times the effect on

Viton B than on Hypalon 40.

Finally, we reexamined the data of Zosel" on PVC. Fitting the

log aTo.P data contained in his Figure 22 to our eq. (39) gave the

following numerical values: Cl = 6.58, CdC3 = 0.2407, C4 = 0.268,

C6/C3 = 0.5467, and C6 = 0.262. We obtained K*, from the work of

Heydemann and Guicking w and estimated k; from their measure

ments of aT(P). The appropriate values are listed in Table 1. K*T

and k; were held constant during the fitting procedure. The fit is

shown in Figure 23. We note again that Zosel could not obtain a

satisfactory fit with either eq. (1) or (2).

CONCLUSIONS

Equation (39) satisfactorily describes the pressure dependence of

the mechanical properties of the materials examined here. There is

no reason to believe that it should not be applicable to other pieso

rheologically simple materials. Once the necessary molecular param

eters are known, eq. (39) may be used to predict the mechanical

properties at any other pressure if they are known at atmospheric

pressure.
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Fig. 23. PVC (data of Zosel); shift factors, log a», as a function of pressure.

Combination of isobaric measurements with isothermal measure

ments at atmospheric pressure allows the parameters B, fo, a</>, k</>,

and K* </> to be determined if a" k" and K*, have been obtained in

separate experiments, provided sufficient accuracy can be reached.

The ambiguity inherent in the determination of B, fo, and D:</> from

the usual measurements at atmospheric pressure is thus removed.

It appears fairly certain that B ~ 1, as commonly assumed. This,

coupled with the additional support we have presented that at ~

<:ia = a, - ag, forces a reexamination of literature data on fo and

encourages experimentation on the lines we have presented here.

APPENDIX I

Compounding Recipes 29

Hypalon 40 100

AC,PE617A 5

SRF black 4

Epon 828 15

MBTS 0.5

Tetrone A 1. 5

DOTG 0.25

Cure: 30 min. at 307°F

Neoprene WB 50

Neoprene WRT 50

Neozone A 2

stearic acid 0.5

MT black 100

hard clay 25

LPO 12

red lead 20

Thionex 1

sulfur 1

Cure: 20 min. at 307°F

Viton B 100
---
M.O 15

MT black 20

LD-214 3

Cure: 30 min. at 300°F

1 hr at 212°F

1 hr 250°F

1 hr 300°F

1 hr 350°F

24 hr 400°F
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APPENDIX II

Conversion of E(t) to G(t)

We discuss here the derivation of eq. (7). For a linear viscoelastic

material the constants E, G, and K in eq. (6) must be replaced by

their Carson transforms (the s-multiplied Laplace transforms). For

O(s), eq. (6) yields

O(s)
3K(s)E(s)

9K(s) - E(s) .
(52)

Equation (52) may be simplified by assuming that the time de

pendence of the bulk modulus K(t) is negligible compared to the

time dependence of G(t). This assumption is based on the work of

McKinney, Belcher, and Marvin 39
•

40 who showed that B'(w), the

bulk storage compliance, increases by a factor of about two from

glassy to rubbery behavior, whereas J'(w), the shear storage compli

ance, generally increases by three to four orders of magnitude. As

suming the bulk modulus to be a constant with respect to time, we

have K(s) = KIsand eq. (52) may be rewritten as

_ E(s)

G(s) = 3[1 - sE(s)/9K] ,
(53)

where K = K(T, P) is given by eqs. (8a) and (8b). Equation (53)

cannot be inverted exactly in the general case. Equation (7) rep

resents an approximation whose validity we wish to examine.

We consider a simple three-parameter Maxwell model representa

tion for both the bulk and shear modulus. We have

and

K(t) = K e + (Ko - K e) exp - tlTK

G(t) = Oe + (Go - Ge) exp - tITG,

(54)

(55)

(56)

where the subscripts e and g denote the equilibrium and glassy

moduli, respectively, and the TK and Tg are the relaxation times.

Laplace transformation yields

K)
tc. + KoTKS

( S = ---.::~----':-=-

s(1 + TKS)
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(57)G(s) = Ge + GoTaS.

s(l + TaS)

Letting, for simplicity, TK = Ta = T, and substituting eqs, (56) and

(57) into the relation

E(s) = 9K(s)G(s)

3K(s) + G(s)
(58)

yields, after partial fraction decomposition and inversion of the

transform,

where

K; = K, - K.,

Gd = Go - G.;

and

(59)

(60)

(61)

(62)

Equation (59) represents the tensile relaxation modulus obtained

from the bulk and shear relaxation moduli given by eqs. (54) and

(55). It is interesting to note that the bulk and shear relaxation

spectra here consist of single lines while the corresponding tensile

relaxation spectrum is comprised of two lines.

Selecting realistic values for the parameters in eqs. (54) and (55),

we may now calculate E(t). When this is obtained, we may consider

different ways of approximating G(t) from E(t) and compare them

with the "true" G(t) given by eq. (55). One such approximation is

(63)

another is the inversion of eq. (53). Substituting the Laplace trans

form of eq. (59) into eq. (53) and inverting yields

3KE. [3KEo 3KE. ]
G2(t) = 9K _ E. + 9K _ Eo - 9K _ E. exp - t/X.T, (64)
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where

9K - Eo
A = 9K _ E,' (65)

The glassy and equilibrium tensile moduli, Eo and E" are obtained

from eq. (6).

Finally, we have eq. (7), which here becomes

G
3
(t) = 3KE. + 3KEo exp - tl, .

9K - E. - Eo exp - tiT
(66)

These three approximations are compared with G(t) in Figure 24,

choosing G. = 10 bar, Go = 1000 G., Kg = 3G., K. = Ko/2, and

K = K.. As expected, G1(t) underestimates G(t) in the glassy region

and in the upper portion of the transition region. It then overesti

mates G(t) in the center and lower transition. This is brought out

more strikingly by the ratio G1(t)/G(t), also plotted in Figure 24.

This overestimation results in a shift of the transition in the shear

modulus estimated from the tensile modulus by eq. (64) to longer

2

3

o
LOG t/r

-I

3 - PARAMETER

MAXWELL MODEL

2 r-----=::::~- ~

G(f)

Fig. 24. Log G(t) as function of tiT; various approximations.
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times compared with the true transition. Clearly, E(t)j3 is a poor

approximation in the transition region.

The behavior of G2(t), resulting from setting K(t) = K e , is just

the opposite. After an initial overestimation of G(t) in the glassy

region, G(t) is underestimated (and the transition shifted to shorter

times) by G 2(t) . As shown by the plot of the ratio G2(t)jG(t), the

underestimation by G2(t) is less than the overestimation by GI(t) in

the transition region.

G2(t) can be obtained only if an analytic, Laplace-transformable

expression is available for E(t). The advantage of G2(t) over GI(t)

is lost when the inexact inversion leading to eq. (7) is used. Com

pared to GI(t), G3(t) overestimates G(t) in the glassy and upper

transition region but then merges with GI(t). All four curves merge,

of course, in the rubbery (equilibrium) region.

It should be noted that setting K(t) = Kg instead of K, (the re

sults are not shown) gives the correct estimate in the glassy region,

but the behavior in the transition region is closely the same in both

cases. In any case, values of Kg are not generally available at present.

It may be conjectured that these simple model calculations present

qualitatively the same behavior as that which may be expected from

real materials. Thus, we expect eq. (7) to overestimate the value

of the shear modulus and to shift the transition to longer times than

those at which it would appear in direct measurements. While eq.

(7) does not appear to be an improvement on E(t)j3 in the iso

thermal-isobaric estimation of G(t) from E(I) data, it does allow the

temperature and pressure dependence of the bulk modulus to be

taken into account.
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