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Quantum speed limit time defines the limit on the minimum time required for a quantum system
to evolve between two states. Investigation of bounds on speed limit time of quantum system under
non-unitary evolution is of fundamental interest, as it reveals interesting connections to quantum
(non-)Markovianity. Here, we discuss the characteristics of quantum speed limit time as a function
of quantum memory, quantified as the deviation from temporal self-similarity of quantum dynamical
maps for CP-divisible as well as indivisible maps, and show that the presence of quantum memory
can speed up quantum evolution. This demonstrates the enhancement of the speed of quantum
evolution in the presence of quantum memory for a wider class of channels than indicated by the
CP-indivisibility criterion.

I. INTRODUCTION

The dynamical characteristics of open quantum sys-
tems (OQS), a quantum system coupled to its environ-
ment, have received wide attention [1, 2]. The coupling
of a quantum system to its environment gives rise to re-
alistically unavoidable processes, such as dissipation and
decoherence. Memory effects lead to the evolution of the
system of interest being classified as (non-)Markovian.
Due to theoretical as well as technological advances, the
study of non-Markovian phenomena has attracted much
attention in recent times [3–10]. Typically, in a non-
Markovian evolution, the system and environment time
scales are not well separated, which could lead to infor-
mation backflow from the environment to the system [11–
14]. It is known that a quantum system coupled to a non-
Markovian environment can evolve faster than the cor-
responding case of the Markovian environment [15, 16].
This has been experimentally verified in a cavity QED
system [17]. Since a study of quantum speed limit is
helpful in obtaining physical insight into the dynamical
properties of quantum systems, it would be worthwhile
to make a detailed understanding of the quantum speed
limit with memory.
Heisenberg’s energy-time uncertainty principle sets the
bound on the minimum time required to evolve be-
tween two quantum states. Mandelstam and Tamm
(MT) [18] provided an interpretation of energy-time un-
certainty with the time scale of the quantum state’s
evolution. Later, Margolus and Levitin (ML) [19] de-
rived an alternate bound for the minimal time evo-
lution of a quantum system between two orthogonal
states. The combined bound of τQSL quantum speed
limit time, which is tight [20] for a closed quantum sys-
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tem, is max

{

π~
2∆H ,

π~
2〈H〉−E0

}

. Here, ∆H and 〈H〉 are

the square roots of the variance, and the expectation
value of the Hamiltonian with respect to the initial state,
respectively. The zero of the energy is generally consid-
ered as the ground state such that E0 = 0. The bound on
speed limit time was further refined for initial mixed, and
driven systems for arbitrary angles of separation [21, 22].
In [23, 24] MT and ML bounds were generalized to arbi-
trary initial and final mixed states based on geometrical
distance between them for time independent Hamilto-

nian , and is max

{

~

∆HB(ρ0, ρτ ), 2~
π〈H〉B(ρ0, ρτ )2

}

, where

B(ρ0, ρτ ) is the Bures angle between the initial and final
states.

In reality, quantum systems are not isolated; in-
teractions of the system with the environment reveal
interesting properties of the system’s evolution. Differ-
ent approaches to estimate the bound on the speed of
evolution of open quantum systems have been discussed
in the literature. Quantum speed limit for open quantum
systems in terms of quantum Fisher information and
relative purity was derived in [25], and [26], respectively.
In [15], geometric generalization of both the Mandel-
stamm–Tamm and the Margolus–Levitin bounds was
derived. In [27, 28] tighter bounds on speed limit time
for mixed initial states were defined. In the present
work, we consider the above-described approaches to
bounds on the speed limit for open quantum systems in
the context of quantum non-Markovianity.

Different measures are made use of to quantify the
impact and the memory effects of non-Markovian
quantum systems. Quantum speed limit time is one
among them. Quantum speed limit as a measure of
non-Markovianity, and its connection with the hierarchy
of quantum correlations of composite quantum system
[29, 30] are discussed in [31, 32]. Even though quantum
speed limit time seems to identify the information
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backflow due to the non-Markovianity, in [31] it is
shown that there exists no simple connection between
non-Markovianity and speed limit time. This raises
the question of whether there is a quantum concept of
memory that is better indicated by the quantum speed
limit. In this context, here we consider the quantification
of memory as a deviation from ‘temporal self-similarity’
[33], which roughly refers to the idea of the form of the
intermediate map being independent of the initial time.
It is known to be equivalent to the dynamical semigroup
and thus provides a concept of non-Markovianity weaker
than non-divisibility and information backflow.

In this work, we consider the effect of non-
Markovianity of single-qubit channels on the evolution
of quantum states. We use both unital and non-unital
maps and show that the quantum memory can speed
up the quantum evolution. The quantum speed limit
calculations based on relative purity, quantum Fisher
information, and geometrical distance are made, and the
dependence on quantum memory is established.

The present work is organized as follows. Sec. II dis-
cusses the quantification of non-Markovianity as a devia-
tion from the temporal self-similarity and quantum speed
limit time based on relative purity. Sec. III discusses the
effect of quantum non-Markovianity on speed limit time,
and the cases of both dissipative and dephasing channels
are considered. A tighter bound on quantum speed limit
time based on Bures angle is defined, and the effect of
memory on it is given in Sec. IV. In Sec. V, we consider
the speed limit time for mixed initial states, the conclud-
ing remarks in Sec. VI. In the literature, for bounds on
the evolution speed of quantum states, both quantum
speed limit and quantum speed limit time are used in-
terchangeably. In the main work, we present quantum
speed limit time as a function of memory. We illustrate
the quantum speed limit as a function of quantum Fisher
information in the appendix (Sec.VII) for consistency and
completeness.

II. PRELIMINARIES

Here we briefly discuss the time-local master equa-
tion which would be used to generate the non-Markovian
channels. We also lay down the recently developed
measure of non-Markovianity based on temporal self-
similarity.

A. Time Local Master Equation

The master equation local in time for a d-dimensional
quantum system can be canonically written in the form,

ρ̇ = L(ρt) =
−i
~
[H(t), ρt]

+
d2−1
∑

µ=1

γµ(t)

[

Lµ(t)ρtL
†
µ(t)−

1

2
{L†

µ(t)Lµ(t), ρt}
]

,

(1)

where {Lµ(t)} forms an orthonormal basis set of trace-
less operators, i.e., tr[Lµ(t)] = 0, tr[L†

m(t)Ln(t)] = δmn,
and H(t) is a Hermitian operator. Also, γµ(t) and Lµ(t)
are the time dependant decoherence rates and decoher-
ence operators, respectively. The decoherence rate γµ(t)
is uniquely (canonical decoherence rates, obtained by di-
agonalizing the Kossakowski matrix that appears in the
general GKSL equation) defined and invariant under uni-
tary transformations. The value of γµ(t) determines the
nature of the interaction of a system with its environ-
ment. If the decoherence rate is positive, the quantum
channel is divisible, i.e., a quantum channel can be writ-
ten as a concatenation of two non-unitary channels. On
the other hand, if γµ(t) is negative, then the evolution
would be CP-indivisible.
The memoryless master equation of Linblad form un-
der Born-Markov and rotation wave approximations is,

ρ̇ = −i
~
[H, ρ] +

∑d2−1
µ=1 γµ

[

LµρL
†
µ − 1

2{L†
µLµ, ρ}

]

, Lµ and

γµ are Linblad operators and rate constant, respectively.

B. Measure of non-Markovianity

In [33] a measure of non-Markovianity as a deviation
from temporal self-similarity was defined as,

ζ = min
L∗

1

T

∫ T

0

||L(t)− L∗||dt, (2)

where, ||A|| = tr
√
AA† is the trace norm of the operator,

L(t) and L∗ are the generators of non-Markovian and
Markovian evolutions, respectively. ζ = 0 iff the channel
is a quantum dynamical semigroup (QDS) and is greater
than zero for a deviation from QDS.

C. Quantum Speed Limit

Quantum speed limit time defines a bound on the
minimum time required for a quantum system to evolve
between two states. This is estimated in the case of
open quantum systems using different distance measures
for quantum states. Thus, for example, there is the
bound analogous to the MT bound based on the relative
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purity [26] for open quantum systems. Another MT
type bound, in which speed limit is derived in terms of
variance of the generator, was obtained as a function
of quantum Fisher information for non-unitary evolu-
tion [25]. MT and ML type bounds on speed limit time
based on a geometrical distance between the initial and
final states, which is a tighter bound, was developed
in [24]. We study quantum speed limit time as a function
of memory for pure as well as mixed initial states.

III. IMPACT OF QUANTUM MEMORY ON

QUANTUM SPEED LIMIT TIME

Here we examine the effect of memory on the speed of
quantum evolution for various quantum processes. De-
phasing [34] and dissipative processes are taken into con-
sideration. We consider divisible and indivisible non-
Markovian quantum maps [35], and connections between
memory and quantum speed limit time are established.
To this end, initially, the case of the CP divisible model
is considered. We begin with the MT bound based on
relative purity. A bound to the required time of evolu-
tion analogous to the MT bound based on the relative
purity [26] for open quantum system in which reference
is made to the initial state and the dynamical map is,

τ ≥ τQSL =
| cos θ − 1|trρ20
tr[(L†ρ0)2]

≥ 4θ2trρ20

π2
√

tr[(L†ρ0)2]
, (3)

where θ = cos−1[P(t)] with θ ∈ [0, π/2], P(t) =
tr(ρtρ0)/tr(ρ

2
0) is the relative purity of initial and final

states. Here, v =
√

tr[(L†ρ0)2] gives an upper bound to
the speed of the evolution. The generalization of time-
dependent L(t) is

τ ≥ τQSL =
4θ2trρ20

π2
√

tr[(L†ρ0)2]
. (4)

Here X = τ−1
∫ τ

0 Xdt.
Interestingly, in some recent works [36, 37], a thermo-

dynamic interpretation was provided for the terms which
arise in the QSL equation in a scenario where where time-
local master equations govern quantum systems.

A. Dephasing quantum channels

The dynamics of a quantum system under a dephasing
process in the interaction picture is given by,

ρ̇t = γ(t)(σzρtσz − ρt), (5)

where σz is the Lindblad operator for dephasing process
and γ(t) is the rate of dephasing. The initial state

ρ0 =
1

2

(

1 + rz rx − iry
rx + iry 1− rz

)

, (6)

where r = (rx, ry, rz), rǫR3, and ||r|| ≤ 1 evolves to

ρt =
1

2

(

1 + rz (rx − iry)pt
(rx + iry)pt 1− rz

)

, (7)

where pt = e−2Λt , Λt =
∫ t

0 γ(t)dt, decoherence rate

γ(t) = − ṗt

2pt
, and pt is the decoherence function. In or-

der to make use of the measure of non-Markovianity ζ
(eq. 2), we note that for the dephasing process, Eq. (5),
L−L∗ = (γ∗−γ)(|φ+〉〈φ+|− |φ−〉〈φ−|), with |φ±〉 being
the Bell diagonal states.
Quantum speed limit in this case is,

τQSL =
4
√
2 cos−1(P)2trρ20

π2/τ
∫ τ

0 | ṗt

pt

√

r2x + r2y|dt
. (8)

Here P(t) = (1+pt(r
2
x+r

2
y)+r

2
z)/(1+r

2
x+r

2
y+r

2
z) is the

relative purity and we have 2trρ20 = 1+r2x+r
2
y+r

2
z . Non-

Markovianity and speed limit are calculated for different
decoherence functions corresponding to CP-divisible and
indivisible quantum channels. Their details are given be-
low.

1. CP-divisible phase damping channel;
Ornstein–Uhlenbeck noise (OUN)

OUN noisy channel even though Markovian from
the perspective of the CP-divisibility criteria, is non-
Markovian [33, 38]. The decoherence function of OUN
is [39],

pt = e
−µ

2
{t+ 1

Γ
(e−Γt−1)}, (9)

where, Γ−1 ≈ τr defines reservoir’s finite correlation time
and µ is the coupling strength related to qubit’s relax-
ation time. The decoherence rate is,

γ(t) =
µ(1− e−Γt)

4
. (10)

This channel is not CP-indivisible, γ(t) is positive for all
values of t. Nevertheless, it is non-Markovian, according
to the measure Eq. (2), by virtue of its deviation from
the QDS. The Markovian regime is achieved in the limit
1
Γ → ∞, with the corresponding decoherence function

being p∗(t) = e−µt/2. The quantum speed limit time,
as a function of non-Markovianity, is calculated for the
initial state 1√

2
(|0〉+ |1〉), and is depicted in Fig. 1.

2. P-indivisible phase damping; Random Telegraph noise
(RTN)

RTN channel [40], is non-Markovian according to the
information backflow and CP-divisibility criteria. The
decoherence function in this case [39] has the form pt =



4

e−µt
[

cos

(

√

[(2aµ )2 − 1]µt

)

+

sin

(

√

[( 2a
µ
)2−1]µt

)

√

( 2a
µ
)2−1

]

. The

parameters a and µ correspond to the strength of the
system-environment coupling and the fluctuation rate of
the RTN, respectively. There are two regimes of sys-
tem dynamics. For a

µ < 0.5, the channel corresponds

to the purely damping regime of Markovian dynamics,
and damped oscillations for a

µ > 0.5 correspond to the

non-Markovian evolution.

RTN

OUN

NM-AD

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.40

0.45

0.50

0.55

ζ

τ
Q

S
L

FIG. 1. Quantum speed limit time τQSL is plotted as a func-
tion of measure of non-Markovianity ζ for the case OUN, RTN
(Eq.8) and NMAD (Eq.14) channels. Quantum speed limit
time τQSL is estimated for the initial states 1√

2
[|0〉 + |1〉] for

OUN and RTN channels, respectively and |1〉〈1| for NMAD.
The channel parameter Γ = 0.1µ, Γ = 1

4
µ and a

µ
= 1 for

NMAD, OUN and RTN, respectively for an actual driving
time τ = 1.

Figure 1 depicts that quantum speed limit time de-
creases as memory increases, indicated by increase in the
value of ζ, for an initial pure state, as indicated in the
figure caption.

B. Amplitude damping channel

After the two unital channels discussed above, we now
consider a non-unital channel comprising of the Jaynes-
Cummings model for a two-level system resonantly cou-
pled to a leaky single-mode cavity. The non-unitary gen-
erator of the reduced dynamics of the system is

ρ̇ = γi

(

σ−ρtσ+ − 1

2
σ+σ−ρt −

1

2
ρtσ+σ−

)

, (11)

where σ± = 1
2 (σx∓iσy) are the atomic raising and lower-

ing operators. The emission is described by the Linblad
operator σ−, and γ(t) is the rate of dissipation. For the

initial state, Eq. (6), the time evolved reduced density
matrix becomes,

ρt =
1

2

(

2− (1− rz)|pt|2 (rx − iry)pt
(rx + iry)pt (1− rz)|pt|2

)

, (12)

where pt = e−Λt/2, Λt =
∫ t

0
γ(t)dt. Also, γ(t) = − ˙2pt

pt
,

and pt = e−Γt/2
(

cosh(dt/2)+ Γ
d sinh(dt/2)

)

with the time
dependent decoherence rate,

γ(t) =
2µΓ sinh(dt/2)

d cosh(dt/2) + Γ sinh(dt/2)
. (13)

Here d =
√

Γ2 − 2µΓ, Γ is the spectral width of the reser-
voir, and µ is the coupling strength between the qubit
and the cavity field.
The measure of non-Markovianity ζ = minγ∗

1
τ

∫ τ

0 |γ(t)−
γ∗|(1+

√
2)dt. For this scenario, the quantum speed limit

is calculated as,

τQSL =
4
√

2 cos−1(P)2trρ20

π2/τ
∫ τ

0
| ṗt
pt

√

r2x + r2y + 4(1 + r2z)|dt
. (14)

The relative purity is P(t) = (1−rz+pt(r2x+r2y+ptrz(1+
rz))/(1 + r2x + r2y + r2z). The behavior of quantum speed
limit with memory, for the present case, is depicted in
fig. 1.

IV. BURES ANGLE AND SPEED LIMIT TIME

MT and ML-type bounds on speed limit time are esti-
mated by availing the geometrical approaches to quan-
tify the closeness between the initial and final states.
Here, Bures angle is used to measure the distance be-
tween two quantum states. In [15], for the initial pure
state ρ0 = |ψ0〉〈ψ0|, a bound on the speed limit time
based on Bures angle B(ρ0, ρt) is,

τQSL = max

{

1

Λop
τ
,
1

Λtr
τ

,
1

Λhs
τ

}

sin2[B], (15)

where B(ρ0, ρt) = arccos
√

F(ρ0, ρt), and the Bures fi-
delity F(ρ0, ρt) is defined as

F(ρ0, ρt) =

[

tr[
√√

ρ0ρt
√
ρ0]

]2

. (16)

Here, 1
Λop

τ
, 1
Λtr

τ

, and 1
Λhs

τ

are operator, Hilbert-Schmidt and

trace norms, respectively, and

Λop,tr,hs
τ =

1

τ

∫ τ

0

dt||L(ρt)||op,tr,hs. (17)

It is known that the operators satisfy the following in-
equality ||A||op ≤ ||A||hs ≤ ||A||tr. As a result, 1/Λop

τ ≥
1/Λhs

τ ≥ 1/Λtr
τ , which shows that quantum speed limit

time based on operator norm of the nonunitary generator
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provides the tighter bound on τQSL. The computabil-
ity of fidelity in Eq. (16) is analytically cumbersome.
A simpler expression for an upper bound on fidelity is
given in [41], and it shows that for any density matrices

ρ1 and ρ2, F(ρ1, ρ2) ≤ trρ1ρ2 +
√

(1− trρ21)(1 − trρ22),
with equality for single qubit. Making use of this super-
fidelity, a modified bound on quantum speed limit time
for both pure and mixed initial states is derived [28].
And speed limit time τQSL (Eq. 15) can be estimated by
modifying the denominator as,

Λop,tr,hs
τ =

1

τ

∫ τ

0

dt||L(ρt)||op,tr,hs
(

1 +

√

1− trρ20
1− trρ2t

)

.

(18)

NMAD

0 2 4 6 8 10 12

6.16

6.18

6.20

6.22

6.24

6.26

6.28

ζ

τ
Q

S
L

FIG. 2. Quantum speed limit time τQSL (Eq.20) is plotted
as a function of the measure of non-Markovianity ζ for the
NMAD channel. τQSL is estimated for the initial state |1〉〈1|.
The channel parameter Γ = 0.1µ and actual driving time
τ = 2π.

For phase damping channel the Bures angle based
quantum speed limit time is estimated as,

τQSL =
1− pt(r

2
x + r2y)− r2z − l1l2t

1
τ

∫ τ

0
dt|ṗt

√

r2x + r2y(1 +
l1
l2t

)|
, (19)

where l1 =
√

1− (r2x + r2y + r2z), and l2t =
√

1− p2t (r
2
x + r2y)− r2z). Similarly, for amplitude

damping channels for the states in Eq. (6) and (12),

τQSL =
1 + rz − pt(r

2
x + r2y + ptrz(1 + rz))− h1h2t

1
τ

∫ τ

0 dt|ṗt
√

r2x + r2y + 4p2t (1 + rz)2(1 +
h1

h2t
)|
,

(20)

where we have h1 =
√

1− (r2x + r2y + r2z), and h2t =
√

p2t (2− r2x − r2y + 2rz − p2t (1 + rz)2). For pure states
∑

r2i = 1. Figure 2 depicts τQSL as a function of memory

for initial excited state (0, 1)T in a dissipative process. It
is evident that speed limit time decreases as memory in-
creases.

V. SPEED LIMIT TIME FOR MIXED INITIAL

STATES

We finally discuss the case for mixed initial states. MT
type bound based on relative purity (Eq. 4) for initial
mixed states, is shown in fig. 3. As seen for pure initial
states (fig. 1), quantum speed limit time decreases as
memory increases for mixed initial states as well.
The quantum speed limit’s calculations based on Bu-

res angle for mixed initial states are quite cumbersome.
In [42] a combined bound on the quantum speed limit
time was obtained for almost all mixed initial states by
using a function of relative purity for unitary driven sys-
tems. Using the same function of relative purity, an easy
to calculate bound for initial mixed state for the open
quantum system was subsequently derived in [27],

τQSL = max

{

1

Λop
τ
,
1

Λtr
τ

,
1

Λhs
τ

}

sin2[φ]trρ20. (21)

Here, cosφ is defined as the square root of relative purity
(cosφ =

√

P(t)). Quantum speed limit time bound for
dephasing channels is,

τQSL =
(1 − pt)(r

2
x + r2y)

1
τ

∫ τ

0
dt|ṗt

√

r2x + r2y|
. (22)

For a mixed initial state rx = 1
2 , ry = rz = 0, quantum

speed limit time for OUN and RTN quantum channel is
a constant for the range of memory considered.
Expression of quantum speed limit time for states Eq.
(6) and (12) for NMAD channel can be shown to be,

τQSL =
(1− pt)[r

2
x + r2y + rz(1 + pt)(1 + rz)]

1
τ

∫ τ

0 |ṗt
√

r2x + r2y + 4p2t (1 + rz)2|dt
. (23)

Quantum speed limit time is calculated with the initial
mixed state (rz = − 1

2 , rx = ry = 0) for non-Markovian
amplitude damping channel, and is depicted as a function
of ζ in fig. 4. As we have noticed in the previous cases,
here also speed limit time decreases as memory increases.

VI. CONCLUSIONS

We investigated the speed of evolution of open quan-
tum systems with pure and mixed initial states. We con-
sidered CP-divisible and indivisible non-Markovian quan-
tum channels, and showed the behavior of quantum speed
limit as a function of quantum memory, quantified as the
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RTN
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FIG. 3. Quantum speed limit time τQSL is plotted as a func-
tion of ζ for OUN, RTN (Eq. 8), and NMAD (Eq. 14) chan-
nels, for mixed initial states, rx = 1

2
, ry = rz = 0 (OUN and

RTN) and rx = ry = 0, rz = − 1

2
(NMAD).The channel pa-

rameter Γ = 0.1µ, Γ = 1

4
µ and a

µ
= 1 for NMAD, OUN and

RTN, respectively for an actual driving time τ = 1.

NMAD
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3.10

3.11

3.12

3.13

3.14

ζ

τ
Q
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FIG. 4. Quantum speed limit time τQSL, (Eq. 23), is plotted
as a function of ζ for the NMAD channel for mixed initial state
(rx = ry = 0, rz = − 1

2
). The channel parameter Γ = 0.1µ

and actual driving time τ = 2π.

deviation from temporal self-similarity of quantum dy-
namical maps, which provides a weaker concept of non-
Markovianity than CP-indivisibility. We estimated both
Mandelstamm-Tamm (MT) and Margolous-Levitin (ML)
types bound based on various distance measures between
the quantum states viz; relative purity, Bures angle and
quantum Fisher information. In the case of CP-divisible
(OUN), CP-indivisible (RTN) dephasing, and dissipa-
tive (NM-AD) channels, for the initial states considered,
quantum speed limit time decreases as non-Markovianity
increases. Hence, quantum memory can enhance the

speed of evolution between the quantum states. This
is true for both pure and mixed initial states considered,
and this need not be true for all initial states, for example
see [43]. These outcomes highlight the beneficial impact
of memory on the dynamics of the system of interest, ex-
emplified here by the quantum speed limit. Our results
for the OUN channel demonstrated the enhancement of
the speed of quantum evolution in the presence of quan-
tum memory for a wider class of channels than indicated
by the CP-indivisibility criterion.

ACKNOWLEDGEMENT

SB and RS acknowledge the support from the Inter-
disciplinary Cyber-Physical Systems (ICPS) programme
of the Department of Science and Technology (DST), In-
dia, Grant No.: DST/ICPS/QuST/Theme-1/2019/6 and
DST/ICPS/QuST/Theme-1/2019/14, respectively. RS
also acknowledges the support of DST, India, Grant No.
MTR/2019/001516.

APPENDIX

An MT type bound, in which speed limit is derived
in terms of variance of the generator, was obtained as a
function of quantum Fisher information for non-unitary
evolution [25]. A bound on B(ρ0, ρτ ) can be obtained in
terms of the integral of the quantum Fisher information
FQ(t) along the evolution path. The Bures fidelity F
(Eq. 16) is connected to the quantum Fisher information
FQ(t) [25],

F(t, t+ dt) = 1− (dt)2FQ(t)/4 +O(dt)3. (A.1)

Quantum Fisher information is defined by FQ(t) =

tr[ρ(t)L2(t)]. Here, the Hermitian operator L̂(t) is known
as the symmetric logarithimic derivative (SLD) operator.

It is defined as dρ̂(t)/dt = (ρ̂(t)L̂(t) + L̂(t) ˆρ(t))/2. The
instantaneous speed of evolution between two time inter-
vals is proportional to the square root of quantum Fisher
information. The upper bound on Bures angle is,

B(ρ0, ρτ ) = arccos(
√

F(ρ0, ρτ )) ≤
1

2

∫ τ

0

√

FQ(t)dt,

(A.2)
and the quantum speed limit can be identified as,

VQSL =
1

2

√

FQ(t). (A.3)

This bound is attained only if the evolution occurs on a
geodesic, a condition for the MT bound for unitary evo-
lution under a time-independent Hamiltonian.
We estimate the quantum speed limit VQSL in terms of
quantum Fisher information for CP-divisible and CP-
indivisible maps, for various initial pure states; 1√

2
(|0〉+

|1〉) for OUN and RTN channels, and |1〉〈1| for the
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FIG. 5. Quantum speed limit VQSL is plotted as a function
of the measure of non-Markovianity ζ for OUN, RTN and
NMAD channels. Quantum speed limit VQSL is estimated for
the initial states 1√

2
[|0〉+|1〉] for OUN and RTN channels, and

|1〉〈1| for NMAD.The channel parameter Γ = 0.1µ, Γ = 1

4
µ

and a
µ

= 1 for NMAD, OUN and RTN, respectively for an
actual driving time τ = 1.

non-Markovian amplitude damping channel. In fig. 5,
the quantum speed limit is seen to increase as non-
Markovianity increases for both CP-divisible and indi-
visible channels. Thus, the evolution speed of quan-
tum states is seen to increase with the strength of non-
Markovianity.
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