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SUMMARY 

This research concerns the investigation of the 

differences in discrete network flow patterns under various 

dispatching methodologies. The study has used a job-shop 

type simulation model in which the flow actually consists of 

jobs or units of work. The shop is dynamic in nature in 

that work is continually entering and leaving the shop. 

Three different loading approaches were used with the simula­

tion model: uncontrolled arrivals, a job pool with a 

mathematical algorithm, and a job pool with a heuristic 

loading algorithm. Nine measures of network flow were formu­

lated and comparatively analyzed with traditional job-shop 

performance criteria and shop balance criteria with each 

loading approach to determine similarity of information 

content. Six dispatching rules were used to control the shop 

and produce the values of the performance criteria. By 

isolating any one performance measure, the capability of the 

dispatching rule to effect network flow was ascertained and 

the rules were ranked in order of effectiveness. 

Additionally, the arrival process to a machine 

selected at random was studied to determine the applicability 

of the Jackson decomposition principle to this model and to 

test its applicability to dispatching rules other than first 

come-first served. The simulation model was also run at a 
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10% higher utilization to determine whether the capability 

of the performance criteria to measure effectiveness had 

deteriorated. 

It has been shown that the network flow measures 

contain equivalent information content as the traditional 

and shop balance criteria. Also, it was observed that the 

ranking of the dispatching rule in order of efficiency was 

not markedly influenced by the loading approach. The 

Jackson decomposition principle has shown that this simulation 

model can be analyzed as independent machine centers for the 

following dispatching rules: dynamic slack, dynamic slack 

per operation, expected work in next queue, shortest proces­

sing time, and first come-first served. The job pool 

concept has been shown to reduce the variance of the arrival 

process by a decrease in the distribution parameter. When 

the shop was run at 101 higher utilization, the performance 

criteria generally retained its capability to measure 

effectiveness. 



CHAPTER I 

INTRODUCTION 

The purpose of this research is to investigate the 

differences in discrete network flow patterns under various 

dispatching methodologies and to identify relevant measures 

of network flow. The study has used a job-shop type 

queueing network in which the flow actually consists of jobs 

or units of work. The theme of the research has been the 

effect of dispatching rules upon the pattern of flow within 

the job shop. This instigated the formulation of nine 

measures of network flow, described in Chapter III, which are 

analyzed comparatively with traditional job-shop measures 

and with more recently developed job shop balance measures. 

This research has used six dispatching rules to control the 

shop and to produce the resultant values of the performance 

criteria for analysis. By isolating any one performance 

measure, the capability of the dispatching rule to perturb 

network flow could be ascertained and the rules ranked in 

order of effectiveness. 

There has been considerable job-shop scheduling/ 

sequencing research done in the past and since the general 

problem has not been solved, research is continuing. As 

Conway [15] contends, 



The general job shop problem is a fascinating 
challenge. Although it is easy to state, and 
to visualize what is required, it is extremely 
difficult to make any progress whatever toward 
a solution. Many professional people have 
considered the problem, and all have come away 
essentially empty-handed. Since this frustra­
tion is not reported in the literature, the 
problem continues to attract investigators who 
just cannot believe that a problem so simply 
structured can be so difficult until they have 
tried it. 

The job shop problem is simply stated. There are M 

machines which can process N jobs, which are continuously 

entering and leaving the shop. Each job has a determined 

order in which it is processed through the machines. It is 

assumed that each machine cannot work on more than one job at 

a time and that processing required by a machine cannot be 

done on any other machine. The problem is to find the best 

production plan in sequencing the N different jobs on each 

machine so as to optimize some measure of performance or 

criterion. Such a plan is called an optimal one. 

In addition to the challenge of solving the problem, 

there are a number of other reasons for the research. The 

primary reason is the cost of idle machinery and idle 

workers, or alternately, the much higher cost of overtime and 

customer dissatisfaction from lateness of job completion. In 

some situations, scheduling too much work for the shop would 

create the need to lease extra machinery to deviate from the 

expected use of a machine. Late jobs will cause lost time 

for management people who must console customers while 



3 

attempting to push through an order upsetting previously 

organized production runs. This research may provide insight 

into the problem by giving management more knowledge about 

controlling the job shop rather than accepting results with­

out recourse. Many other economic and realistic reasons for 

this research can be stated, but even with this overview 

the importance of a solution to this problem is certainly 

clear. 

A simulation approach was utilized in this research 

for two primary reasons, First, the analytical equilibrium 

solution to a queueing system is dependent upon the input 

parameters once more than two machine centers are in the 

network, i.e., a general equilibrium solution exists for 

systems in which the numbers of servers is strictly less than 

three and the number of waiting positions or queue length is 

fixed (Weber [65]). in fact, the analytical solution 

requires such increasingly complex expressions for specific 

systems (more than two servers), that the calculations alone 

suggest that economical application of the results would be 

limited to rather simple systems. The second reason is 

that systems of realistic size can be simulated under various 

conditions. For example, a simulation model can use any 

probability distribution, even empirical distributions, where­

as the analytical solution is typically limited to poisson 

arrivals and exponential repair times and service times. To 

state the second reason in another way that is certainly more 
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emphatic, Conway [15] asserts that for interrelated networks 

of realistic size there are no applicable theoretical 

queueing results. 

Nanot [43] places simulators into two groups: (1) 

Models that use sequencing procedures from actual shops and 

then determine the procedure to optimize a measure of 

performance under specific conditions. The problem is to 

find the proper value for the parameters that optimize the 

criterion. In this case, the simulator is simply a method 

for evaluating a complicated function; and (2) models which 

include many factors that have a bearing on the operation of 

the shop and with which controlled experiments isolate the 

effects of some particular variable upon the criterion. 

To quote Jackson [31] , 

The reason for realizing a mathematical model 
by means of a simulator is to study its 
properties experimentally. The simulator 
provides a basis for applying the broad 
approaches of laboratory science to certain 
complex mathematical models, in order to 
discover useful generalizations about them; 
that is, for engaging in 'experimental 
mathematics'. 

Three basic approaches have been attempted in solving 

the job-shop problem: analytical flow models, analytical 

job-shop (or queueing models) and simulation models. These 

three models will be discussed later with their relevance to 

the literature. The general approach to this research is, 

as previously mentioned, of the simulation model class. The 

specific performance measurements, which have been oriented 
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to measurements of the job shop rather than individual jobs, 

will be studied with various dispatching rules. 

Deane [16] used a simulation model to study a job 

shop with an uncontrolled, i.e. random, arrival process. 

Using workload balance measures as his optimization criteria, 

he was able to improve these measures whenever he applied 

his new flow controlled scheduling methodology. Irastorza 

[26] used a simulation model to study a job shop that 

controlled the arrival processing by placing arriving jobs 

in a pool and then releasing them to the shop with a loading 

algorithm. His performance criteria were workload balance 

measures and traditional measures, and in conjunction with 

the job pool and loading algorithm, he also was able to show 

improvement. Thus, Deane and Irastorza both elicited 

improvement in the performance measures of the job shop, but 

with antithetical procedures. Hence, the hypothesis of 

this research is that each experimenter had, in some way, 

effected the system parameters of the queueing network. This 

research effort has been to investigate this hypothesis. By 

defining performance measures that evaluate attributes of the 

queueing network, both the controlled and uncontrolled arrival 

process have been studied. An analysis was performed to 

determine the difference across the six dispatching rules and 

the order of performance. Additionally, the determination 

of the information content of utilizing network flow measures 

was ascertained by a comparative analysis with the traditional 
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measures and the workload balance measures. This knowledge 

will give insight into the general job shop problem and to 

the reason that both researchers were able to provide 

increased shop effectiveness with their contributions to the 

field. 

This research is presented in the following chapters. 

Chapter II provides an overview of a job shop with defini­

tions and gives a review of the relevant literature. 

Chapter III discusses performance measurement and describes 

the measures collected in this research. Chapter IV explains 

the simulation model used in this research, the validation 

process and the design of the experiment. Chapter V presents 

the results of the experiment and the comparative analysis 

performed. Chapter VI gives the conclusions of the research 

and recommendations for extensions of this work. 
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CHAPTER II 

OVERVIEW OF JOB SHOP AND REVIEW OF THE 

RELEVANT LITERATURE 

2.1 Job Shop Overview 

2.1.1 Job Shop Definitions 

A job shop in this research has been considered a 

machine/production shop, although it could have just as 

easily been defined as the scheduling of hospital patients 

(jobs) on a limited number of test equipment (machines), or 

the scheduling of jobs through various operations of a 

computer installation. The usage of terms in this paper need 

to be given for clarity since there is little standardization 

in the terminology of scheduling. In fact, some people 

disagree that sequencing and scheduling can be the same 

thing, although in this research they are considered equiva­

lent. When one is willing to assume that the processing 

times are known and that there is no allowed idle time, then 

a sequence designates a schedule. Herein the jobs are 

engineered before they enter the shop so the processing times 

are known and no idle time is permitted. Therefore the terms 

are synonomous. 

Other terms which may need clarification are given 

below: 
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(1) Operation-- the basic unit of work or most 

elementary task. 

(2) Job--the product of this shop, the entity which 

is processed through the shop. A job consists of one or 

more operations. 

(3) Machine--the work center where the operations 

are performed. A work center can have fixed or variable 

capacities. 

(4) Pure job shop--a shop in which all orderings of 

operations through the shop are equally likely. 

(5) Flow shop--a shop in which one or more orderings 

through the shop have higher probability of selection. 

(6) Stochastic job shop--this definition is taken 

from Elmaghraby [17]. The probabilistic elements enter into 

the system in one of three forms: (1) the set of n jobs is 

dynamically varying in a stochastic fashion; (2) the require­

ments of each job (concerning route, processing times, due 

dates, etc.) vary stochastically; (3) the characteristics of 

the processors (availability, suitability, number of 

processors, etc.) change stochastically. The first two 

requirements apply to this research. 

(7) Deterministic job shop--a shop in which the 

requirements in (6) above do not hold. 

(8) Job pool--a holding area, either implicit or 

explicit, for jobs to remain until conditions in the shop 

dictate their being released for processing. The jobs arrive 
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at the pool in random fashion. 

(9) Dispatching rule--the decision rule or queue 

discipline used to select the next job out of queue for 

processing. The discipline by which the sequence is 

generated. 

(10) Release--a job released to the shop has completed 

its engineering and has been given to the shop for processing 

at the first machine of the job's ordering. The release of 

jobs to the shop is a random process. 

(11) Loading--the release of one or more jobs at a 

time from the pool to the shop for processing at the first 

machine of the job's required operations. 

(12) Shop balance--a shop oriented performance 

criteria that endeavors to spread the workload evenly over 

all machines or over time. 

The job shop in this research could have been addressed 

in terms of classical network theory. Figure 1 illustrates 

the network of a three machine job shop which has a super 

source and a super sink. The work flow along the arcs would 

be in terms of work rate per scheduling period. The arcs 

would be capacitated with zero as the lower bound, and the 

maximum machine capacity per scheduling period, as the upper 

bound. However, classical network theory was not used. 

Instead, traditional terminology and methodology of scheduling 

as applied to simulation was employed. 

The shop in this research is dynamic since jobs 



Figure 1. A Job Shop Network Diagram 
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arrived in a continuous stream with the arrival process 

being random. The static case where all jobs arrive 

together for processing has been studied by others. To 

summarize the process for the jobs in this shop: The job has 

a predetermined number of operations, a path for the job has 

been chosen, processing times at each machine are known, and 

a due date is assigned. Upon release, or loading, each job 

competes for the available facilities and its path is 

independent of the sequence required for any other job. That 

is, these jobs are "engineered" before they are released to 

the shop for processing. 

2.1.2 Assumptions 

A real job shop is a relatively complex sociological 

unit of man and machines, and is usually a key department in 

the company. Possibly in some companies the shop is so 

instrumental to the operation that the existence of problems 

are not apparent to a manager because dysfunctional adjust­

ments are made in other areas to compensate for the shop's 

shortcomings. As a result, when shop difficulties are over­

come, then the other problems surface and need solution. In 

the age of computers with improved information systems and 

advancement in the techniques of operation research and 

management science, much of the slack has been taken from 

production systems and excesses in inventory, thereby 

necessitating better decisions in scheduling the shop 

production. 
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It is really not surprising that researchers have 

proposed models for their studies that tend to make the shop 

appear unrealistic. However, even with these simplifying 

assumptions, there are no complete solutions. A general job 

M 

shop with N jobs and M machines has (N!) different schedules 

possible. E. H. Bowman [8] claims a linear programming 

solution to one version of the problem, coupled with an 

apology that the approach is not a practical one. 

The following list of simplifying assumptions apply 

to this research. 

(1) No machine may process more than one operation 

at a time. 

(2) Each operation, once started, must be performed 

to completion (no preemptive priorities). 

(3) Each job, once started, must be performed to 

completion (no order cancellations). 

(4) Each job is an entity; that is, even though the 

job represents a lot of individual parts, no lot may be 

processed by more than one machine at a time. This condition 

rules out assembly operations. 

(5) A known, finite time is required to perform each 

operation and each operation must be completed before any 

operation which it must precede can begin (no "lap-phasing"). 

The given operation time includes setup time. 

(6) The time intervals for processing are independent 
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of the order in which the operations are performed. (In 

particular, setup times are sequence-independent and 

transportation time between machines is negligible.) 

(7) In-process inventory is allowable. 

(8) Machines never break down and manpower of uniform 

ability is always available. 

(9) Deadlines (due dates), if they exist, are fixed. 

(10) The job routing is given and no alternative 

routings are permitted. 

(11) There is only one of each type of machine (no 

machine groups). 

(12) Each job has a certain number of operations, each 

of which can be performed by only one machine. 

(13) Each job may be processed more than once by a 

machine. 

(14) Each machine in the shop operates independently, 

and thus each machine is capable of operating at its own 

maximum rate of output. 

2.2 Literature Review 

The review presented here will not attempt to cover 

in depth what has been done in the field of scheduling, 

but there are several comprehensive reviews that have been 

written and would suffice for that purpose. In a work by 

Sisson [59] the methodology of sequencing is discussed. 

Meller [39] concentrates on the period after 1957 and primarily 
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discussed formulation and solution of scheduling problems 

which have provided significant contributions to the field. 

Gere [22] examines heuristics in job shop scheduling in his 

review. Moore and Wilson [42] review the simulation approaches 

to the job shop problem, covering the period after 1957. 

Detailed coverage of scheduling theory can be found in a 

book by Conway, Maxwell, and Miller [15], and a book by Ashour 

[3] is another comprehensive source. 

The literature search has revealed a list of more than 

200 articles that cover the range of scheduling theory and 

its application. However, since most of them deal with 

specific sequencing problems vis a vis the general problem, 

only a limited number will be mentioned in order to provide 

an overall understanding of the field. 

There are several ways that the literature could be 

classified. 

(1) According to criterion 

(a) job oriented 

(b) shop oriented 

(2) According to arrival pattern 

(a) static--all jobs available at time zero 

(b) dynamic--jobs arrive in a continuum stream 
and according to a specified distribution, 
in this case, poisson or random 

(3) According to job routing 

(a) flow shop--all jobs have same route through 
the shop (a special case is the assembly 
line) 
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(b) job shop--jobs have completely random route 
through the shop (sometimes called pure job 
shop) 

(c) mixed shop--jobs have nonidentical routes 
through the shop, but each route is not 
equally likely. 

(4) According to number of machines 

(a) one machine in the shop 

(b) two machines in the shop 

(c) three or more machines in the shop 

(5) According to the methodology 

(a) analytical approaches 

(b) simulation approaches 

Here the literature will be classified according to methodology. 

2.2.1 Analytical Models 

The analytical flow models and analytical job shop 

models are primarily dynamic programming, branch and bound, 

algebraic, integer programming, enumeration, queueing and 

graph theoretic. Johnson [33] provided work in minimizing the 

maximum flow time for a job in a two machine shop. This is 

also termed the make span for a job. The shortest processing 

time (SPT) decision rules provides the optimum results. 

Smith [60] shows that jobs sequenced in order of nondecreasing 

processing times also optimizes the one machine case when the 

criteria is make span. The SPT rule (Conway, [15]) has also 

been found to minimize average completion time, average 

number of jobs in process, average waiting time and mean of 

lateness distribution. These results are of no surprise since 
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Little [35] provided the rigorous proof that the mean number 

of jobs in the system is equal to the product of the mean 

time between arrivals of two consecutive jobs and the mean 

time spent in the system by a job. Mitten [41] showed that 

SPT also minimizes the two machine flow shop with lag, i.e. 

when there is required time between the completion of 

processing on one machine and beginning of processing on the 

next machine. Other work with make span as the criterion is 

presented by Smith and Dudek [59] in which they have devel­

oped a generalized algorithm for optimizing a flow shop with 

no passing. 

The initial work dealing with a branch and bound 

technique for scheduling is credited to Ignall and Schrage 

[25]. They worked with flow shop models and provided 

algorithms for solving three machine problems using job 

related criteria. Lomnicki [36] found an exact solution to 

the three machine problems using branch and bound techniques 

with make span as the performance measure. Brooks and 

White [9] have also done work in the generalized job shop 

with branch and bound approaches. 

Ashour [3] has provided results in branch and bound 

approaches, graph-theoretic approaches, decomposition 

techniques, and other analytic approaches. Similarly, 

Conway [15] has provided many analytic solution procedures 

for static and dynamic shops in both the restricted flow 

shop and the general job shop. Johnson [33] and Bellman [7] 
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have solved the two machine flow shop with no due dates 

using the criterion of minimizing the total time to process 

all jobs. Johnson has shown theoretically that the optimum 

case will occur as an extension of the two machine procedure 

although the optimizing algorithm for three machines has not 

been found. He further demonstrated that the procedure does 

not extend to the four machine case. Bellman [7] has 

approximated the discrete sequencing problem with continuous 

functions and says, "the importance of my result is that it 

shows that the three stage dynamic programming process 

presents a genuinely difficult problem." 

Bowman [8] has modeled the problem for solution by 

linear programming techniques and claims to have solved the 

problem, although the solution technique is not practical 

for application. Wagner [65] and Manne [37] have used 

integer linear programming techniques with job oriented 

criteria, but like Bowman, the methods are computatively 

prohibitive for realistic problems. 

Some results are available on the analytical work 

done in approaching the job shop as a network of queues. 

Burke [10] presents his initial work on queues and proves 

the intuitive conjecture as stated by Morse [40] that the 

efflux (output) from a single - channel, exponential service 

channel, fed by poisson arrivals, must be poisson with the 

same rate of arrivals. Jackson [29] generalizes these 

results for a network of queues. He states that when the 
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following assumptions hold, then the machine centers are 

independent. Jackson's assumptions are: 

(1) Jobs are assigned to machines M on a first come-

first served basis. 

(2) Arrivals from outside the shop are in a poisson 

type time series. 

(3) A job leaving one machine center goes to another 

or is finished according to a probability distribution 

associated with the center it is leaving. 

(4) Process times are exponentially distributed. 

This means that the job shop acts like a collection of 

independent waiting lines. Jackson [28], as an extension 

to the above work, provides the equilibrium joint probability 

distribution of queue lengths for a broad class of queueing-

theoretical models representing multi-purpose production 

systems. 

Weber [66] gives the exact steady state solution for 

a two machine flow shop with unlimited queue length and 

attempts to extend the procedure to the three machine case. 

However, he found that adding a unit of capacity to any 

queue changed the relationship between the previously 

existing probabilities so that no general expression of the 

solution could be written. However, given the capacities 

of all the queues, then a solution could be found using the 

same procedure. This finding has impact in this research in 

that it provides sufficient grounds for the adoption of the 
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simulation approach. By extending Weber's work to this 

system, it can be deduced that no general solution exists. 

Actually, this is evident since the queue lengths fluctuate 

with time, and only probablistic statements can be made 

about their length. Weber's work also adds credence to 

Jackson's usage of simulation as "experimental mathematics." 

Chesborough [11] discusses the output of queueing systems 

considering single server systems, tandem systems, and tandem 

systems with feedback. Conway [15] states, "a harsh critic 

could conclude that there are no network queueing results." 

2.2.2 Simulation Models 

The simulation of the operation of a job shop has 

added new dimensions to the realism of the models being 

studied. Managers are usually not willing to have a 

controlled experiment conducted with their shop, but they 

have at least allowed the study of the operation to ascertain 

representative time distributions. The time distributions 

are then used to model the shops mathematically, and then 

with simulation. Simulation has proved to be a very 

effective technique for studying the dynamic shop. Primarily 

in these studies, the objective has been to analyze the 

response of various job oriented performance criteria to 

different local dispatching rules. Sisson [57] reviews the 

early work in simulation, while Moore and Wilson [42] 

comprehensively summarize the results of many digital 

simulation experiments seeking principles of scheduling design 
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valid for job shops. They report that the most encouraging 

aspect of the simulations to date is that their findings 

are consistent. 

Baker and Dzielinski [4] and Jackson [30] made some 

of the early attempts at simulating the job shop. Others 

making early contributions were Nanot [44] and LeGrande [34]. 

Nanot was careful in designing his experiment with respect 

to the time series analysis of his data, whereas the 

statistical validity of LeGrande's work may be suspect. An 

idea by Ackerman [1] was that jobs spend most of their 

actual shop time in queue, rather than in processing. 

Therefore, attention needs to be given to the number of 

queues a job has to enter. He developed even-flow which is 

a method for reducing lateness in job shops. Trilling [63] 

developed a shop simulator for networks and considered 

assemblies and disassemblies which is a relaxation of one of 

the normal assumptions. 

Gere [22] has done work with a simulator that not 

only has incorporated the traditional priority dispatching 

rules, but additionally has considered several heuristics 

or rules of thumb that add another dimension of realism, as 

well as to provide improvement. Pettit [49] contrasts the 

usage of simulation as a study tool to its use for opera­

tional production scheduling. Nelson [48] has developed an 

interactive scheduling model incorporating heuristics for 

the due-date problem in a realistic shop. The program 
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allows a human scheduler to interact with the model to 

improve schedules and modify the problems descriptions in 

an attempt to arrive at a satisfactory solution. Schwartz 

and Schriber [53] present a "state of the art" paper 

illustrating their approach to the scheduling problem with 

GPSS/360. The paper includes logic flow charts and a 

program listing to demonstrate the compactness of the model 

in comparison to others. 

Undoubtedly the most extensive experimental work with 

simulation has been done by Conway [13,14,15]. Conway has 

considered many dispatching rules and their interaction with 

numerous performance criteria. This investigation was 

conducted under various shop sizes, flow patterns, work in 

process levels, and other variable parameters. His work is 

considered the benchmark to many studies and as such, 

comparison to his work is made as a step in model validation. 

Deane [16] developed a machine oriented performance 

criterion to measure the deviation of machine utilization 

from its mean during each period. Additionally, he tested 

a shop oriented balance measure that is based on variation 

of the overall shop utilization. Coupled with these job 

independent criteria, he developed a new dispatching 

methodology which is a periodic search procedure that guides 

work to underloaded machines. This means that jobs that can 

make the largest contributions toward reestablishing work­

load balance at underloaded machines are given high priorities 
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in their present operation. This dispatching methodology 

is dynamic since any job moved ahead in priority has an 

effect in the selection of future jobs. Using this dispatching 

methodology and the machine balance criteria, Deane was able 

to show significant improvement in his results. Essentially 

Deane administered a controlling mechanism to the flow of a 

shop that has an uncontrolled random arrival process. 

Irastorza [26] developed a loading and balancing 

methodology for job shop control. He used Deane Ts model as 

a starting point and modified it to incorporate a pool of 

jobs prior to release into the shop. Then, by employing a 

linear approximation for a mixed integer problem, he 

developed an algorithm to decide which jobs to load into the 

shop from the pool. His control methodology to the random 

arrival process resulted in significant improvement to 

balance criteria, job related criteria, and to work in 

process criteria. 

In searching the literature for relevant research, 

there were no studies found that directly investigated 

measures of network parameters and how they varied across 

the dispatching rules. Hence, this research is unique in 

that the purpose is to ascertain which existing dispatching 

rules can be used to enhance the effectiveness of the net­

work measures and afford the shop manager with another 

capability of controlling his production runs. 
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CHAPTER III 

PERFORMANCE MEASURES AND DISPATCHING RULES 

3.1 General 

In a production shop, an objective of planning is to 

integrate the machine capability with the work load in 

order to enhance the shop's effectiveness, while simultan­

eously meeting customer desires. The effectiveness is 

determined by some measure of performance defined in terms 

of quantifiable criteria, which ultimately is reflected in 

terms of cost or profit. Performance measures are the 

objective criteria in the scheduling problem. The measures 

have traditionally been descriptive of some salient factor 

of the particular production shop. Therefore, they are 

varied according to production factors (minimum production 

time, minimum idle time), economic factors (minimum work in 

process), or measures relating to job characteristic or 

function (minimum job lateness, minimum job tardiness). 

More recently, measures of shop balance (machine workload 

balance, shop workload balance) have been studied. The 

rationale is that the shops have been engineered to have a 

certain machine composition. Then the machines are grouped 

into centers which are organized so that work will be 

uniformly distributed over the shop. The balance measures 
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determine the deviation from the planned load at the various 

centers, and then adjustments to reduce this deviation are 

made with the dispatching methodology. 

This research is investigating yet another class of 

measurements that is well known, but has not been used in 

regard to the scheduling problem. This class of measurements 

(herein referred to as network flow measures) describes in 

some manner the flow of work, or jobs, through the shop. 

Primarily then, various dispatching methodologies have been 

used to enhance these network flow measures. As stated, the 

purpose of this research has been to identify relevant 

measures of discrete network flow and to determine the 

results as all conditions are held constant, except the 

dispatching rule. Armed with this information, a comparative 

analysis with the traditional measures and balance measures 

has been conducted to ascertain the applicability of the 

network flow measures. 

Many dispatching rules were examined for inclusion 

in the study, but the number of rules is as varied as one's 

ingenuity to manipulate weighted sums of rules, ratios of 

rules, and other manners of composition. Therefore, the 

rules used in this research were limited to those that have 

been shown to yield satisfactory performance for realistic 

criteria. That is, they have been used in actual shops, in 

many studies, and they are not limited in applicability to 

specific organizations. Thus, the findings of this research 
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will have more generality with regard to the decision rules 

and will not be limited in scope to an esoteric subset of 

applications. Specifically, the dispatching rules were the 

decision variables which were varied while all other condi­

tions were held constant allowing for the collection of the 

experimental data for the performance criteria. Thus, the 

changes in the performance criteria were directly attributable 

to the isolated decision variable. 

3.2 Performance Measures 

The statistics on three categories of performance 

measures which were collected in this simulation model will 

be discussed in this section. A list of the measures used 

are provided below in Table 1. The definition and mathe­

matical expression for measures 1-15 can be found in 

Appendix A. The measures which have been called "variance" 

are misnomered, in that there is no statistical significance 

of the term. The intent has been to describe the form of 

the equation used in evaluating the measure. 

Shop criteria are measures characterized by their 

relation to the shop or machines. They have been used as 

variables in the balance measures discussed below. Addition­

ally, shop utilization is treated as a given parameter in 

this research. It is a function of the arrival rate and the 

random number generator with its inherent variation. Two 

levels of utilization have been examined in the research. 



Table 1. A List of the Performance Measures Used 
in This Research 

1. Average Shop Utilization 

2. Average Number of Jobs in Shop 

3. Average Number of Operations for 
Jobs in the Shop 

4. Average Work (Hours) Done for 
Jobs in Shop 

5. Average Work in Process (Hours) 

6. Time Spent in the System 

7. Time Spent in the Shop 

8. Average Job Tardiness 

9. Variance on Job Tardiness, Average 

10. Average Lateness 

11. Variance of Lateness, Average 

12. Machine Balance Measure 

13. Shop Balance Measure 

14. Queue Workload Balance 

15. Period Queue Balance 

16. Variance of Waiting Time Per 
Operation, Average 

17. Average Queue Length in Number of 
Jobs (Shop) 

18. Variance of Queue Length in Hours 
of Work, Average (Machine) 

19. Variance of Interarrival Times, 
Average (Machine) 

20. Variance of Interarrival Times 
(Shop) 

21. Variance of Work Arrived Per 
Period, Average (Machine) 

22. Variance of Work Arrived Per 
Period (Shop) 

23. Variance of Output, Average 
Machine 

24. Variance of Output (Shop) 
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Measures two through eleven are the traditional 

measures used in this research. They consist of two broad 

classes of measures, those being work-in-process and due date 

criteria. These measures are related to job attributes, i.e., 

they are characterized by their relation to jobs. These job 

related measures will distinguish between the jobs and are 

related to their position in the sequence. 

These traditional measures are particularly signifi­

cant to management because when jobs are failing to meet the 

due date criteria, then higher costs ensue. These costs take 

the form of customer dissatisfaction, contract penalty costs, 

manager and executive time being used up in telephone calls, 

expediting and extra correspondence, and possibly special 

production runs which means additional set up cost and 

improper, inefficient use of the shop, equipment and manpower. 

However, to meet the due date criteria all the time, the in 

process inventory criteria must be maintained at higher 

levels. Clearly, what is needed and typically desired is a 

balance or trade off between the two classes. Without the 

balance, inventory holding costs will be high, possibly even 

necessitating additional warehouse space. In instances where 

the shop's objective is to repair items that bring the revenue 

into the company, the higher the in waiting inventory, the 

less revenue can be produced. 

There are relationships between the various traditional 

measures and they are explained in detail in Conway [15] and 
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Ashour [3]. Some of these relationships are briefly discusse 

below. Any dispatching rule that minimizes flow time will 

maximize utilization. The mean number of jobs in the shop 

is directly proportional to the mean flow time for a given 

schedule period. Other relationships from the measures 

above are that the lateness for job k is equal to the differ­

ence in completion time and the due date. Also, lateness 

for job k is defined as the difference in flow time and 

allowance time where allowance time for job k is equal to the 

difference in due date and release time. The mean value of 

each of these is given by dividing by the number of jobs. 

Further, we know that completion time of job k is defined 

as the sum of release time, processing time, and waiting time 

From a little algebraic manipulation then we see that late­

ness is also defined as the sum of all processing time and 

waiting time minus the allowed time. Now, mean release time, 

mean due date, mean allowance time, and mean processing time 

are known and constant after the simulation so that any 

schedule that is optimal with respect to lateness is also 

optimal with respect to due date, flow time, and waiting 

time. In fact, Conway [15] says that if the set of waiting 

times for machine i and job k is known, then the schedule is 

completely specified and that the goodness of any schedule 

is completely a consequence of the values of the waiting 

times. 

Four balance measures, numbered 12 through 15, have 
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also been collected for evaluation in this research. The 

effect of "balancing" the shop on the traditional performance 

measures has been studied by Deane [15] and Irastorza [24]. 

Shop or machine balance measures are based on the fact that 

shops are designed with a certain machine mix and capacity 

and should operate most efficiently when these conditions 

are satisfied. Thus, these measures will measure the 

deviation either from planned machine or scheduled period 

workload. According to Irastorza, these measures do not 

allow compensation or negation between overloaded or under­

loaded machines, shop or time period. Primarily, the 

balance measures concerned with time periods are when shop 

utilization is predictable. There is no one best balance 

measure, but as with the traditional measures, the determi­

nation of which ones to use is dictated by the shop, product, 

or management policy. 

The Machine Balance Index is the average variance of 

the machine utilization over time. The index is of primary 

use when it is significant to consider the utilization or 

work contribution at individual machines or work centers. 

If it is used to maintain balance, the measure will not allow 

under utilization on one machine in a time period to compen­

sate for the over production of another machine in the 

previous period. This measure can best be utilized where 

there are several machines at a work center to insure there 

is no labor wasted by partial utilization of a machine group. 
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The Shop Balance Measure is the variance of work 

done in the shop taken over the schedule time. One might 

desire to use this measure if there is diversification in the 

type work that each worker can do. Thus, in a shop with a 

great deal of flexibility, a given job can be moved from one 

machine to another without incurring a big penalty. There­

fore, the significance is that the work be distributed evenly 

over the machines or work force for a given period. 

The Queue Workload Balance Index is the variance in 

the number of jobs at each machine over time. When a shop 

lacks the flexibility in the assignment of job operations 

to machines, then this measure could be used. Another 

instance when this is more desirable is when stability is 

important for the amount of work in process during a schedule 

period. 

The Period Queue Balance Index is the variance of 

queue length in number of jobs for all machines over time. 

This measure is similar to the Queue Workload Balance Index, 

but it takes into account the variation of the load to the 

shop over the scheduling horizon. 

The remaining measures studied here, numbers 16 

through 24, have been termed network flow measures. They 

were designed to measure some aspect of the system or flow 

of jobs through the system. With the exception of variance 

of the waiting time per operation, there is little evidence 

in the literature of these measures being used as objective 
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criteria for production shop. Since these measures reflect 

system operation conditions without direct concern with job 

attributes or management policy, they have been studied to 

examine their interaction with the dispatching rules. 

The definitions and mathematical expressions for the 

network flow measures are given below. These definitions 

and expressions are numbered to be consistent with Table 1. 

The notation where not clear from the context can be found 

in Appendix A. 

16. Variance of the Waiting Time Per Operation--The 

average waiting time per operation for each machine is 

calculated first and then the variance of the waiting time 

for each machine is calculated. An overall average for the 

variance is then calculated. 

1 a 

W. = - E W. -• 
i a . i,l 

?  "I  a  —  ? 

g
c

 - x v fur _ u r "\ 

w: 
•i " a^T ±lx c

w

i , r
w

i ) 

2 1 ? 2 
a = — E a • 
w m wi 

17. Average Queue Length in Number of Jobs--This is 

the ratio of the sum of the queue length in number of jobs 

over all machines and all periods to the product of the 

number of machines and number of periods. 



32 

i m P 

r =

 ih A ^ 

18. Variance of Queue Length in Hours of Work--This is 

the ratio of the sum over every instant of time of the work 

in queue to the total time. The "variance" of queue length 

in hours is determined for each machine and then an overall 

average is calculated. 
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19. Variance of Interarrival Time, Average for Machine 

i--This is the ratio of the sum over all jobs of the difference 

in time between this arrival and the previous arrival, to 

the number of jobs processed on machine i. The "variance" 

for the interarrival time of machine i is calculated and 

then averaged over all machines. 

n. 
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20. Variance of Interarrival Time--The average inter 

arrival time for each machine in the shop is calculated. 

The "variance" of the interarrival time is then determined. 
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21. Variance of Work Arrived Per Period, Average for 

Machine i--This is the ratio of the work arrived to machine 

i in period j , to all the periods. The "variance" of the 

work arrived is next found for each machine and then an 

overall average variance for a machine is calculated. 



22. Variance of Work Arrived Per Period for the 

Shop--This is the average of the work arrived per period to 

the shop over all machine and periods. The variance of the 

work arrived to the shop is then calculated. 
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23. Variance of the Output Per Period, Average for 

Machine i--This is the ratio of the sum of the output for 

machine i over all periods to the total number of periods. 

The variance of the output for machine i is calculated and 

then all machine variances are averaged. 
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24. Variance of the Output Per Period for the Shop--

This is the output of all machines per period summed over 

all periods and divided by the number of periods. The 

variance of the shop output per period is the calculation. 
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Average queue length in number of jobs was selected 

as a criterion because of the relationship proved by Little 

[35], see Chapter II. Similarly, the average queue length 

in hours of work was selected as a network criterion with 

the rationale that processing times for the operations vary 

and thus, more information might be gained by using the 

hours of work, rather than the number of jobs. The measures 

of the variance of interarrival times were selected because 

they were thought to be good indicators of smooth flow in 

the network. Similarly, the variance of the work arrived 

per period to the shop was hypothesized to be an indication 

of a constant flow of work over a scheduling period. The 

variance of output measures are also used to determine a 

steady flow of work through the machine centers and the shop. 

Analyses have also been conducted to determine if 

there is the same information content in the network flow 
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measures as in those previously used, and whether they 

could be substituted for the traditional measures or balance 

measure in order to reach the same conclusions. Also, the 

ranking of the decision rules across each class of measures 

has been determined and studies done to determine the agree­

ment or disagreement in classes of measurement. 

3.3 Dispatching Rules 

The dispatching rules were the independent variable 

in this research. The purpose, as stated, has been to study 

the interaction of the performance criteria with the 

dispatching rules. Since the dispatching rule is the 

principle method of controlling the flow of jobs through the 

shop, the relationship of each measure across the rules had 

to be known. Once the ranking of the rules was determined, 

then for a particular measure achieving a good schedule for 

these rules is simply to apply the rules in rank order. 

However, for multiple criteria or across classes of criteria, 

the ranking of the rules has not been known previously. 

Dispatching rules are classified according to their 

transient characteristics and the breadth of the information 

required to employ them. A static rule is one in which the 

jobs are not selected over time, i.e., once the job order 

has been determined it does not change. A dynamic rule, on 

the other hand, does change as a function of time, but as 

imagined, it requires information about jobs competing for 
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service at a particular machine. A global rule requires 

information about other machine centers and waiting lines. 

Clearly, local rules are easier to implement and usually 

cost less to use because less information is required. 

The number of dispatching rules is unlimited and left 

to one's ingenuity and cleverness. A list of the most 

commonly used rules in simulation studies is provided by 

Moore and Wilson [42]. Appendix B gives those rules. 

The dispatching rules used in this study are defined 

below with Table 2 showing the relationship among the rules. 

(1) Dynamic Slack (DS)--The job priority is deter­

mined by selecting the job that has the least time remaining 

for the due date, minus all remaining processing time. 

(2) Dynamic Slack Per Operation (DSOP)--The job 

priority is determined by selecting the minimum of the ratio 

of dynamic slack remaining to the number of operations 

remaining. 

(3) Expected Work in Next Queue (EWIQ)--The job 

priority is determined by selecting the job that has the 

minimum sum of the imminent operation processing times of 

the other jobs in the queue that this job will enter. The 

queue is considered to include jobs now on other machines 

that will arrive before the subject job. 

(4) Shortest Processing Time (SPT)--The job priority 

is determined by selecting the job with the least amount of 

processing time for the imminent operation. 
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Table 2. Dispatching Rule Relationships 

Static Dynamic 

Local First Come, First Served 

Shortest Processing Time 

Due Date 

Dynamic Slack 

Dynamic Slack Per 
Remaining Operation 

Global Expected Work in Next 
Queue 

**Dynamic Slack Among 
All Imminent Jobs 

**Not used in this research--illustrative only 
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(5) Due Date (DD)--The job priority is determined by 

selecting the job with the earliest due date. 

(6) First Come, First Served (FCFS)--The job 

priority is determined by selecting the minimum of the time 

the jobs enter the machine queue. 

There is no known dispatching rule that gives optimal, 

or even good schedules, across all performance criteria for 

the general job shop. This is certainly understandable since 

criteria have antithetical characteristics, such as dispatching 

rules do. An example for criteria is the inverse relation­

ship between due dates and work in process levels. An 

example for dispatching rules is first come, first serve 

versus last come, first serve. However, there are some 

performance criteria for specific job shops for which the 

best dispatching rule is known. Many of these results were 

mentioned in the literature survey, but they will be reiter­

ated now in the context of this chapter. 

With regard to scheduling problems where there is a 

limit to the size in either number of jobs or number of 

machines, or where there is some restriction to the flow 

throughout the shop, then sequencing by the shortest processing 

time rule has given optimal results for several criteria, and 

at least good results for others. Specifically, for the n 

job, 1 machine problem, SPT is known to minimize total 

completion time, average completion time, average number of 

jobs in process, variance of the number of jobs in the shop, 
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average waiting time, and average lateness. For the n job, 

2 machine case, SPT will minimize the make span with or 

without lag. In the case of the n job, 3 machine flow shop 

with make span as the criterion, SPT will give the optimal 

results. For the n job, m machine flow shop, again SPT will 

minimize both make span and idle time on last facility. As 

SPT was used by Conway [13,14,15], Nanot [44], LeGrande [34], 

Dzielinski [4], and Nelson [48] in simulation experiments, 

the efficacy of SPT was demonstrated in the general job shop 

model. Conway [15] devoted one entire experiment to SPT 

characteristics and capabilities. 

The other rules do not have as many results reported, 

but their worth for some criteria is known. First come, 

first serve has been shown to minimize the variance of the 

flow time and waiting time in experiments by Conway [13,14,15], 

Nelson [48], and Nanot [44]. Conway and Nanot showed that 

FCFS was better than SPT above the .95 fractile for the flow 

time distribution. Conway has also employed the SPT and 

FCFS rules in linear combination and switching between the 

two, and has shown good results with the flow time distri­

bution. Jackson's [29] network decomposition principle is 

applicable to the FCFS rule. 

In the Conway and LeGrande work, the variance of the 

completion distribution has been minimized by dynamic slack 

per operation rule in combination with SPT, but DSOP alone 

gave good results. Conway has also found that DSOP gives 
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good results in minimizing the number of jobs with positive 

lateness. 

For the one machine problem with minimizing the 

maximum tardiness, sequencing by ordering the jobs by due 

dates has given superior results. Gere [22] tested conjec­

tures about the effectiveness of dispatching rules for the 

same measure of performance. He considers all rules that are 

functions of the job file as scheduling rules {e.g. DS, DSOP, 

SPT, DD, EWIQ) whereas all rules that are not functions of 

the job file are merely priority rules (e.g. FCFS). Gere's 

results of interest to this research are given below: 

Conjecture 1: A scheduling rule whose priority 

function is not a function of the job file is no more 

effective than a purely random rule. The results were not 

conclusive, but FCFS performed better than purely random, 

although not significantly. 

Conjecture 3: (a) If several jobs have different 

numbers of operations, job slack per operation is more 

effective than job slack. Job slack was somewhat better 

than job slack per operation, but there was a small sample, 

(b) Otherwise, job slack per operation is not less effective 

than job slack. With the same number of operations, both 

rules performed equally well. 

Conjecture 4: If the jobs have different due dates, 

a job slack ratio rule (job slack hours divided by hours 

remaining until due date) is more effective than job slack 
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per operation. The conjecture was refuted. 

Conjecture 6: (b) The shortest imminent operation 

rules (length of next operation) is less effective than job 

slack for the dynamic problem. The conjecture was supported, 

job slack was significantly more effective. 

Conjecture  9 : The look ahead heuristic is effective 

(look ahead to determine if any jobs are critical with 

respect to due date). The conjecture was supported. 

Other results are reported, but it is not intended 

to present a comprehensive survey of the known results. 

Rather, the intent has been to familiarize the reader with 

the capabilities of the rules in conjunction with a few 

performance measures. This research will give one a much 

broader look at six common rules with many criteria. 
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CHAPTER IV 

DESCRIPTION OF THE SIMULATION MODEL, THE VALIDATION PROCESS, 

AND DESIGN OF THE EXPERIMENT 

4.1 General 

The simulation model used in this experiment was 

originally designed, written, tested, and used by Deane [16] 

to study the workload balance measures and to develop his 

flow controlled scheduling methodology which enhances these 

measures. Irastorza [26] extensively modified this model to 

incorporate the job pool concept coupled with a linear 

approximation to a mixed integer programming algorithm for 

loading the shop from this pool. He was able to show 

improvement in both the workload balance measures and the 

traditional measures. As explained in Chapter I, these two 

experiments prompted this research. Since the determination 

of the cause for improvement is of the essence, the same 

model used by Irastorza was used here with only slight modifi­

cation. These modifications dealt only with the collection 

of the data, and not with the operation and logic of the model 

The process for authenticating the model for this 

research was a time consuming, but relatively easy task. Once 

the model was successfully running, the problem was reduced 

to identifying and setting the variable conditions and the 
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random number seeds used by Irastorza to produce his 

results. With this accomplished, the output, including the 

same random number series, duplicated exactly the output 

found in the dissertation [26]. 

Although the task of model verification and validation 

was simplified for this thesis, the model actually underwent 

quite extensive scrutiny to insure its adequacy. These 

results will be highlighted in the following sections. 

4.2 Description of the Simulation Model 

4.2.1 Concept of a Job Pool 

In most job shop studies, the jobs are engineered and 

are sent to the first machine in their sequence as soon as 

they arrive in the shop. This causes undue length and 

fluctuation of the queues at the machine centers as well as 

high work in process levels. However, it has been found 

that in actual shops in several industries that the shop is 

not loaded with every job that becomes available. Some jobs 

are held back whenever they cannot immediately contribute to 

the improvement of the shop, and subsequently released to 

the shop whenever it is beneficial. This serves to keep 

backlogs off the factory floor, balance the workload through­

out the shop, keep work in process at lower levels, and 

speed jobs through the shop, although additional time is 

spent in this holding area. 

Over extended periods of time the amount of work 
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arriving to the shop cannot exceed the capacity of the shop 

or stochastically there would be an "explosion"; that is, 

the queue lengths at the machine centers would move to 

infinity. But over short periods of time the total work 

arriving may well exceed the capacity and disrupt the 

smooth, balanced operation. A method to prevent this disrup­

tion is the job pool developed by Irastorza [26]. Essentially 

the jobs all enter a pool which is in "front" of the shop 

and are then loaded into the shop each scheduling period in 

batches as determined by a loading algorithm. Whenever the 

due dates are not critical, additional benefit is derived by 

the increased flexibility in job selection. 

Irastorza developed two such loading algorithms, one 

which uses a linear approximation for a mixed integer program, 

and another which employs heuristics. The objective of both 

algorithms is the improvement of shop balance and work in 

process measures, while operating under due date constraints. 

This objective is accomplished by minimizing the deviation 

from the desired total load for each machine center and the 

actual load. The desired load is set by management and 

provides control over the production operation. 

The mixed integer programming approach has equality 

constraints based on the current workload at each machine 

center. The use of positive and negative slack variable for 

excess and lack of work as compared to the desired load make 

the constraints equalities. The program then minimizes the 
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sum of these slack variables. An additional term is in the 

objective function to insure the due date constraints are 

met. For more control and flexibility other constraints can 

be used to increase or restrict the amount of work in the 

shop, at a work center or groups of work centers. The loading 

algorithm provides an optimal solution for loading the shop 

with respect to its objective function, but not in a general 

sense. 

The heuristic loading approach loaded jobs from the 

pool if the first operation made a contribution to the queue 

of a machine that was underloaded. For example, for any 

given underloaded machine, jobs for that machine were taken 

from the pool according to most imminent due date until the 

machine reached its desired load or there were no more jobs 

destined for that machine. An optional feature was to 

continue adding jobs to the shop according to due date until 

the total shop desired load was reached. This would put 

some machines beyond their desired load while others remain 

underloaded because no jobs were available for them in the 

pool that scheduling period. 

4.2.2 Parameter Description 

The job shop modeled was of a general nature and did 

not attempt to mirror a specific shop. The parameters used 

were in the ranges of those that can be found in many 

industries and are thus not restrictive in nature. The 

selection of a ten machine shop was made because it exhibits 
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enough interaction and combinatorial complexity to adequately 

represent a real world process while being economical with 

computer time requirements. 

The arrival process to the system was poisson and the 

interarrival distribution has a mean of 1.88 hours, and was 

truncated at 40 hours. Using the arrival rate and setting 

the other parameters resulted in "fixing" the shop utilization 

at approximately 81%. Thus, an average of 4.25 jobs arrived 

to the shop in an eight hour scheduling period. These same 

distributions were used in research by Conway [13,14,15], 

Nanot [44], and Jackson [27,32]. 

The jobs had an equal chance of starting their proces­

sing on any of the ten machines. The remaining operations 

of the machines were generated with a probability transition 

matrix such that each machine had an equal probability for 

the subsequent operation, regardless of which machine they 

were on during the current operation. This type of machine 

assignment is characteristic of the pure job shop. 

The processing time per operation was generated with 

a truncated exponential distribution with a mean of 2.48 

hours, but no operation was completed in less than one hour 

or lasted longer than nine hours. The number of operations 

for a job was generated once a job arrived at the shop. The 

distribution is shown below in Table 3. 

A job due date was assigned to each job as it entered 

the shop. The due date was determined by adding the current 
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Table 3. Number of Operation Assignments 

Number of Operations Probability of Occurrence 

4 .15 

5 .20 

6 .30 

7 .20 

C
O
 

.15 

time and the work content of the job plus a random number 

generated from the uniform distribution between 0 and 150. 

The foregoing paragraphs have described the parameters 

of the model. Now the simulation program will be discussed. 

The model was written in the GASP II language which was 

developed by Pritsker and Kiviat [50]. This simulation 

language is a collection of Fortran IV subroutines designed 

to run discrete event simulations. Because of this design 

characteristic, it is very appropriate for use in a job 

shop application. The basic GASP II routine performs those 

functions of simulation that are independent of a particular 

problem. The user himself must write the subroutine to model 

the processes relating to his application. The primary 

functions handled by the GASP II subroutines are the 

maintenance of the simulation clock, the handling of 
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independent files, the ranking of elements in the files, the 

placing and removing of elements from the files, the random 

variable generation, and the maintenance of the simulation 

to include the production of summary output. A complete 

description of the GASP II language is available in [50]. 

The operation of the job shop simulator is shown in 

Figure 2. A description of the user programs written for 

this simulation are given in Appendix C. The Fortran IV 

list of the subroutines changed for this research are found 

in Appendix D. For a complete listing of the model, see 

Irastorza [26] , Appendices B, D, and E. Appendix E is a 

listing of simulation output. 

4.3 Model Verification and Validation 

The design of the simulation experiment and the 

validation process conducted by Irastorza will be discussed 

in this section. The verification of the model is to show 

that the simulation model operates as the experimenter 

intends. Validation is to show the agreement between the 

behavior of the simulation model and a real system. To 

insure that proper statistical design was employed, there 

are several books that provide comprehensive tests. These 

books are by Naylor, Balintify, and Chu [46], Schmidt and 

Taylor [51], and Tocher [62]. As a guide to complement 

these books are the works of other researchers, e.g. 

Deane [16] , Conway [15] , and Nanot [44] , and papers in the 
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literature, e.g. Fishman [18] and Van Horn [64], 

The problems of primary concern in the verification 

process include testing the random number generator, 

starting conditions, run in period, run length, and number 

of replications. 

The random number generator used in this model 

employs a 17 bit multiplicative congrential method. The 

general formula is: 

N^ +^ = AN^ (mod m) 

where A - 5 and m = 2 
17 

The maximum attainable period with this generator is 32,768. 

This model needs close to 30,000 random numbers for each run. 

The random number generator was tested for goodness of fit 

to a uniform distribution, first order serial correlation, 

total number of runs, and number of runs of each run length. 

This research uses 5 of the 12 seeds that passed all of 

these tests. 

The starting conditions are a general consideration 

for attaining equilibrium and in conjunction with the run in 

period will render the simulation in steady state. There 

is no known way to determine good starting condition. Some 

use the final conditions of a run for the initial conditions 

while others guess at representative conditions. The closer 
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one comes to the equilibrium state, then the less time 

required for run in. Nanot [44] cautions against a typical 

starting condition such as starting with an empty system 

or starting with the expected equilibrium values. This 

model preloads the shop with a number of jobs that would 

give approximately the same number of hours of work in 

process in the shop as the hours of work in process observed 

at the end of several trial runs. 

The run in period serves two purposes: (1) to render 

the state probability distribution independent of the 

starting conditions, (2) to insure the system is stationary 

before taking statistics. Deane [16] says that without a 

run in period, the first jobs leaving the system will have 

biased statistics. The run in period used was 400 hours 

(50 periods) during which 175 jobs traversed the shop 

(approximately 1200 operations). This number of hours was 

determined by comparing the statistics from several runs of 

different lengths. Also, this number satisfies the rule of 

thumb (Tocher, [62]) that the operation with the longest 

cycle be executed three or four times. The longest cycle 

in this model is the time a job spends in the shop, and as 

stated, 175 jobs left the shop during the run in period. 

The determination of run length is to attain a 

balance between unnecessary variability in the results and 

excessive computer run time. Tocher [62] says that the 

variability associated with the measurements of even very 
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simple simulation models is discouragingly large. However, 

the analysis that is desired is the relative comparison of 

results, rather than absolute results. The run length is 

kept at manageable length by using identical events sequences 

The sequence depends only on the seed used in the random 

number generator and, therefore, is exactly reproducible. 

This enables the experimenter to reproduce identical condi­

tions to test different alternatives. This is a situation 

the physical experimenter can only approach and never achieve 

A run length of 4000 hours (500 periods) reduced the 

variance of the measures considerably compared to a run 

length of 800 hours (100 periods). Longer runs would have 

required more computer time and it was not justified since a 

relative analysis was to be made. 

The number of replications was determined from a 

practical point of view, rather than an analytical one. The 

tradeoffs are the precision desired in the results and the 

computer time available. Since in this research and the one 

conducted by Irastorza, the intent is to compare the values 

of a group of statistics, it was not practical to say that a 

certain precision was required and then determine the number 

of runs required to achieve it. Instead, the quantity of 

five replications was selected as acceptable to both points 

of view. Another related consideration is whether successive 

runs should be started with new random number seeds, or 

whether they should be started with the final calculation of 
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one run as the beginning of the next one. The advantage of 

the first approach, and the one used here, is a reduced 

chance of autocorrelation. The second approach eliminates 

the need for a run in period in the second and succeeding 

replications as well as providing good starting conditions 

for each replication after the first one. 

The validation process should be one of comparing the 

results obtained from this model to real shop data. Since 

this was not possible, it is fortunate that there are other 

job shop models that have been verified and reported in the 

literature. The validation for this model was conducted by 

comparing the results from this model to the results 

reported by Conway [14] and Deane [16]. The comparative 

analysis indicated the reasonableness of this job shop model. 

A detailed description and test results of the design 

of the statistical experiment and validation can be found 

in the dissertation by Irastorza [26]. 

4.4 Design of the Experiment 

The primary purpose of this research has been to 

investigate the differences in discrete network flow 

patterns as the dispatching rule changes, and to compara­

tively analyze the effectiveness of network measures with 

the traditional measures and the shop balance measures. This 

experiment was conducted with three different loading 

approaches to the shop; uncontrolled, pool with mathematical 
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algorithm, and pool with heuristic algorithm. The three 

different loading approaches provided a capability to isolate 

the arrival process for investigation. A total of five 

replications, each dependent upon a different random number 

sequence, was made for each loading approach using each of 

the six dispatching rules. A total of 90 runs was required. 

For a higher shop utilization, the experiment was 

conducted with only two loading approaches, uncontrolled and 

pool with mathematical algorithm. The primary purpose of 

this portion of the research was to determine the effect of 

higher utilization on the performance measures; that is, 

whether or not they deterioriate in capability to measure 

effectiveness. To accomplish this test, it was necessary 

first to investigate the differences in network flow as the 

dispatching rule changed as in the main experiment. A 

comparative analysis of the performance measure for each 

class was also made. The due date dispatching was omitted 

in this segment of the research. A total of 50 runs were 

necessary for this additional test. 

Another determination that was available to be made 

was the applicability of Jackson's decomposition principle 

when other than first come, first served queue discipline 

was used. For answering this question all loading approaches 

were employed with a different machine and random number 

sequence for each. Using FCFS the distribution of the 

interarrival times to the selected machine was tested to 
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insure the data conformed to the negative exponential distri­

bution. With this verified, the other dispatching rules 

were tested using the same machine and random number 

sequence. 

The statistical hypotheses and the techniques that 

were used for testing them are discussed below. 

(a) To test the null hypothesis that there were no 

significant differences in dispatching rules, the Kruskal-

Wallis nonparametric one-way analysis of variance (ANOVA) by 

ranks was used. The Kruskal-Wallis test assumes that the 

variable under study has an underlying continuous distribution 

It requires at least ordinal measure of that variable. The 

test has 95.51 of the power to the parametric ANOVA. The 

test was applied to each of the performance measures for 

each loading approach. A total of 120 tests were required 

for the low and high utilization studies. 

(b) To test the null hypothesis that any pair of 

performance measures did not have the same information content 

the nonparametric Spearman rank correlation coefficient was 

calculated for each pair of measures. Rejection of the null 

hypothesis determines that the two variables are associated. 

The technique requires that both variables be measured in at 

least an ordinal scale so that the variables under study may 

be ranked in two ordered samples. A total of 828 coefficients 

were calculated. 

(c) To determine the most efficient order of 
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employing the dispatching rules for each measure, the mean 

value for the five replications were used to rank the 

dispatching rules. Thus, only a simple ranking was achieved 

and significant statistical differences were not tested. 

(d) To determine the most efficient order for using 

the dispatching rules for a set of performance measures, a 

binary comparison procedure for combining multiple sets of 

ordered data was employed. The comparison of the ordering 

of a class of performance measures to another class can be 

made visually from Table 9 in Chapter V. 

(e) To test the null hypothesis that the interarrival 

times to a machine center conforms to an exponential distri­

bution, the Chi-square goodness of fit was used. 

(f) To test the null hypothesis that there was no 

difference in the effectiveness of performance measures at 

higher levels of utilization than at lower levels, the 

Spearman rank correlation coefficient was calculated between 

each criterion at the low utilization with each criterion 

at the high utilization. A total of 576 coefficients were 

calculated. 

The statistical tests used in this study have been 

primarily nonparametric. Many of the performance measures 

studied have dealt with the "variance" of a factor; thus, a 

normality assumption for the data could not be justified. 

However, the tradeoff for relinquishing some of the power of 

the parametric tests is in the generality in which the 



58 

conclusions can be stated. The procedures for all of the 

nonparametric tests except the binary comparison procedure 

are covered comprehensively in Siegel [56] to include a 

description of the method, the rationale, procedures, an 

example with small sample size, and an example with large 

sample size. The binary comparison procedure is explained 

in [2]. 

All results from the simulation runs are contained 

in Appendix F. The next chapter describes the results of 

the experiment. 
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CHAPTER V 

RESULTS AND ANALYSIS OF THE EXPERIMENT 

5.1 General 

The results of the computer simulation runs will be 

discussed in this chapter. The statistical tests performed 

have been summarized and are presented in tables to provide 

a complete picture of the relationships found. The most 

significant results are discussed where appropriate. The 

chapter has been divided into six sections. The second 

section discusses the dispatching rule differences and the 

order for efficient application of the rules for various 

performance measures. The third section will discuss the 

analysis of the information content of performance measures 

and the effect of the loading approach on the measures. The 

fourth section is devoted to the results of the binary 

comparison procedure. Section five discusses the results 

with high utilization. The final section will present the 

findings pertaining to the Jackson decomposition principle. 

5.2 Dispatching Rule Differences and the Order 

For Efficient Application 

To provide the statistical information for testing 

for the differences in dispatching rules for each performance 

measure the Kruskal-Wallis ANOVA was applied. The average 
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shop utilization was determined to be of no significant 

difference, which indicates that the parameter was held 

constant as intended across the replications and the 

dispatching rules. For each of the performance measures in 

each loading approach, the ANOVA was calculated and the 

results appear in Table 4. In this set of calculations, it 

was desired to have significant differences and such was the 

case for all but two of the measures. The variance of 

interarrival times, average (machine) indicated differences 

in the dispatching rules for the uncontrolled arrival process, 

but for the other two loading approaches the results did 

not indicate sufficient differences. The math pool had a 

computed "H" of 14.27 compared with the critical value of 

size .05 of 11.07. But, for size .01, the critical value 

was 15.09. The pool heuristics approach had still less 

differences between dispatching rules with a computed "H" of 

7.44. The suspected reason for this lack of differences is 

that the pool will have some effect in smoothing the arrival 

process to the shop. Since the pool attempts to minimize 

the deviation between desired workload and actual workload 

regardless of the inherent fluctuations caused by the 

dispatching rule, more jobs will be sent to underloaded 

machine thereby smoothing the interarrival distribution. The 

variance of interarrival times (shop) was found to have the 

exact results as the other interarrival time measure, but 

this is not surprising in view of the way the measures were 
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Table 4. Kruskal-Wallis "H" Values for Dispatching 
Rules--Low Utilization 

No Math Pool 
Pool Pool Heuristics 

1. Average Shop Utilization 3. 94 6. 67 5. 09 

2. Average Number of Jobs in Shop 26. 45 26. 94 26. 84 

3. Average Number of Operations For 
Jobs in the Shop 27. 42 26. 83 26. 94 

4. Average Work (Hours) Done for 
Jobs in Shop 27. 42 26. 72 26. 82 

5. Average Work in Process (Hours) 26. 71 26. 87 26. 72 

6. Time Spent in the System 26. 04 26. 75 25. 75 

7. Time Spent in the Shop 26. 04 26. 89 26. 72 

8. Average Job Tardiness 26. 03 15. 52 26. 75 

9. Variance of Job Tardiness, Avg. 24. 54 20. 77 25. 38 

10. Average Lateness 25. 00 26. 75 25. 67 

11. Variance of Lateness, Average 26. 41 26. 74 26. 83 

12. Machine Balance Measure 17. 82 16. 09 12. 12 

13. Shop Balance Measure 22. 16 24. 12 23. 59 

14. Queue Workload Balance 26. 09 26. 87 25. 45 

15. Period Queue Balance 18. 27 17. 15 19. 41 

16. Variance of Waiting Time Per 
Operation, Average 24. 71 26. 80 24. 94 

17. Average Queue Length in Number 
of Jobs (Shop) 26. 51 27. 05 26. 86 

18. Variance of Queue Length in Hours 
of Work, Average (Machine) 23. 95 18. 16 20. 76 

19. Variance of Interarrival Times, 
Average (Machine) 18. 33 14. 27 7. 44 

20. Variance of Interarrival Times 
(Shop) 18. 35 14. 27 7. 39 

21. Variance of Work Arrived Per 
Period, Average (Machine) 21. 38 23. 70 16. 09 

22. Variance of Work Arrived Per 
Period (Shop) 24. 03 25. 39 24. 04 

23. Variance of Output, Average 
Machine 16. 89 18. 69 22. 89 

24. Variance of Output (Shop) 23. 53 24. 02 23. 64 

Critical Values: 
a = .05 H = 11.07 
a = .01 H = 15.09 
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calculated. (See Chapter III.) 

Once it was determined that there were significant 

differences in the dispatching rules, it was desired to 

determine the ranking of the rules in order of efficiency 

for each measure. This was accomplished by using the mean 

of the five replications with the most efficient rule being 

listed first. The efficiency ordering of the dispatching 

rules for each loading approach is in Table 5 and provides 

direct comparison of the rules across the loading approaches 

and across the performance measures. 

Initially, it is interesting to note that the ordering 

of shop utilization appears random for different loading 

mechanisms. For the work in process measures: average 

number of jobs in the shop (2), average number of operations 

for jobs in the shop (3), average work done in hours for 

jobs in the shop (4), average work in process in hours (5), 

time spent in the system (6), and time spent in the shop 

(7), there is similarity in the way the dispatching rules 

should be applied. However, EWIQ is last for measures 3 and 

4, whereas for the other work in process criteria it is 

third. Evidently, EWIQ is fairly effective in lowering the 

levels of work awaiting processing for early operations on 

a job, but it is not getting jobs that are nearing completion 

out of the system. For the due-date measures: average job 

tardiness (8), variance of job tardiness average (9), average 

lateness (10) , and variance of lateness average (11) , three 
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Table 5. Efficiency Order for the Dispatching Rules; 
1-DS, 2-DSOP, 3-EWIQ, 4-SPT, 5-DD, 6-FCFS--
Low Utilization 

No Math Pool 
Pool Pool Heuristics 

1. Average Shop Utilization 
2. Average Number of Jobs in Shop 
3. Average Number of Operations 

for Jobs in the Shop 
4. Average Work (Hours) Done for 

Jobs in Shop 
5. Average Work in Process (Hrs) 
6. Time Spent in the System 
7. Time Spent in the Shop 
8. Average Job Tardiness 
9. Variance of Job Tardiness, 

Average 
10. Average Lateness 
11. Variance of Lateness, Avg. 
12. Machine Balance Measure 
13. Shop Balance Measure 
14. Queue Workload Balance 
15. Period Queue Balance 
16. Variance of Waiting Time Per 

Operation, Average 
17. Average Queue Length in 

Number of Jobs (Shop) 
18. Variance of Queue Length in 

Hours of Work, Avg. (Machine) 
19. Variance of Interarrival 

Times, Average (Machine) 
20. Variance of Interarrival 

Times (Shop) 
21. Variance of Work Arrived Per 

Period, Average (Machine) 
22. Variance of Work Arrived Per 

Period (Shop) 
23. Variance of Output, Average 

Machine 
24. Variance of Output (Shop) 

513624 125364 153642 
543162 543612 543162 

541263 541263 451263 

541263 541263 451263 
543126 543162 543162 
543162 543612 543612 
543162 543612 543162 
215436 541236 215436 

125643 125643 125463 
543162 543612 543612 
126543 126543 216543 
126453 126453 216435 
162453 126453 126453 
543162 543612 453162 
541236 541623 541362 

654123 654123 654123 

543162 543612 543162 

316254 612345 316245 

162345 162345 613245 

162345 162345 613245 

321654 316245 321654 

126345 126453 126354 

541623 451623 456123 
162354 126453 126453 
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of the measures 8, 9, 11 would use the dispatching rules in 

one order for the best results, but measure 10 would do 

something different for the best results. Measure 10 

resembles the ordering encountered in the work in process 

measures, (2-7). The difference in the ordering for measure 

10 is a surprise since there is a direct relationship 

between tardiness and lateness. Possibly, this difference 

between measures 8 and 10 can be attributed to the manner 

in which tardiness is calculated, that is, tardiness is 

equal to the maximum of zero and lateness. Thus, lateness 

can range down into the negative numbers whereas tardiness 

is limited by zero on the lower side and lateness on the 

upper side. This truncation effect could result in the 

observed differences. Also, DD attempt to meet all due 

dates in the shop, enabling lateness to perform well since 

it is the difference in flow time and allowance time. The 

dynamic dispatching rules, on the other hand, look for jobs 

with the least slack and thus, move jobs ahead when their 

slack becomes critical. Neither of these arguments however, 

explain why DS is best for the uncontrolled loading and DD 

is best for the mathematical pool unless one considers that 

the pool attempts to maintain a desired workload in the shop 

and meet all due dates. This reasoning is supported by the 

results with the pool heuristics since it only moves jobs 

from the pool when a machine center is underloaded, thus 

enhancing uniformity of network flow. The variance measures, 
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9 and 11, are inversely related to measure 10 in that 

dispatching rules that perform well with lateness as the 

criterion such as SPT, also disturb the smooth flow of the 

shop operation, creating sporatic work flow and thereby 

increasing the variability of this measure. This conjecture 

is supported by the observation that measures 9 and 11 have 

different rankings than measure 10. 

The balance indices: Machine Balance Index (12), 

Shop Balance Index (13) , Queue Workload Balance Index (14), 

and Period Queue Balance Index (15), provided antithetical 

results. Measures 12 and 13 would use the dispatching rules 

in one order and measures 14 and 15 would use nearly the 

opposite order. The difference between measures 12 and 13 

with measures 14 and 15 is easy to understand when one 

examines the mathematical formulation. The first two 

measures, 12 and 13, are indices of the work done, implying 

uniform work flow. Thus, since the work has been accomplished, 

the queue lengths are short. Measures 14 and 15, on the 

other hand, are indices of the queue length in number of jobs, 

and the work to be done is awaiting processing and due 

dates become more critical. Hence, an inverse relationship 

can be seen for if the work is in queue, then it could not 

possibly have been completed and vice versa. Still this 

inverse relationship was not suspected until this analysis, 

as it was thought that the balance indices would give 

substantially the same results. 
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The network flow measures defined for this research 

have given mixed results as was anticipated and desired. 

The network flow measures are: variance of waiting time per 

operation, average (16) , average queue length in number of 

jobs (17), variance of queue length in hours of work, average 

(18), variance of interarrival times to a machine, average 

(19), variance of interarrival times to the shop, average 

(20), variance of work arrived per period to a machine, 

average (21) , variance of work arrived per period to the 

shop (22), variance of output for a machine, average (23), 

and variance of output for the shop (24). Measure 16 is the 

only measure that uses FCFS first and beyond that, the only 

measure that has a similar application for the dispatching 

rules is 23. Measures 17 and 23 are used in about the same 

order and they correspond to the work in process measures, 

average lateness, and partially to the balance measures. 

Measures 18 and 21 are used in about the same order. In 

fact, they are the only measures that use EWIQ first. There 

is no apparent correspondence with any other measures. 

It is reasonable that the look ahead dispatching rules 

would perform best with criteria 18 and 21 since they are 

both oriented to the variance of hours of work at a machine. 

This rule, by its inherent capability to ascertain the future 

workloads at the machine centers, will tend to smooth the 

work flow, thus reducing the variance of hours of work at 

the machine in the next period. Measures 19, 20, 22, and 24 
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are very similar in the ordering of the rules and show 

strong correspondence to the ordering of measures 9, 11, 12, 

and 13. Measures 19, 20, 22, and 24 are all measures that 

are indicative of uniform work flow, and since the other 

measures 9, 11, 12, and 13 have been seen to perform best 

with dispatching rules that produce uniformity of flow; i.e. 

the dynamic rules, it is evident that the rankings should 

be similar. 

Now let us reverse the role of the performance 

criteria and dispatching rules to determine which performance 

criteria to use, given that a dispatching rule has been 

selected. For the dynamic rules it has been observed that 

the uniformity of network flow has been enhanced. Thus, to 

measure this uniform work flow, the network flow criteria, 

19, 20, 22, and 24 would provide good measures of a steady 

flow. The uniform flow, however, will create higher work in 

process levels in order to maintain the uniformity. These 

higher work in process levels would be detrimental to the 

work in process criteria which attempt to move the work 

through the shop quickly and at low levels of work in process. 

Similarly, one could expect due date measures, 8, 9, and 11 

to provide good results due to their inverse relationship 

with the work in process criteria as previously discussed. 

Balance measures, 12 and 13, also perform well when uniform 

work flow is important. Where the DD rule is used, possibly 

because of high penalty costs for late jobs, or if customer 
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satisfaction is paramount, then the work in process criteria 

have been shown to be good. Again, this is because they are 

enhanced by fast flow of work through the network which 

results in highly variable network flow. SPT has been shown 

to be similar to the DD rule in that this rule moves work 

through the system rapidly, but at the cost of increasing 

the variability of network flow. Where FCFS is employed 

because of its ease of implementation and implicit fairness, 

the network flow measures which indicate uniformity of 

processing would perform well as the performance criteria. 

However, for this rule, the variance of the waiting time has 

given the best results. 

Many criteria can be selected for a given rule with 

the use of Table 5, not only by using the positive relation­

ships, but also by utilizing antithetical techniques. The 

foregoing discussion has been primarily intended to interpret 

the effect of the rules on the flow of work. 

The analysis has shown that for the various performance 

measures, each of the dispatching rules has been best for 

some of the measures. This fact is of interest in that it 

corresponds to findings in other studies found in the litera­

ture. The only major exception to the results is that SPT 

is not the best dispatching rule for time spent in the shop, 

average number of jobs in the shop, average work in process, 

and average lateness as indicated in Table 5. This can be 

attributed to the function for the due dates; that is, too 
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much time could have been allowed for the jobs from their 

release time until their due date. These loose due dates 

would enable the DD rule to be highly efficient as is demon­

strated. For the work in process measures, one would expect 

the ordering of the rules that has resulted since these 

measures all attempt to move the work through the shop fast, 

and at low levels. Recall the discussion in Chapter III 

about the inverse relationship between work in process and 

due date criteria; thus, a different order is expected. Even 

the result that DS would be best in that category is expected 

because of the manner in which DS operates directly with the 

due date. The conjectures of Gere listed in Chapter III are 

also reflected in the results obtained. EWIQ is the better 

dispatching rule for minimizing the variance in measure 18 

and in measure 21, yet measures 14 and 15 that attempt to 

balance the queue lengths have better results with DD and 

SPT. This could be attributed to the fact that EWIQ does 

not attempt to balance. Rather, it selects the job that will 

move to the queue with the least work. When an order for 

all measures was determined, except for DD as explained 

above, the fact that DS was better than SPT again supports a 

conjecture of Gere's that for the dynamic shop, DS is better 

than SPT. 
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5.3 Analysis of the Information Content 

of the Performance Measures 

The primary purpose of this research has been to 

investigate the differences in discrete network flow patterns 

under various dispatching methodologies and to identify 

relevant measures of network flow. This section will focus 

on the results with regard to the capability of the network 

flow measures to provide the same information as the tradi­

tional measures and the balance indices. The Spearman rank 

correlation coefficient was used to determine the association 

of two measures. Since the ordering of the rules was not of 

primary importance here, all 30 observations for each perfor­

mance measures for each loading approach was used to compute 

the coefficients. Two levels of significance were used: 

for size .01, r g = 0.4250 and for size .001, r g = 0.5490. 

Both positive and negative correlations were determined. 

Table 6 contains the results for the uncontrolled loading 

approach. Table 7 displays the results of the mathematical 

pool. Table 8 has the results for the pool heuristics. The 

results of this correlation study coupled with the efficient 

ordering of the dispatching rules, reveals considerable 

redundancy in the information content of the performance 

measures. Each performance measure but one has been found 

to correlate positively at size .001 across the loading 

approaches. The one exception was the correlation of the 

variance of work arrived per period, average (machine). 
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Between uncontrolled and the mathematical pool, and uncon­

trolled and the pool heuristics, the correlation was 

insignificant at size .001, but the correlation between the 

mathematical pool and the pool heuristics was only signifi­

cant at size .007. 

As expected, there is a high degree of positive 

correlation among the work in process measures. For the due 

date criteria there is high positive correlation in all but 

average lateness. Average lateness has no significant 

correlation with the other due date criteria except the 

variance of the lateness, average and that was negative 

correlation at a significance of size .001. However, average 

lateness was found to have high positive correlation with 

the work in process measures. The balance criteria had high 

positive correlation between the machine balance measure and 

the shop balance measure, but each had high negative corre­

lation with the queue workload balance index and no signifi­

cant association with the period queue balance index. However, 

the period queue balance index and high positive correlation 

with the work in process measures and average lateness. The 

queue workload balance had high positive association with the 

period queue balance index as well as the work in process 

criteria and average lateness. 

The results with the network flow measures were mixed 

similar to the results with the dispatching rules. This was 

expected and the only surprise came with the variance of 
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waiting time per operation, average. Since the mean 

waiting time criteria was known to be good, the second 

moment was thought to be good and as such was formulated as 

a network flow measure. However, it has shown very little 

association at the significance desired with any of the 

other measures. The only high correlation computed with this 

measure was with the variance of the work arrived per period, 

average for a machine, and it was negative. The next worse 

network measure was the work arrived per period, average for 

a machine. It produced high negative correlation with two 

work in process measures and high positive correlations with 

variance of the queue length in hours of work, average for 

a machine. Fortunately, all of the network measures were 

not that deficient in information content. The average 

queue length in number of jobs for the shop had high positive 

correlation with all work in process measures, average 

lateness, queue workload balance index, and the period queue 

balance index. The variance of the output, average for a 

machine had significant correlation with the same measures as 

the average queue length, but the results were mixed between 

significance size .01 and size .001. The remaining network 

flow measures had significant high correlation with part of 

the work in process measures, due date criteria and balance 

indices, but the correlations were both positive and negative 

corresponding in sign, and consistent with the measures 

previously discussed. This is made readily apparent upon 
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examination of the tables. 

5.4 Combining Multiple Sets of Ordered Data 

With a Binary Comparison Procedure 

The solution procedure discussed herein was used by 

Ford [20] in developing his technique for combining sets of 

partially ordered data. The binary comparisons procedure 

is a method for determining a single rank order for the 

problem in which there is less than perfect agreement by all 

judges. 

A win-loss matrix, A, is computed for each set of M 

judges and their preferences for N objects. The matrix can 

be represented as: 

0 a12 a13 I N 

a21 0 a23 '2N 

A = a31 a32 0 a3N 

aMl aM2 A M 3 

In the matrix, a^j represents the number of times 

object i has been preferred to j. The win-loss percentage 
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for object i is computed as the sum of row i observations 

divided by the sum of the observations in row i and column i. 

A computerized program for computing the win-loss matrix was 

developed by Andrews and Pelz [2] and used in this research. 

Using this procedure with the program, not only is an overall 

ranking of the goals provided, but in addition, the relative 

magnitude of the win-loss percentages provide more insight 

into how much one object is preferred to another. These 

percentages are seldom on an equal interval continuum as 

provided in most scoring models. 

To ascertain the composite ordering of the rules for 

similar groups and also to determine overall ordering for 

classes of measures, the binary comparison procedure was 

applied. The composite results show the final rankings for 

groups of measures and eliminates minor inconsistencies. 

The results in Table 9 are for groups of measures that have 

a high degree of similarity in information content and for 

the known classes of measures. Direct comparison can be made 

for any measure from Table 5 to the selected groups. 

Additionally, the win-loss percentage as computed is given 

from the win-loss matrix which is indicative of the degree 

of preference between dispatching rules. 

The rankings for the work in process measures and 

criteria from other classes were consolidated in combination 

2. The composite ranking was the same for this group as it 

was for the work in process measures. However, for the 



Table 9. Efficiency Ordering of Dispatching Rules 
with the Win-Loss Percentages 

No Pool Math Pool 

Criteria 
Combination 

Order Win -Loss % Order Win- Loss % 

1 2,3,4,5,6,7 541362 * * 
> > • 778 ,. 667 , . 278 ,. 278 543162 * * 

y  > • 
667 ,. 611,. 500 ,. 222 

2 2,3,4,5,6,7,10, 
14,15,17,23 

541362 * * 
> > • 788 ,. 667 ,. 303,.242 543162 . 982 , 

.345, 
.818, 
.109 

.382, .364, 

3 8,9,11 125643 .933, 
. 267 , 

. 867 , 

.067 
. 533, .333, 125463 .867 , 

.333, 
.667 , 
. 069 

.667, .400, 

4 8,9,10,11 125463 .800, 
.300, 

.650, 

.200 
.650, .400, 512463 .750 , 

.350, 
. 700, 
. 200 

. 500, . 500 , 

5 18,19,20,21,22, 
24 

162354 .900, 
.100, 

.667 , 

.100 
.633, .600, 162345 .933, 

. 267 , 
.733, 
. 067 

.633, .367 , 

6 12,13,14,15 154263 . 750, 
.400, 

.600, 

.200 
.600, .450, 154623 . 700, 

.450, 
.600, 
.150 

.600, . 500, 

7 8,9,11,12,13 126543 .960, 
.320, 

. 800, 

.040 
.480, .400, 125643 . 920, 

.400, 
.920, 
. 040 

.480, .440, 

8 8,9,11,12,13,19, 
20,22,24 

126543 . 978 , 
.244, 

.733, 

.200 
.600, .244, 126453 .956, 

.311, 
.711, 
.111 

. 556 , .356, 

Universally Superior 
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loading approaches there was a difference in the ranking of 

EWIQ (3) and DS (1), which is attributable to DS being 

better than EWIQ, FCFS, and DSOP in the uncontrolled loading 

approach than in the math pool approach. The win-loss 

percentage of EWIQ is the same for both loading approaches 

whereas, DS has a higher win-loss percentage in the 

uncontrolled approach than in the math pool approach. 

For the due date criteria in combination 4, there is 

a difference in the rankings for the loading approaches. For 

the uncontrolled loading the DD rule is third, but in the 

math pool the DD rule is first. Upon examining the individual 

rankings, one sees that the DD rule was first in three due 

date measures for the math pool which is caused by the loading 

algorithm meeting the DD constraints. In the uncontrolled 

approach, the dynamic rules perform better than the DD rule 

since the dynamic rules enhance uniformity of flow enabling 

better performance to be realized for these measures. The 

win-loss percentages for combination 4 in the math pool are 

generally lower than without the pool which is indicative of 

more inconsistencies in individual rankings. 

For the workload balance class of criteria the 

difference in composite ranking is between positions four 

and five where DSOP and FCFS are interchanged. Similar 

rationale as used above would explain the differences; 

however, since the win-loss percentages for these rules is 

low in both loading approaches neither rule would be 
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suggested for use. 

Over all the composite rankings DS has attained the 

highest win-loss percentage in six of the eight combinations. 

Even in the other two composite rankings it had a high 

win-loss percentage although DD and SPT were universally 

superior. Since this rule will reduce the variability of 

network flow as well as maintain workload balance and 

produce good results with the due date criteria it might be 

the best rule to use for overall shop performance. The work 

in process levels would probably be a little higher, but DS 

has also been shown to perform well with those measures. 

This result with DS supports the conjecture of Gere [22] 

that the dynamic slack rule will give good performance in 

the dynamic shop. 

5.5 Results of the Experiment with High Utilization 

At the high level of shop utilization, the capability 

of the performance criteria to measure effectiveness is of 

primary concern. The higher utilization was obtained by 

increasing the parameter of the interarrival time distri­

bution from .53 to .60, and resulted in a utilization of 

approximately 91%. Additionally, the desired management 

load factor for the job pool was increased from 4.25 to 

6.00, which enables a more realistic evaluation of the 

process, since the loading algorithm works on the deviation 

of the actual shop load with the desired shop load. Clearly, 
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the load is increased by the change in the parameter of the 

interarrival time distribution. 

The first test applied to the data was to determine 

if there was a significant difference across the dispatching 

rules for each measure in each loading approach. The results 

of the test are contained in Table 10. There were three 

measures, 12 and 21, for the uncontrolled loading and 18 

for the math pool, that had no difference at size .01. One 

of them, 12, had no significant difference at size .05. 

Measure 12 had a computed "H" statistic of 3.64 compared with 

the critical values of 9.49 for size .05 and 13.28 for size 

.01. Measure 18 had a computed "H" statistic of 13.09 and 

measure 21 also had a computed "H" statistic of 13.09. For 

measure 12, this means that the dispatching rule had little 

influence on the overall machine average of the deviation of 

work done on a machine per period to the mean work done over 

time. For measure 18, the dispatching rules had little 

effect on the variability of queue length in hours of work, 

which could be expected, since more work was available to 

process compared with the same service rate. Measure 23 

would suffer because of the same rationale; that is, the 

variance of the work arrived per period for a machine is 

higher and less control is realized by the dispatching rule. 

As previously mentioned, the DD rule was not used in this 

test. Similar to the main experiment, the ranking of the 

rules for each criterion in order of efficiency was next done. 
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Table 10. Kruskal-Wallis 1 H 1 Values for Dispatching 
Rules--High Utilization 

No Math 
Pool Pool 

1. Average Shop Utilization 13. 35 20. 84 

2. Average Number of Jobs in Shop 18. 70 17 . 54 

3. Average Number of Operations for Jobs 18. 85 22. 24 
in the Shop 

4. Average Work (Hours) Done for Jobs in Shop 18. 60 22. 24 

5. Average Work in Process (Hours) 17. 66 14. 94 

6. Time Spent in the System 19. 59 20. 86 

7. Time Spent in the Shop 19. 59 18. 08 

8. Average Job Tardiness 20. 74 19. 81 

9. Variance of Job Tardiness, Average 22. 56 20. 36 

10. Average Lateness 19. 83 20. 77 

11. Variance of Lateness, Average 22. 16 22. 39 

12. Machine Balance Measure 3. 64 19. 28 

13. Shop Balance Measure 18. 42 17. 51 

14. Queue Workload Balance 19. 41 19. 44 

15. Period Queue Balance 15. 39 12. 44 

16. Variance of Waiting Time Per Operation, 22. 16 . 22. 15 
Average 

17. Average Queue Length in Number of Jobs 18. 90 17. 66 
(Shop) 

18. Variance of Queue Length in Hours of 18. 51 13. 09 
Work, Average (Machine) 

19. Variance of Interarrival Times, Average 15. 89 17. 22 
(Machine) 

20. Variance of Interarrival Times (Shop) 15. 82 17. 15 

21. Variance of Work Arrived Per Period, 13. 09 13. 31 
Average (Machine) 

22. Variance of Work Arrived Per Period (Shop) 21. 13 15. 32 

23. Variance of Output, Average Machine 18. 75 15. 12 

24. Variance of Output (Shop) 18. 51 16. 15 

Critical Values 
a = .05 H = 9.49 

a = .01 H = 13.28 
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The rankings can be found in Table 11. An initial observa­

tion is that the ranking of the shop utilization was the 

same, whereas at the low utilization, it appeared more 

random. Possibly, this could be attributed to the random 

number generator more so than the dispatching rules since 

utilization is a measure of the ratio of work load to the 

capacity, which would imply an ordering of the amount of 

work. 

The work in process measures have some variation from 

the rankings obtained at low utilization. Most noticeable 

is that the DSOP and DS rules have moved to the first position 

for measures 2 and 3. For the remaining measures, SPT and 

EWIQ retain their predominance. For the due date criteria, 

only the average tardiness differed significantly from the 

ranking obtained at low utilization. At higher utilization 

SPT moves ahead of DSOP and DS which is understandable because 

there would be less slack time available for each of the 

jobs. Thus, each job would be in more competition with the 

others for selection. For the balance indices, the only 

significant difference is with the Machine Balance Measure 

which obtained a completely opposite ranking as compared to 

low utilization. This result is caused by the lack of the 

dispatching rules to elicit any difference in performance 

and since the rankings are determined by the observation 

mean, it would be suspect to give any meaning to this 

finding. For the network flow criteria there was some 
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Table 11. Efficiency Order for the Dispatching Rules; 
1-DS, 2-DSOP, 3-EWIQ, 4-SPT, 6-FCFS--
High Utilization 

No Math 
Pool Pool 

1. Average Shop Utilization 21643 21643 

2. Average Number of Jobs in Shop 43126 43612 

3. Average Number of Operations for Jobs 21463 24163 
in the Shop 

4. Average Work (Hours) Done for Jobs in 21463 24163 
the Shop 

5. Average Work in Process (Hours) 43126 43162 

6. Time Spent in the System 43126 43612 

7. Time Spent in the Shop 43126 43612 

8. Average Job Tardiness 42136 43612 

9. Variance of Job Tardiness, Average 12643 12643 

10. Average Lateness 43126 43612 

11. Variance of Lateness, Average 12643 12643 

12. Machine Balance Measure 34621 34612 

13. Shop Balance Measure 12643 16243 

14. Queue Workload Balance 43126 43612 

15. Period Queue Balance 41236 46123 

16. Variance of Waiting Time Per Operation, 61243 61423 
Average 

17. Average Queue Length in Number of 43126 43612 
Jobs (Shop) 

18. Variance of Queue Length in Hours of 12634 61243 
Work, Average (Machine) 

19. Variance of Interarrival Times, Average 26134 34621 
(Machine) 

20. Variance of Interarrival Times (Shop) 26134 34621 

21. Variance of Work Arrived Per Period, 32614 36421 
Average (Machine) 

22. Variance of Work Arrived Per Period (Shop) 12634 21643 

23. Variance of Output, Average Machine 42613 46123 

24. Variance of Output (Shop) 21634 61243 
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variation in the rankings with a trend for DSOP and DS to 

give better performance at high utilization than at low 

utilization. Measure 18 had the biggest change, with EWIQ 

moving to fourth from first, and DS and DSOP moving to the 

top of the list. This could be attributed to the increased 

congestion in the shop and fluctuation of queue lengths 

undermining the look ahead feature of EWIQ. 

A comparative analysis of the performance measures at 

the higher utilization was also conducted. This analysis 

was performed by computing the Spearman rank correlation 

coefficient for all pairs of measures for the uncontrolled 

approach and for the mathematical loading approach for the 

data collected at the high utilization. The correlation 

coefficient was also computed for the same measure between 

loading approaches. To ascertain the effect of the high 

utilization on the capability of the criteria to measure 

effectiveness, the rank correlation coefficient between the 

corresponding measures of a loading approach at each level 

of utilization was computed. In order to calculate this 

coefficient the data for the DD rule was removed from each 

set of data at the low utilization. Two levels of signifi­

cance were used throughout this analysis: for size .001, 

r = 0.5980 and for size .01, r = 0.4660. The results of 
s ' s 

this analysis are found in Table 12 for the uncontrolled 

approach and Table 13 for the mathematical pool approach. 

Generally, within high utilization, the results of 
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Table 13. Correlation of Performance Measures--Math Pool--High Utilization 
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this analysis were the same as for the low utilization. There 

was a consistent pattern of correlation between the pairs of 

corresponding measures from the loading approaches similar 

to that found before. However, from the foregoing discussion, 

it is obvious that there are some measures that no longer 

are correlated. There is no longer any correlation between 

average tardiness, variance of interarrival time to machine 

and shop, nor between the variance of work arrived per 

period to a machine. For average tardiness, this corresponds 

to the change in application of the dispatching rules. The 

lack of correlation of the variance of the work arrived per 

period to a machine could be attributed to the inability to 

distinguish between dispatching rules. But the lack of 

correlation between the variances of interarrival time must 

be attributed to the capability of the pool to filter the 

randomness enabling a more effective control of the shop. 

For the individual correlations within a loading approach, 

the first observation is a decrease in the number of 

correlations between the network flow measures for the pool, 

which implies that the pool has an effect on the network 

flow measures. Another observation is that measures 12 and 

21 for the uncontrolled have a distinct lack of correlation 

with the other measures as expected from the Kruskal-Wallis 

test. Measures 17 and 22 still have good correlations 

with the other measures, but measure 23 has deteriorated in 

capability to have the same information content as it did at 
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the lower level. 

With respect to the correlations between levels of 

utilization that will enable a determination of the effect 

of high utilization, the results are good. That is, there 

is not much deterioration in the criteria to measure effective­

ness. For the mathematical pool, there are high correlations 

with all measures except 8, 12, 19, 20, and 21. From the 

previous discussion concerning the pool effect on network 

parameters, it is not surprising that 19, 20, and 21 did not 

correlate. Additionally, there was no difference across the 

dispatching rules for 19 and 20. Measure 8 had little 

correlation with the other measures at low level, but had a 

number of correlations at the high level. For the negative 

correlation computed for measure 12, the author could think 

of no reason that could be justified to account for the 

result. For the uncontrolled approach, there were high 

correlations between all the measures except 12, 18, 19, and 

20. The explanation for measure 12 in this loading approach 

is simply that it did not differentiate between dispatching 

rules at the high level, whereas there was a significant 

difference at the low level. The lack of significant 

association in measure 18 is that the high level had more 

congestion in the system in general and more fluctuation 

in the queue length in hours of work because of the heavier 

workload throughout the system. For the failure of the 

variances of the interarrival times to correlate, the only 
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plausible reason is that the higher utilization reduces the 

amount of variation between arrivals, whereas there is more 

variation at the low level. 

5.6 Jackson's Decomposition Principle 

Jackson's work in networks of queues has been 

previously discussed in Chapter II, but for the benefit of 

the reader, the essential assumptions of the decomposition 

principle will be reiterated. 

(1) Jobs are assigned to machine M on a first come-

first served basis. 

(2) Arrivals from outside the shop are in a poisson 

type time series. 

(3) A job leaving one machine center goes to another 

or is finished according to a probability distribution 

associated with the center it is leaving. 

(4) Process times are negative exponentially 

distributed. 

Given that these assumptions hold, the job shop will 

act like a collection of independent machines that can be 

analyzed individually. 

The first three assumptions were known to hold, but 

the fourth assumption had to be verified. Thus, the 

frequency distribution of the interarrival times was collected 

during the simulation runs for this analysis. For each 

loading approach using different random number sequences, a 
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machine was picked at random and the frequency distribution 

analyzed to determine if it was a good fit to the negative 

exponential distribution. The Chi-squared goodness of fit 

test was used. The results are in Table 14. 

Once the fit of the frequency distribution to the 

negative exponential distribution was verified for the FCFS 

rule, it was desired to ascertain the goodness of fit for the 

other five dispatching rules. Those results are also 

contained in Table 14. 

Of the 18 tests performed to determine the conformity 

of the frequency distribution to the negative exponential 

distribution, only five were rejected by the goodness of 

fit test at size .01, and at size .05 none were rejected. 

The only consistent pattern for the rejection was with the 

DD rule and the mathematical pool missed being rejected at 

size .05 by .47, which could be attributed to the random 

variation in the model. The rejection of the DD rule could 

be attributed to the function which assigns the due date 

since it has already been shown to give results contrary to 

results reported in the literature. For the results with 

the other rules, the author conjectures that (except for the 

DD rule) if the machine centers in a network can be analyzed 

independently, then the dispatching rule has no effect on 

the nature of the distribution of the arrivals to a machine. 

However, the loading approach does have relevance to the 

parameter of the distribution. As seen in Table 14, the 
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Table 14. Statistical Results of Jackson's 
Decomposition Principle. 
Values of the test statistic in 
determining if the interarrival times 
at a machine follow the negative 
exponential distribution. 

No Math Pool 
Pool Pool Heuristics 

Dynamic Slack 38. 66 48 .45 32. 56 

Dynamic Slack/Opn 36. 72 29 . 73 45. 80 

Expected Work in Next Queue 31. 89 40 .93 34. 55 

Shortest Processing Time 29. 95 43 . 03 46. 61 

Due Date 44. 80 43 .33 48. 41 

First Come-First Serve 25. 58 17 .68 32. 55 

Mean Parameter .3315 . 3023 .3091 

Critical Values: 
2 

X .05,30 
= 43.80 

2 
X 

.01,30 — 50.90 
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parameter computed from the data for the two pool approaches 

are lower than that for the uncontrolled arrival process, 

which adds credence to the conjecture that the pool loading 

approaches filter out part of the randomness. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The purpose of this research has been to investigate 

the differences in discrete network flow patterns under 

various dispatching methodologies and to identify relevant 

measures of network flow. This has been accomplished by 

determining which of the network flow measures defined 

contain the same information as previously used measures. 

From the comparative analysis it is now known that network 

flow measures contain as much information as previously 

used performance criteria. The two best network flow measures 

identified in this research are average queue length in 

number of jobs for the shop and the average machine variance 

of the output. These two are called the best because they 

had consistently high positive correlation. However, the 

following network flow measures also had high correlation 

although the association was mixed between positive and 

negative; variance of interarrival times, average for a 

machine; variance of interarrival times to the shop; variance 

of work arrived per period to the shop; and variance of 

output from the shop. All of these measures could be used 

to reduce the variability of work flow in the network. 
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Additionally> several other conclusions are possible 

from this research. This experiment has indicated which 

dispatching rules provide the best results for a given 

performance criterion, a class of criteria or a logical set 

of criteria. This ranking of the tested dispatching rules 

not only has the ordinal ranking, but also the win-loss 

percentage which gives a degree of preference of one rule 

over another. 

From studying the arrival process as varied by the 

loading approach, it has been shown that the ordering of the 

dispatching rules is independent of the loading approach. 

Although not addressed in this research, the job pool concept 

will give better results for a performance measure than with­

out a pool. For details see [26]. The job pool concept is 

an effective variance reduction technique, but does not 

reduce the variance enough to change the nature of the 

arrival process, although it does change the parameter of the 

distribution. 

In this research it was shown that the Jackson decompo­

sition principle also applied to DS, DSOP, EWIQ, and SPT, 

which implies that once a system is verified to have 

independent machine centers, then the dispatching rule has 

no effect on the nature of the interarrival distribution to 

a given machine. The results for the DD rule kept it from 

being included in these remarks. It is not known whether 

the results for DD are attributable to the nature of the rule 
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or the nature of the function used to assign due dates. 

The effect of high utilization on the information 

content of the performance criteria is that generally there 

is no difference. There were some measures that responded 

adversely, but in general, this was not the case. The 

mathematical pool had the most detrimental effect on the 

network flow measures, but there were still measures that 

correlated with previously used criteria. The average queue 

length in number of jobs for the shop remained as the best 

network measure. 

6.2 Recommendations 

There are other areas of research that could be under­

taken as extensions of this research with profitable results. 

Since the network flow measures are known to be as good as 

other criteria in evaluating a schedule, other good network 

flow measures need to be identified. This research focused 

on "variance" type criteria whereas the mean value might 

have been as good or better. 

Jackson's decomposition principle has revealed that 

this model could be analyzed analytically as ten separate 

machines. Possibly as an extension of this research, one 

of the machines could be randomly selected and the model used 

again to generate the job patterns through the shop for 

analysis in the one machine setting. The results could then 

be used to make inferences or generalizations pertaining to 
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the ten machine shop. A complicating factor is the reduction 

of the parameter of the arrival distribution. 

A study similar to this one could be performed as a 

research topic using fewer performance criteria (selected 

from the grouping in this research) and more dispatching 

rules (from Appendix B) to provide more insight into the 

relative power of the rules. Additionally, coupling the job 

pool with the mathematical loading algorithm with Deane !s 

flow controlled methodology could be included to determine 

the effectiveness of the combined approaches. Research of 

this nature could possibly result in dispatching rules that 

produce better performance than attained to date. 

A good loading algorithm for the job pool would be a 

parallel server queueing system with as many servers as the 

shop has machines. The algorithm would necessarily have to 

operate stochastically with state change feedback from the 

job shop. In this case, the variance of the arrival process 

would be reduced sufficiently to disturb the nature of the 

distribution, which could be verified by Jackson's decompo­

sition principle. Research to find such a loading algorithm 

coupled with the job pool that could perform this well, 

would open an entire new realm of study for the job shop. 
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APPENDIX A 

The notion used in defining these measures is 

a number of operations 

h number of hours in a scheduling period 

n number of jobs in the simulation 

P number of scheduling periods 

i subscript for machines 

J subscript for periods 

k subscript for jobs 

1 subscript for operations 

a(t) number of operations done at time t 

A k 
time allowance for job k 

b. 
1 

interarrival time for machine i 

b 1 interarrival time to machine i for shop 

C k 
completion time for job k 

D k 
due date for job k 

e. . 
ij 

output for machine i in period j 

E. 
l 

efflux or output per period for machine i 

F

K 

time spent in the system 

V 

time spent in the shop for job k 

L

K 

lateness for job k 

M. 
l 

machine balance measure index for machine i 

N(t) number of jobs in the shop at time t 
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P. , processing time on machine i for job k 
1 , K 

PQj period queue balance index for period j 

queue workload balance index for machine i 

release time for job k to the system which includes 
the pool, if used 

R^ release time for job k to the shop 

tardiness for job k 

a the form of the equation is the reason for this 
notation. There is no statistical meaning implied. 

w^j work done by machine i in period j 

w.. 1 work awaiting processing in hours for machine i in 
1-J period j 

w(t) work done in hours for jobs in the shop at time t 

w'(t) work awaiting processing in hours at time t 

W- waiting time in queue i for job k (i = o is for the 
' job pool) 

The performance measures are: 

1. Average shop utilization--This is the ratio of 

the total work load to the shop machine capacity for a given 

period. 

1 p m 
w = — Z Z w. . 

P m j-1 i-1 ^ 

u - £ . 100 

2. Average number of jobs in the shop--This is the 

ratio of the sum of the number of jobs for each instant of 
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time to the total time of the simulation. 

1 Z 

N(t) = £ J N(t)dt 

3. Average number of operations performed per job 

in the shop--This is the ratio of the sum of the number of 

operations performed for each instant of time to the total 

time of the simulation. 

1 * 

(t) = i / a(t)dt 
o 

4. Average work done in hours for jobs in the shop 

This is the ratio of the sum of the work done in hours for 

each instant of time to the total time of the simulation. 

1 Z 

w(t) = ^ / w(t)dt 

5. Average work in process in hours--This is the 

ratio of the sum of the work awaiting processing in hours 

for each instant of time to the total time of the simulation. 

A job is in process at any time between the beginning and the 

end of its processing. 

t w'(t)dt 
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6. Average time spent in the system for job k--This 

can be defined in two ways: (a} The ratio of the sum over 

all machines and all jobs of processing time at the 

requisite machines and the waiting time in each machine 

queue prior to processing to the total number of jobs. If 

a job pool is used, the time spent waiting prior to entry 

into the shop must be included, i.e. when i=o, the job is in 

the pool awaiting entry into the shop; (b) The ratio of the 

sum over all jobs of the difference between completion time 

and system release time to the total number of jobs 

_ i m n 

a.  F , = — Z Z (P. , + W. , ) 
k n i-o k-1 1 » k 1 > k 

1  n 

b. F, = - Z (C, - R, ) 

k n v k  k
J 

7. Average time spent in the shop for job k. This 

can be defined in two ways: (a) The ratio of the sum over 

all machines and all jobs, of processing time at the 

requisite machines and the waiting time in each machine queue 

prior to processing to the total number of jobs; (b) The 

ratio of the sum over all jobs of the difference between 

completion time and shop release time to the total number of 

j obs . 
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1 n 

b. F; = - z (c, - R; ) 
k RI • -i k k̂  

i = l 

8. Average job lateness--This is the ratio of 

difference between completion time and the due date of a 

job, or the difference between job flow time and job allow­

ance time to the total number of jobs. 

L, = C, - D, = F, - A, 
k k k k k 

(a) L = i- Z (C, - D, ) 
n k = 1  K  K 

(b) L = i Z ( F K - A,) 
k=l K 

9. Variance of the lateness distribution--This is 

the ratio of the sum over all jobs of the square of the 

difference between each job lateness and average job lateness 

to the total number of jobs less one. 

2 1 n — 2 

L n-1 k = 1

 v k J 

10. Average job tardiness--This is the ratio of the 

maximum of 0 or the job lateness to the total number of 

j obs . 

T , = max (0, L ­ .J 
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T  =  —  Z T, 
n k-i k 

11. Variance of the tardiness distribution--This is 

the ratio of the sum over all jobs of the square of the 

difference between each job tardiness and average job 

tardiness to the total number of jobs less one. 

a T = n^T * ( T k " ^ 
k=l 

12. Machine Balance Measure--This is the "variance" 

in the work done by each machine over all time periods. 

Then an overall index is obtained by averaging overall 

machines. 

1 p - 2 
M. =  —  Z (w.. - w.) 

1 P j=l !J 1 

1 m 

MWB = ~  Z M. 
m . T I 

i=l 

13. Shop Balance Measure--This is the "variance" 

of the work done in the shop as a whole taken over time. 
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14. Queue Workload Balance --This is the "variance" of 

the queue size in number of jobs for each machine taken over 

time. An overall index is then obtained by averaging over 

all machines. 

1 p - 2 
Q. = - Z  CI ­ ­  " 1 0 

1 P j = i !J 1 

1 m 

QWB = - Z Q. x m • -i I 
i = l 

15. Period Queue Balance--This is the "variance" of 

queue size over all machines for each time period. An over­

all index is then obtained by averaging over all time 

periods. 

1 m ? 
PQ. = - Z (1.. - T.) 

J m i = 1

 1 ij iJ 

1 P 

PQWB = ± Z PQ. 
P j =1 J 
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APPENDIX B 

A LIST OF COMMONLY USED DISPATCHING RULES FROM [42] 

1. Random selection for service 

* 2. First-come, first-served 

3. First-in-system, first-served 

4. Last-come, first-served 

* 5. Shortest imminent operation (may include set-up 
considerations) 

6. Static slack: due date minus the time of arrival at 
the machine center 

7. Static slack per remaining number of operations 

* 8. Due date 

* 9. Dynamic slack: due date minus the remaining expected 

flow time minus the current date 

10. Dynamic slack/remaining processing time 

*11. Dynamic slack/remaining number of operations 
12. Two class shortest operation: select first-come, 

first-served within each of two classes defined by 
operation length 

13. Truncated shortest operation: jobs which have waited 
more than k units of time take precedence 

14. Alternate shortest operation, first-come, first-served 

*15. Subsequent operation (look ahead): select job which 
will go to a queue with less than k time units of work 
waiting. Use shortest operation among jobs for the 
critical queue. 

16. Two class truncated shortest operation: take shortest 
operation within critical class based on negative 
dynamic slack; if critical class is empty, take 
shortest operation 
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17. Cost/time: pick critical job (negative dynamic slack) 
by shortest operation; for late, but not critically 
late, pick largest cost of lateness/operation time; for 
early jobs, use shortest operation 

18. Dynamic slack among all imminent jobs: the dynamic 
slack rule is applied to all jobs in the queue and also 
to those jobs that are in process and will join the 
queue after their current operation is complete 

19. Fewest remaining operations 

20. Longest imminent operation 

21. Least work remaining 

22. Most work remaining 

23. Greatest total work for all centers on the routing 

^Dispatching rules used in the research. 
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APPENDIX C 

USER PROGRAMS FOR THIS SIMULATION MODEL 

A description of the user programs written for this 

simulation of the job shop. 

(1) Subroutine ARIVL: This subroutine is called 

when a new arrival time is reached. The subroutine then 

generates the job attributes, number of operations, the 

machine number and processing time for the first operation, 

the remaining sequence of machines and their respective 

processing times, and with the information known, finally a 

due date. The job is then given a file location and placed 

in it. The next arrival time is then generated and the time 

is placed in the GASP file as the next arrival event. 

(2) Subroutine CLEAR: This subroutine reinitializes 

all statistical arrays after a prescribed run-in period without 

disturbing its shop status. 

(3) Subroutine COLL: This subroutine is used at the 

end of every scheduling period. Primarily, it calculates 

and updates the statistics kept on a scheduling period basis. 

When a job pool is used, this subroutine will call the matrix 

generator subprogram. Additionally, the routine acts on end 

of run in period and end of simulation conditions. 

(4) Subroutine DYNAM: This subroutine is utilized 
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in conjunction with the dynamic dispatching rules, dynamic 

slack, and dynamic slack per remaining operations. Each 

time a job is to be selected from a machine queue, subroutine 

DYNAM is called to compute the priorities. 

(5) Subroutine ENDSV: This subroutine is called 

when an end of service has been reached for a machine. 

Statistics are then taken for the job depending on its 

completion posture. If all of the processing for the job has 

been completed, terminal job statistics are collected and 

the job is removed from the system. On the other hand, if 

there are remaining operations to be done, the job attributes 

are updated and subroutines are called to move the job in 

its next queue. After these actions are completed the 

subroutine then checks the queue to determine which job to 

bring in for processing. This action depends on the 

dispatching rule being used. If the queue has one or more 

jobs, statistics on job waiting times and shop workload are 

calculated. When the queue is empty, machine utilization is 

updated. 

(6) Subrouting ENSIM: This subroutine is called at 

the end of the simulation to calculate and print the results. 

There is also an option to begin another simulation run with 

a different dispatching rule. When the option is envoked, 

ENSIM must reinitialize the non-GASP variable and call GASP 

to start the new run. 

(7) Subroutine EVNTS: This subroutine directs GASP 
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to the proper subroutine to handle the transactions associated 

with starting the simulation, an arrival to the shop, an end 

of service, or to collect statistics at the end of a 

schedule period. 

(8) Subroutine EWIQ: This subroutine is used in 

conjunction with the expected work in next queue dispatching 

rule. The routine indicates the job in queue which will 

proceed to the machine with the least expected work in queue. 

(9) Subroutine GENMAT: This subroutine generates 

the matrix required by the loading algorithm to select those 

jobs to be moved from the pool to the shop. The matrix 

generation is accomplished by using job attributes from the 

job file. When the pool is not being used, this routine is 

not active. However, when it is used, it calls the loading 

algorithm which has been selected, either the loading 

heuristics or the mathematical program. 

(10) Subroutine JOBDEC: This subroutine uses the 

answer from LPI to decide which jobs to load from the pool 

into the shop, specifically the appropriate machine queue. 

(11) Subroutine LPI: This routine is essentially 

a linear programming code extended to include a bounded 

variable feature. JOBDEC is called from this routine. 

(12) MAIN PROGRAM: This is the program that gets the 

simulation started. In MAIN, the value of the parameters are 

read, the non-GASP variables are initialized, and the 

executive subroutine, GASP, is called to take over control of 
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the simulation. 

(13) Subroutine POOLHE: This is the loading heuristic 

subroutine that uses "rules of thumb" to select jobs from 

the pool to load into the shop. 

(14) Subroutine PTJOB: This subroutine places the 

jobs in their destination position, either job pool, machine 

queue, or on the machine. Which action is taken is dependent 

on whether the job is a new arrival, if a pool is being used, 

and on the status of the machine. Interarrival times to the 

pool and each machine are collected. If a job is put on a 

machine, the workload in the machine status is changed. If 

the machine was idle, the time of the completion event is 

set. 

(15) Subroutine START: This subroutine generates 

arrivals to preload the shop and pool if one is being used. 

New arrivals continue to be generated until the shop and 

pool have reached their proper number of jobs. Then the 

clock is set to zero to begin the simulation. 
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APPENDIX D 

FORTRAN LISTING OF SUBROUTINES CHANGED 

FOR THIS RESEARCH 

The following list contains the variable parameter 

conditions as set for this research: 

(1) NM--number of machines, 10 

(2) NTOTPD--number of periods the simulation is to 
run, 50 0 

(3) NRSET--number of runs in periods for the 
simulation, 50 

(4) PLEN--length of one scheduling period in hours, 

(5) ISEED--random number seed to use 

Run 1-329963 Run 2-411719 Run 3-392819 

Run 4-349387 Run 5-900131 

1. Dynamic Slack 
2. Dynamic Slack per Operation 
3. Expected Work in Next Queue 
4. Shortest Processing Time 
5. Due-Date 
6. First Come-First Served 

(8) IDUE--method of job due date generation, 1 

(9) NLDR--loading approach to use 

(6) ITYPE--not used 

(7) N RULE--dispatching rule to use 

0 no pool 
1 mathematical pool 
5 pool heuristics 
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(10) ARATE--arrival rate 

Low utilization .5300 
High utilization .6000 

(11) NARR--type of arrivals, 1 

(12) FACDUD--weights for the due dates, 80 

(13) SINPER--number of periods in sine curve, 16 

(14) NPREL--number of jobs to preload in shop, 45 

(15) NPREP--number of jobs to preload in pool, 25 

(16) NDESL--switch to determine calculation of 
aggregate desired load, 1 

(17) DESLF--factor for calculation of desired manage­
ment load for math pool 

Low utilization --4.25 
High utilization --6.00 

(18) NDML--switch to calculate queue load, 1 

(19) DMLF--factor for queue load calculation, .40 

(20) TIMEF--factor to extend the time generated for 
a machine operation, 1 

(21) CAPM--machine capacity, machine j,8 

The subroutines that were changed for this research 

follow. 
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3 £ L L E R ­ R I C H A * S H O P Q U E U E . C O L L 

1 SUBROUTINE COLUNSET) 
2 C 
3 C *** EVENT SUBROUTINE TO COLLECT STATISTICS AT 
4 C *** THE END OF EVERY SCHEDULING PERIOD AND TO 
5  C *** CALL THE LOADING ROUTINE 
6  C 

7 DIMENSION NSET ( 3 5 » 1 )»SOPL^ 2 ( L O )»QLOA02 ( 1 0 ),XAV | . ( 3 5 ) 
8 COMMON ID»IV,INIT.JE VNT, J^I T, "FA . MSTOP»'1x' MyC , NCLCT, 
9 INHlST,NOQ»NORPT»NOT,NPRMS' :^UN»NRUNS,NSTAT»OUT.SCALE, 

1 0 2ISEED,TN0W.T3EG»TFIN.MXX,NPRNT»NCRDR.NEP. V N Q ( 2 5 > , 

1 1 3K0F,KLE»K0L»ATRI3(33)»ENQ(25),INN(25),JCELS<20,32)t 

12 1KRANK(25) , JCLR,MAXN0(25) , ^ P E ( 2 5 ) ,MLC(25) » MLE ( 2 = ; ) , 

13  5 NCELS(20),NQ(25)»PARAM(40»4),0TI^E(25>»SsUMA(^5,5) 
14 6,SUyA(l30»5)»NAME(6),NPROJ'MON»MDAY,NYR 
15 1»ARS(35) 
16 COMMON PLEN,NTPDS»NTOTPD,N^.XlSYS,XWKSY»Ir>UE, 

17 11 TYPE fMNExTr NEN»NLV, NHELD»WB{10),WRM(10)ty(10,10) » 

18 2 BUS ( 1 0 ) »NRSET»NRULE» VINOW» NRSTfNENpS.NH^L »NRL* 
19 3WWW(LQ),SEEO»ARATE#LOC(200)»MAX,AR(11) 
20 COMMON NPREL.NPKEP,NDESLfMDML»CAPM(10)rDEsL(lO)r 
21 lDQLdO) »DESLF.DMLF,QLOAO(lO) ,xOPSrXWKS»TlwEF(LO) r 
22 2NSTSlnl,NLDR,NARR»SHOPLD(10) 
23 COMMON A(25»200) »K3va5) f C ( 2 0 0 > »FACDUD 
24 COMMON ICOUNT#NCOUNT#SINPF.R»MSW(10) »AVGL09 
25 C 
26  C *** SCHEDULE THE NEXT DATA COLLECTION POiNT 
27  C 

28 ATRIB(2 )=3.0 
29 ATRI3<1)=TN0W+PLEN 
30 CALL FILEM (l,NSET> 
31 NTPDS=MTP3S^1 
32 ISCALE=SCALE+.000001 
33 NTP=NTPD5-1 
34 TS=OfO 
35 TOT=0.0 
36 C***** 
37 C***** COLLECT DATA ON THE WORK ARRIVED PER PERIOD A MACHINE 
38 C**»** COLLECT DATA ON THE WORK ARRIVED PER PERIOD T*> THE SHOP 
3 9 C***** 
40 DO 11 I = 1 , NM 
41 183=1 + 82 
(f2 DAR=ARS(I) 
43 CALL COLCT (DAR»183,NSET) 
44 1 9 1 = 93+1 
45 122=1+21 
46 CALL C0LCT(ARS(l22)tI94,NSET) 
47 ARS(I22)=0.0 
4S 11 ARS(l )=O.O 
49 DAR =ARS(11) 
50 CALL C0LCT(DAR,93»NSET) 
51 ARS(H) = O.O 
52 CALL COLCT <ARS(32),104»NSET) 
53 ARS(32) = 0 . 0 
54  C 

55  C *** UPDATE TIME INTEGRATED STATISTICS ON MACHINES 
56 C *** AND COMPUTE STATISTICS ON FACILITY UTILIZATION 
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57 C *** DURI^J THE PERIOD 
58 C 
59 AP=0,0 
60 BP=0,0 
61 0 0 10 I=1»NM 
62 CALL T^ST (BUS(I)»TNOW»I»*<'SET) 
63 UT=SSU'^A(I,3)/P»-EN*100,0 
6<T WB(I)R,,g(I)/PLEN*100.0 
65 TS=TS-T-S5UMA(I,3) 
66 (I)=WBM(I)+SSUVA(1,3)*SSUMA(I»3) 
67 T0T=TGT+W3(I) 
68 WWW(I) = W WW(I)+WB(I) 
69 CALL COLCT (UT»I»NSET) 
70 AP=AP+SSU^A(I,3> 
71 BP=BP+SSU^A(I»3)*SSUMA(I,3> 
7 2 W3(I)=0.0 
73 10 SSUMA,I,3)=0.0 
7«* AP=AP/FLOAT(NM) 
75 BP-BP/FLOAT(MM) 
76 BP=BP-AP#*2 
7 7 CALL COLCT{BP,70#NSET) 
73 CP=0 
79 DP=0 
80 NML=NM+I 
BL 00 12 I=2»NM1 
82 11=1-1 
83 XNQ=MQ(I) 
8<T XC=(ENO(I)+XNQ*(TNOW-QTLME<I))) 
85 IP (TNOW.LE. 0.001) XAVL<H>=0.0 
86 AVQ=(XC-XAVL(ID)/PLEN 
8 7 CP=CP+AVQ 
88 DP=DP*AVQ**2 
89 12 XAVL(I1)=XC 
90 CP=CP/FLOAT(NM) 
91 DP=DP/FLOAT(NM) 
92 DP=DP-CP**2 
93 CALL C0LCT(DP»7L»NSET) 
94 ATSRJS/FLOAT(NM) 
95 ATOT=T0T/FLOAT(NM) 
96 CALL COLCT <ATS» 1<+,NSET) 
97 CALL HISTO (ATS»0.5»0.5»3»M5ET) 
98 AT=AT0T 
99 CALL HISTO <AT»6.0»6.0»NS£T) 

100 C 
101 C *** CHECK IF A JOB POOL IS BEING USED 
102 C 
103 C 
10<* R66=NQ(12) 
105 CALL COLCT <R66'66»NSET) 
106 IP (NLDR.EQ.O) GO TO 39 
107 C 
108 C *** POOL IS BEING USED. CALL SUBROUTINES TO LNAD THE 
109 C *** SHOP 
110 C 
H I IF (N3(12) .EO.N) GO TO 39 
112 CALL GENMAT (NSET) 
113 C 
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14 C *** AOJUST AGGREGATE SHOP LOAD FOR EACH mACHImE AND 
15 C *** QUEUE LOAD FOR PARTIaLLY COMPLETED JoBS 
16 C 
17 39 R67=Ntf(12> 
18 CALL COLCT (R67»67#NSET) 
19 IP (MSW(4) .EQ.O) PO TO 40 
20 IP <Nw(i2).LT.D GO TO 40 
21 J=0 
22 N1=MFE(12) 
23 15 J=J+1 
2** NFlRSTrFLOAT(NSET(ll,Nl))/SCALE+,O0Ol 
25 IP (BUS(NFIRST)) 25*25,20 
26 20 N1=NSET(MX,N1) 
27 IF (N1.NE.7777) GO TO 15 
29 GO TO 40 
29 25 N2=NSET(v,x,Nl) 
30 CALL rtK40VE(Nl*12.NSET) 
31 CALL COLCT(1.0»69»N5ET) 
32 MNEXT=ATRIB(11)+0.0001 
33 CALL PTJ03(3»NSET) 
3* N1=N2 
35 IF (Ni.NE.7777) GO TO 15 
36 40 N1=HFE<1) 
37 45 IF (FLOAT(NSET(2»N1))/SCALE,GT»1.0) GO TO 60 
38 TILEFT=(NSET(1#N1))/SCALE-TNOW 
39 M1=FL0AT(NSET(H»N1) )/SCALE+, 000001 
40 S0PLD2(Ml)=SH0PLD(Ml)-»- (TlLEFT*CAPM(Ml) )/<3,0 
41 QL0AD2(M1)= OLOAD(Ml)* (JILEFT*CAPM(Ml))/fl,0 
42 60 N1=NSET(V1X,N1) 
43 IF (N1.NE.7777) GO TO 45 
44 C 
45 C *** CALCULATE DEVIATIONS FROM BALANCE 
46 C 
47 DBALT=0.0 
48 DO 70 J=1»NM 
49 D3AL =DESL(J)-S0PLD2(J) 
50 N30=J+30 
51 D30=D3^L 
52 CALL COLCT (D30»N30,NSET) 
53 D30AB=A3S(D30) 
54 70 DBALT=D3ALT+D30AB 
55 CALL COLCT (DBALT*41,NSET> 
56 C 
57 C *** CALCULATE ADDITIONAL DEVIATIONS FROM BALAvCE»lF 
58 C *** REQUIRED»DEPENDING ON LOADING RULE UsED. 
59 C 
60 D3ALQT=0.0 
61 DO 75 J=1,NM 
62 D8ALQ =3QL(J)-QLOAD2(J) 
63 N53=J+53 
64 D53=D3AL0 
65 CALL COLCT (D53»U53.NSET) 
66 D53AB=A3S(D53) 
67 75 DBALQT=D3ALQT+D53AB 
68 CALL COLCT (D3ALQT»64»NSET) 
69 80 IF (NTPOS.GE.NRST) CALL CLEAR (NSET) 
70 IF (NTPOS.LT.NTOTPD) RETURN 

http://Ni.NE.7777
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!71 CALL ENSIM (NSET) 

1 7 2 RETURN 

1 7 3 END 
}PRT SHOPQUEUE.ENDSV 
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BTLLER-RLCHA*SH0PQUEUE,£J-,5V 
1 SUBROUTINE ENDSV (NSET) 
2 C 

3 C *** E V E N T SUBROUTINE CALLED WHEN AN E N D 0? SERVICE 
4 C *** H A S OCCURRED F O R A J O B OPERATION 
5 C 

6 DIMENSION NSE T ( 3 5 » 1 ) 

7 C O M M O N ID.IM,INLT,JEVNT»J VNLT.VFA»MSTOPFM X,MXC,NCLCT. 

8 L N I U S T » ' I O Q » N O R P T » N O T , N P R M S » N R U N » N R U M S » N S T A T , O U T , S C A L E , 
9 2 I S E E D , T N 0 W , T 3 E G » T F I N , M X X , K | P R N T » N C 3 D R » N E P , V N Q < 2 « ) , 

1 0 3 K 0 F , K L E , K 0 L » A T R I B ( 3 3 ) » E N O ( 2 5 ) , L N N < ? 5 ) , J C E L S ( 2 0 , 3 2 ) , 

1 1 4 K R A N K ( 2 5 ) , J C L R , M A X N Q ( 2 5 ) , ' " F E ( 2 5 ) , ML C ( 2 5 ) , m L E ( 2«5) * 

1 2 5 NCELS(?0) , N 0 ( 2 5 ) , P A R A M ( 4 0 » 4 ) , Q T I M E ( 2 5 > »SSUMA("^5»5) 

1 3 6,SJMA(130»5),NAME(6), NPROJ'M0N» N D A Y » N Y R 

1 4 1 » A R S ( 3 5 ) 

1 5 C O M M O N PLEN,NTPDS,NT0TPD,MM,XISYS»XWKSY,IDUE, 

1 6 1 I T Y P E » ^ N E X T » N E N , N L V , N H E L D ' W R U 0 ) R W^W (10 ) R Y( 10» 1 0 ) » 
1 7 2 3 U S D O ) » N R S E T » N R I J L E , M N O W , N R S T , N E N D S , N H O L » N R L , 
1 8 3 W W W ( 1 0 ) » SEED, A R A T E , L O C ( 2 0 0 ) » M A X , A R ( 1 1 ) 
1 9 C O M M O N N P R E L , N P R E P , N D E S L , N J ^ M L » C A P M ( 1 0 ) » D E 5 L ( 1 0 ) , 
2 0 1DQL(10) ,DESLF,DMLF.QLOAD(10) ,XOPS,XV.'KS'TLMEF(LR,) , 

2 1 2NSTSW»MLDR,NARR»SHOPLD(10> 
2 2 C O M M O N A ( 2 5 » 2 0 0 ) » < B V ( 1 5 ) » C ( 2 0 0 > » F A C D U D 
2 3 COMMON IC0UNT»NC0UNT,5INPER,MSW(1Q),AVGLDG 
2 4 MNOW=ATRL3(LL)+0.00001 

2 5 M N E X T = U R I B < 1 3 ) + 0 . 0 0 0 0 1 

2 6 CALL T M S T <XOPS»TNOW,13»NSET) 

2 7 X O P S = X O P S + 1 . 0 
2 8 C A L L TMSR ( X W K S » T M 0 W , 1 4 » N S E T ) 
2 9 XW*<S=X.VKS4-ATRIB(12) 
3 0 A T « I B ( 3 2 ) = A T R I B ( 3 2 ) + A T R I B ( 1 2 ) 
3 1 ATRI3(5)=ATRIB(5)-1.0 
3 2 C***** 

3 3 C***** COLLECT D A T A O N T H E OUTPUT O F A MACHINE 

3(F C****« COLLECT D A T A O N T H E OUTPUT F R O M T H E SHOP 

3 5 C * * * * « 
3 6 1 2 2 = 2 1 * MN O W 

3 7 ARS(I22) = ARS(I22) + 1 
3 8 A R S ( 3 2 ) = A R S ( 3 2 ) + 1 

3 9 IF (ATRI3(5)) 1 0 , 1 0 , 6 0 
4 0 C 

4 1 C * * * COLLECT STATISTICS ON THE JOB LEAVING T H E SYSTEM 
4 2 C 

4 3 1 0 TISYS=TN0W-ATRI3(3) 

4 4 CALL COLCT (TISYS,H,NSET> 

4 5 N O P = A T R I 3 ( 1 0 ) + 0 . 0 0 0 0 1 

4 6 N P 2 3 = M 0 p + 2 2 

4 7 CALL COLCT (TISYS,NP23,NSET) 

4 8 CALL T^IST { XISYS, TNOW, 1 2 , NSET) 

4 9 XISYS=XISYS-1.0 

5 0 CALL T M S T ( X W K S Y , T N Q W » 1 1 , N S E T ) 

5 1 X W K S Y = X W K S Y - A T R I B ( 9 ) 

5 2 D D D = A B S ( T N 1 0 W - A T R I 3 ( 4 ) ) 
5 3 C A L L C O L C T ( D D D * 15,NSET) 

5 4 T L A T E = T N 0 W - A T R L 3 ( 4 ) 

5 5 CALL COLCT (TLATE,12,NSET) 

5 6 CALL HISTO (TLATE,-10,0»2»0»1,NSET) 
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57  TARQY=TLATE 

58  IF  ( T I A T E . L T . O . O )  TARDY=0.0 
59  CALL  COLCT  (TARDY,13,NSET> 
60  TSYNPL=TN0W ­ATRIB(33) 
61  CALL  COLCT  (T5YNPL»42,NSET) 
62  NP**o = NOP + 39 
63  CALL  COLCT  (TSYNPL,NPUO,NSET) 
64  T IP00L = A T ? I B ( 3 " ^ ) ­ A T R I 9 ( 3 ) 
65  CALL  COLCT  (TIPOOL,48»NSET) 
66  PERPOL=T1POOL/PI­EN+0.5 
67  NPEPOL=PERPOL 
68  CALL  HlSTO  ( N P E P O L , 1 . 0 , 1 . 0 , 1 6 , N S E T ) 

69  NP46=M0P+(*5 
70  CALL  COLCT  (TIP00L»NP46»NSET) 
71  B=FLOAT(NTPDS­D*PLEN 
72  BDUE=ATRI3(4) 
73  I F  (3DUE.LT .B)  GO  TO  30 
74  IP  (3DUE.LT.TNOW)  GO  TO  20 
75  LP=  (TNow­BDUE/PLEN) ­ .9999999 
76  GO  TO  40 
77  20  LP=0 

78  GO  TO  40 

79  30  LP=(3 ­3DUE) /PLEN+ .999999 

80  40  XP=LP 

81  CALL  HlSTO  ( X P , ­ 1 0 . 5 , 1 . 0 , 2 , N S E T ) 

82  XOPS=XOPS­ATRI3(10) 

83  XWKS=XW«S­ATRIB(9) 
84  NLV=NLV+1 
85  J O B = A T R I 3 ( 3 0 ) + . 0 0 1 
86  LOC(JOB)=o 
87  IF  (JOB.NE.MAX)  GO  TO  80 
88  50  MAXzMAX­1 
89  J 0 3 = J 0 3 ­ 1 
90  I F  ( L O C ( J O B ) , L E . 0 )  GO  TO  50 

91  GO  TO  80 

92  C 

93  C  * * *  THE  JOB  IS  NOT  LEAVING  THE  SYSTEM 

94  C  * * *  UPDATE  THE  J03  ATTRIBUTES 

95  C 

96  60  I F  (NRULE.LE.3 )  A T R I B ( 6 ) = A T R I 3 < 6 ) ­ A T R l B ( 1 2 ) 
97  L R M = A T R I 3 ( 5 ) + . 0 0 1 
98  LR=2«LRM+9 
99  DO  70  1=11,LR»2 

100  A T R I 3 ( I ) = A T R I B ( I + ? ) 
101  70  A T R I 3 ( U 1 ) = A T R I 3 ( I * 3 ) 

102  ATRl3(LR­»­2)=0.0 

103  A 7 R l 3 ( L R + 3 ) = 0 . 0 

104  CALL  PTJOB  (2,NSET) 

105  C 

106  C  * * *  CHECK  MACHINE  QUEUE  FOR  ANY  JOBS 

107  C  * * *  AVAIA3LE  FOR  PROCESSING 

108  C 

109  80  I F  (NQ(MNOfc*l))  9 0 , 9 0 , 1 0 0 

110  c 
111  C  * * *  THERE  ARE  NO  JOBS  IN  THE  QUEUE 

112  C 

113  90  CALL TM S T  (BUS(MNOW)»TN0W»MNOW»NSET) 
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114 BUS(MNOw)=0.0 
115 IF <M5".'(2) ,EG.O) GO TO 93 
Ufa IF (NLJR.EQ.O) GO TO 93 
117 CALL COLCT(1.0»68»NSET> 
118 IF (NCi(12) .LT• 1) 50 TO 93 
119 IF (MS«'(3) .EQ.O) GO TO 88 
120 IF (SSUMA(MN0Wr3).GE.AVGL09) GO TO 93 
121  C 

122  C *** TRY TO MOVE J03 FROM POOL TO E WPTY MACHINE 
123  C 

124 88 J=0 
125 N1=MFE(12) 
126 91 J=J+1 
127 NFIRST=FL0AT(NSET(11,N1))/SCALE+.000l 
128 IF (NFlRST.EQ.MNOW) GO TO 92 
129 N1=NSET(MX,N1) 
130 IF (N1.NE.7777) GO TO 91 
131  C 

132  C *** NO JOB WAS FOUND THAT COULD HELP IDLE MACHINE 
133  C 

134 GO TO 93 
135  C 

136  C *** PUT JOB FROM POOL IN IDLE MACHINE 
137  C 

138 92 CALL RMoVE(Nl,12,NSET) 
139 CALL COLCT (1.0,69,NSET) 
140 MNEXT=ATRIB(11)+.00001 
141 CALL PTJ0B(3,NSET) 
142 93 RETURN 
143  C 

144  C *** MORE THAN ONE JOB IS AVAlABLE. COMPUTE 
145  C *** PRIORITIES AND BRING IN THE JOR wlTH THE 
146  C *** HIGHEST PRIORITY FROM THE QUEUE. 
147  C 

148 100 MNl=MNOw+l 
149 IF (NQ(MNl) .EQ.D GO TO 1*0 
150 IF (NRULE.EQ.0.OR.NRULE.GT.3) GO TO 120 
151 IF (NRULE.GT.2) GO TO H O 
152 CALL DYNAM <M3EST,NSET) 
153 CALL R'^OVE (MBEST,MN1,NSET) 
154 GO TO 130 
155 110 CALL WKINQ (MBEST»NSET) 
156 IF (MiEST.EO.O) GO TO 120 
157 CALL R-10VE (MBEST, MN1, NSET) 
158 GO TO 130 
159 120 CALL RMOVE (MFE<MN1),MN1,NSET) 
160 C 
161 C *** COMPUTE THE WAITING TIME FOR THE JOB AND 
162  C *** DECREASE THE WORKLOAD IN THE MACHINE QUEU=". 
163  C 

164 130 WT=TND.V-ATRIB(8) 
165 *1N15=M\!0W*15 
166 CALL COLCT (WT, MN15,N5ET) 
167 C***** 
1 6 8 C***#* COLLECT THE THE DATA ON THE QUEUE LENGTH IN H^URS OF WORK 
1 69  C * * « * * COLLECT DATA ON THE QUEUE LENGTH I N HOURS OF i-oRK TO THF SHO p 

170  C * * * * * 
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171  M15  = 

172  M12  =  H  + MNOW 
173  XXX=ARS(M12> 

174  CALL  T^ST<XXX»TN0'"»Ml5,N5 rT> 
175  ARS(M12)=ARS(M12)­ATRIB(12> 
176  QLOADt  ^NO­.v)=OLOAD(M,NOW)­ATRlf3(12) 
177  SH0PLJ(MN0W)=SH0PLD(MN0W)­ATRIB<12) 
178  TIMEVT=ATRI3(12>  *<8.0/CAPM(MNOW  ) ) 

179  ATRIB4 1) =TNOW­f TlMEVT 

180  A T R I B ( 2 ) = 1 , 0 
181  J O B r A T R I 3 ( 3 0 ) + . 0 0 1 
182  L0C(J03)=MFA 
183  CALL  FILEM(1,NSET> 
184  RETURN 
185  END 

SPRT  SHOPQUEUE.ENSIM 
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3tLLER-RlCrtA*SH0pQUEUE.ENsiM 
1 SUBROUTINE ENSIM (NSET) 
2 C 
3 C *** SU3ROUTINE USED TO PRINT SIMULATION RESULTS 
4 C 
5 DIMENSION NSET<35.1) 
6 COMMON ID,IM,INIT»JEVNT*JMNlT»MFA,MSTOP»MX»MxCtNCLCT 
7 lNHlST* "JOQ,NORPT»NOT,NPRMS» NRUN» NRU^S»MSTAy» OUT t SCALE 
8 2ISEED»TN0W,T3EGrTFlN»MXX»NPRNT»NCRDR»NEP»vNQ(2s)» 
9 3K0F,KLE,K0L»6TRI3(33)»ENQ(25) ,INN(?5),JCElS(20,32), 

1 0 4KRANK(25),JCLR»MAXNQ(25),M pE(25),MLC(25)»MLE(2^)# 
H 5 NCELS(20) ,NQ(25) ,PARAM(40»4) ,0TIME(25) »SsUMA("^5»5) 
1 2 6,SUMA(130,5),NAME(6),NPROJ»MON»NDAY,NyR 
1 3 1»ARS(35) 
1 4 COMMON PLEN,NTPDS»NTOTPD,NM,xiSYS»XWKSY,lDUE, 
1 5 1ITYPE»MNEXT»NEN»NLV,NHELD»W3(10),W9V<lO)»X(10»lO)» 
1 6 2 B U S ( i o ) » n r s e t » n r u l e , m n o w , n r s t , n e n d s , n h o l » n r l 
17 3WWW'(10) ,SEED, ARATE»L0C(200) »MAX, AR( l l ) 
1 8 COMMON NPREL,NPREP,NDESL,NDML,CAPM(10)»DEsL(10), 
1 9 1DQL(10),DESLF,DMLF,QL0AD(10),xOPS»XWKS»TlvEF<Is), 
2 0 2NSTSW»NLDR,NARR»SHOPLD(10) 
2 1 COMMON A(25#200)»K3V(15),0(200)»F^CDUD 
2 2 COMMON IC0UNT»NC0UNT»SINPER,MSW(10)»AVGLD9 
2 3 PRINT 1 6 0 , NLDR tNRULE 
2 4 CALL TMST (XWKSY,TNOW»11,NSET) 
2 5 CALL TMST (XISYS,TNOW»12,NSET) 
2 6 CALL TMST (XOPS»TNOW,13»MSET) 
2 7 CALL TMST (XwKS»TNOW,14»NSET) 
2 8 DO 1 0 1=1,NM 
2 9 1 0 CALL T^ST (BUS(I)#TNOW»I,NSET) 
3 0 NTPDS=NTPDS-NRSET 
3 1 NNTp=NTOTPD-NRSET 
32 WRITE (6 ,170) NM,NRSET,NNTP»PLEN 
3 3 WRITE ( 6 , 1 7 1 ) (MSW(J),J=l»10) 
3 4 IF(MSW(5).GT.O) GO TO 1 3 
3 5 WRITE (6 ,172) 
3 6 XN=NTPDS 
3 7 DO 12 I=1,NM 
3 8 J30=30fl 
3 9 XM1=SU4A(J30,1)/FLOAT(NTpDS) 
4 0 J53=53+I 
4 1 XM2=SU 1A(J53,1)/FLOAT <NTpDS) 
4 2 12 WRITE (6 ,173) I»XM1,XM2 
4 3 13 CONTINUE 
4 4 XM3=SUMA(41»1) 
4 5 X.M4=SU'1A(64»1) 
4 6 XN3=SU4A<41»3) 
4 7 XN4=SJ /A(64»3) 
4 8 XS3=SU 1A(41,2) 
4 9 XS4=SJMA(64,2) 
5 0 AV33r<-',3/xN3 
5 1 AVGi4 = x''4/XN4 
5 2 VA!<3=( ( (Xm3*XS3) - (XM3*XM3) > / (X^3* (XN3-1. 0 ) ) ) 
5 3 VAR4=( ( (X\*U*XSU)-(XM4*XM4) ) / ( XN4* ( XN4-1-0 ) ) ) 
5 4 WRITE <6>174) 
5 5 WRITE <6»175) AVG3#VAR3 
5 6 WRITE (6»176) 
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57 WRITE (6FL75) AVG4,VAR4 
58 J = U 
59 DO 16 IRL,3 
60 XM5=SJ 1A(J,1) 
61 XS5=SU-1A( J,2) 
62 XI4B=SJ-LA( J,3) 
63 AVS5SX'15/XN5 
64 VAR5=(((XM5*XS5)-(XM5*XM5>)/<XN5*(XN5-1.0))) 
65 IF (I.3T.1) GO TO 14 
66 WRITE (6»177) 
67 J=**8 
68 GO TO 16 
69 14 IF (I.GT.2) GO TO 15 
70 WRITE (6»178) 
71 J=^2 
72 GO TO 16 
73 15 WRITE (6»179) 
74 16 WRITE (6»175) AV35»VAR5 
75 XM7=SINA(66»1> 
76 XN7=5U 1A(66»3) 
7 7 XS7=SUMA(66»2) 
78 AVG7=XM7/XN7 
7 9 VAR7=(((XN7*XS7)-(XM7*XM7> >/(XN7*(XN7-L,0))) 
80 STD=53RT(ABS(VAR7)) 
81 WRITE (6»165) AVG7»STD 
82 XM7=SU 1A(67»1) 
83 XN7=SUMA(67»3) 
84 XS7=SUMA(67»2) 
8 5 AVG7=X 17/XN7 
86 VAR7=(((XN7*XS7)-(XM7*XM7)>/(XN7*(XN7-L T0))) 
87 STD=SGRT(ABS(VAR7)) 
8 8 WRITE (6»166) AVG7»STD 
89 IF(MSW(5).GT.O) GO TO 17 
90 WRITE <6>180> 
91 17 CONTINUE 
92 XN=NTPOS 
93 DO 20 1=1,NM 
94 AB= SUMA(I,L)/FLOAT(NTPDS) 
95 WWW(I)= WWW(I)/FLOAT(NTPDS> 
96 WF3M(I) = (RTTV(L)*XN-SSUMA(I»2)**2)/(XN*(XN-1.0> ) 
97 IF(MSW(5).GT.O) GO TO 20 
98 WRITE (6»190) I'A3,W3M(I) 
99 20 CONTINUE 

100 TWB=0.0 
101 DO 30 I=1,NM 
102 30 TWB=T.V3+W3M{ I)/FL0AT(NM) 
103 S3M=(SUMA(L4»2)*XN-SUMA(L4»L)**2)/(XN*(XN-L,0)) 
104 WRITE (6»200) TWB,SBM,NEN»NLV 
105 DO 40 I=12»14 
106 XS=SU-IA(1,1) 
107 X5S=SU 1A(I,2) 
108 XN=SU>1A{I,3) 
109 AVGG=XS/XN 
H O VAR=(((XN.X5S)-<X5*XS))/(XN*(XN-1.0)>) 
H I IF (I.EQ.12) PRINT 210» AVGG.VAR 
U 2 IF (I.EQ.13) PRINT 220, AVGG,V*R 
U 3 IF (I.EG.14) AVGG=AVGG/PLEN*IOO.O 
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1 1 4 I F ( I . E Q . 1 4 ) P R I N T 2 3 0 , A V G G 

1 1 5 4 0 C O N T I N U E 

1 1 6 DO 5 0 1 = 1 1 , 1 4 

1 1 7 X T = S S U U ( l , l ) - T B E G 

1 1 8 X S = S S U - " A ( I , 2 ) 

1 1 9 X S S = S 5 J M A ( I , 3 ) 

1 2 0 A V G G = X S / X T 

1 2 1 S T D = ( X S S / X T - A V G G * A V G G ) 

1 2 2 S T D = S I 7 M ( S 0 R T ( A 3 S ( S T D ) ) » S T D ) 

1 2 3 I F ( I . £ 3 . I D P R I N T 2 4 0 , A V G G , S T D 

1 2 ^ I F ( I . E 0 . 1 2 ) P R I N T 2 5 0 , A V G G , s T D 
1 2 5 I F ( I . E Q . 1 3 ) P R I N T 2 5 2 , A V G G , S T O 

1 2 6 I F ( I . E Q . 1 4 ) P R I N T 2 5 4 , A V G G , S T D 

1 2 7 5 0 C O N T I N U E 

1 2 8 T I M E = F L O A T ( N T P D S ) * p L E N 

1 2 9 P R I N T 2 6 0 , N T P D S , T I M E 

1 3 0 I F ( M S W ( 5 ) . G T . O ) G O T O 5 1 

1 3 1 P R I N T 2 7 0 , ( I , W W W ( I ) » I r l , N M ) 

1 3 2 5 1 C O N T I N U E 

1 3 3 W R I T E ( 6 , 3 6 1 ) 

13<* W R I T E ( 6 , 3 6 2 ) 

1 3 5 W R I T E ( 6 , 3 6 3 ) 

1 3 6 O W B = 0 

1 3 7 M A X Q = 0 

1 3 8 X X = 0 

1 3 9 N M 1 = N M > 1 

1 4 0 D O 5 3 I = 2 » N M 1 

1 4 1 X N Q = N Q ( I ) 

1 4 2 X E = ( E N O ( I ) + X N O * ( T N O W - Q T l M E ( I ) ) ) / ( T N O W - T B E G ) 

1 4 3 V A R E = ( ( V N Q ( I ) - » - X N Q * X N Q * ( T N O W - Q T l M E ( I ) ) ) / ( T M O W - T q E G ) - X E * X E ) 

1 4 4 I F ( M A X N Q ( I ) . G T . M A X Q ) M A x O = > M A x N Q ( I ) 

1 4 5 l F ( M S i V ( 5 ) . G T . O ) G O T O 5 2 

1 4 6 1 1 = 1 - 1 

1 4 7 W R I T E ( 6 , 3 6 4 ) I l » X E » V A R E , M A X N Q ( I ) 

1 4 8 5 2 C O N T I N U E 

1 4 9 X X = X X + X E 

1 5 0 5 3 Q W B = Q v v 3 + V A R E 

1 5 1 X X = X X / F L O A T ( N M ) 

1 5 2 0 ^ . 3 = Q v v : V F L O A T ( N M ) 

1 5 3 W R I T E ( 6 , 3 6 5 ) X X , G W 3 , M A X Q 

1 5 4 P w B = S U ' 1 A ( 7 0 » 1 ) / S U ^ A ( 7 0 » 3 ) 

1 5 5 W R I T E ( 6 , 3 6 7 ) P W B 

1 5 6 P Q 3 = S U ^ I A ( 7 1 » 1 ) / S U M A ( 7 1 , 3 ) 

1 5 7 W R I T E ( 6 , 3 6 8 ) P Q 3 

1 5 8 W R I T E ( 6 , 1 9 1 1 ) 

1 5 9 1 9 1 1 F O R M A T (///) 

1 6 0 I S T = 1 5 

1 6 1 1 9 1 2 S U M = o . O 

1 6 2 D O 1 9 3 8 I I S = 1 » 1 0 

1 6 3 I I T = I S T + I I S 

1 6 4 X S = S U M A ( I I T , 1 ) 

1 6 5 X S S = S U M A ( I I T » 2 ) 

1 6 6 X N = S U M A ( I I T » 3 ) 

1 6 7 N = X N + . C 0 1 

1 6 8 I F ( N - l ) 1 9 8 2 , 1 9 8 2 , 1 9 8 3 

1 6 9 1 9 8 2 V S T D = 0 . 0 

1 7 0 G O T O 1 9 8 8 
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171 1983 VSTD = ( ( (XN*XSS)-(XS*XS) )/(XN*(XN-1.0) ) > 
172 1968 SUM =  s u M 4. V S T D 
173 ASUM = SU'1/10.0 
174 IF ( 1ST .NE, 15 ) GO TO 1990 
175 WRITE (6,1989) ASUM 
176 1989 F0KMAT(« VARIANCE' OF MACHINE WAITING TIME, ,F1?.3) 
177 1ST = 71 
178 GO TO 1912 
179 1990 IF <IST ,ME• 71) GO TO 1995 
180 WRITE <6»2001) ASUM 
181 2001 FORMAT (• VARIANCE OF MACHINE INTERARRIVAL TIM^S • » F12,3 ) 
182 VSTD = 0.0 
183 VSTD =( ( (SUMA(82,3)*SUMA(B2,2) )-(SUMA(82»D*SU"A(82»l) ) )/ 
184 C <SUMA(82,3)*(SUMA(82»3)-1.0))) 
185 WRITE <6»2989) VSTD 
186 2989 FORMAT ( • VARIANCE OF SHOP INTERARRIVAL TIMES »»Fl2.3) 
187 1ST = 02 
188 GO TO 1912 
189 1995 IF (1ST .NE. 82) GO T o 1996 
190 WRITE (6,2002) ASUM 
191 2002 FORMAT ( t VARIANCE OF WORK ARRIVED PER PERIOD »,Fl2,3) 
192 VSTD = 0.0 
193 VSTD=(((SUMA(93»3)*SUMA(93»2))-(SUMA(g3»1)*SUM>(93»1)))/ 
194 C (SUMA(93,3)*(5UMA(93»3)-1»0))) 
195 WRITE (6,3002) VSTD 
196 3002 FORMAT (» VARIANCE OF SHOP WORK ARRIVED PER PERIOD F12.3) 
197 1ST = 93 
198 GO TO 1912 
199 1996 WRITE (6,2003) ASUM 
200 2003 FORMAT( • VARIANCE OF OUTPUT PER PERIOD »,Fl2.3) 
201 VSTD = 0.0 
202 VSTD=(((SUMA(104,3)*SUMA(104»2))-(SUMA(104»l)*sUMA(104»l)))/ 
203 C (SUMA(104»3)*(SUMA(104,3)-1.0))) 
204 WRITE (6,3003) VSTD 
205 3003 F0RMAT( ' VARIANCE OF SHOP OUTPUT PER PERIOD »,F12.3) 
206 S - 0.0 
207 DO 2010 I =15,24 
208 XT = SSUMA(I,1)-TBEG 
209 XS = SSUMA(I,2) 
210 XSS = SSUMA (1,3) 
2H AVG = XS/XT 
212 2010 S =(XSS/XT-AVG*AVG)+S 
213 ASS = S/10.0 
214 WRITE (6,2009) ASS 
215 2009 FORMAT(• VARIANCE OF QUEUE LENGTH IN HOURS OF WORK S F 1 2 . 3 ) 
216 IF ( NRUN . GT» 1) GO TO 69 
217 IF(MSW(5).GT.O) GO TO 69 
218 PRINT 280 
219 DO 60 I=1»NM 
220 60 WRITE (6,290) (X(I,J),J=1»NM) 
221 WRITE (6,300) 
222 WKITE (6.310) IDUE, ITYPE»SEED,ISEED,NLDR 
223 RRATE=1.0/ARATE 
224 WRITE ( 6 , V 0 ) ARATE 
225 WRITE (6,321) RRATE 
226 XM6=SUMA(65,1) 
227 XN6=SU 1A(65»3) 
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223  AVG6=X^6/XN6 
229 wRlTE  ( 6 , 3 2 2 )  A VG6 
230  WRITE  ( 6 , 3 3 0 )  NPREL,NPREP,NDESL,DESLF 

231  WRITE  ( 6 , 3 3 5 )  NDML,DMLF,N*RR 

232  WRITE  ( 6 , 3 3 f t )  pACDUD» SINPER 

233  WRITE  ( 6 , 3 4 0 ) 

234  WRITE  ( 6 , 2 9 0 )  ( T I ^ E F ( J ) , J = 1 , N M ) 

235  WRITE  ( 6 , 3 4 5 ) 

236  WRITE  ( 6 , 2 9 0 )  (CAPM(J) ,J=1 ,NM) 

237  W R I T E  ( 6 , 3 5 0 ) 

238  WRITE  ( 6 , 2 9 0 )  ( D E S L ( J ) » J = l , NM) 

239  WRITE  ( 6 , 3 5 5 ) 

240  WRITE  ( 6 , 2 9 0 )  (DQL( J )  # J=1»N.M) 

241  C 

242  C  * * *  SET  UP  FOR  NEXT  RUN,  CHANGE  DISPATCHING  RuLE. 
243  C  * * *  I N I T I A L I Z E  STATUS  VARIABLES, 
244  C 

245  69  NRULE=NRULE+1 

246  C  * * *  IT  IS  DESIRED  TO  SKIP  RULE  5  (DUE  D A T E ) 

247  I F  (NRULE.EQ.5)  NRULE=6 
248  IF  (NRULE.LE.4)  GO  TO  120 
249  I F  (NRULE.GT.5)  GO  TO  80 
250  DO  70  1 = 2 , 1 1 
251  70  KRANK( I )=4 
252  GO  TO  120 
253  80  I F  (NRULE.GT.6)  GO  TO  150 
254  DO  90  1 = 2 , 1 1 
255  90  KRANK( I )=8 
256  GO  TO  120 
257  120  CONTINUE 
258  DO  130  1=1,NM 
259  A R ( I ) = 0 . 0 
260  W 3 ( I ) = 0 . 0 
2 6 1  W8M(l)=o.o 
262  WWW(I)=o,0 
263  BUS(I)=o,0 
264  SHOpLD(l)=o,o 
265  130  Q L O A D ( I ) = 0 , 0 
266  MAX=0 
267  DO  140  1=1 ,200 
268  140  LOC(D=o 
2 6 9  C * * * * * * * T H I S  IS  IS  TO  ZERO  THE  ARR  SUM  ARRAY 

270  DO  145  1=  1 ,35 

271  145  A R S ( I ) = 0 , 0 

272  AR( l l )=o.0 
273  X0PS=0.0 
274  XWKs=0,0 
275  XISYS=0,0 
276  XWKSY=0,0 
277  NEN=o 
278  NLV=0 
279  NPOOL3=0 
280  NPOOLA=o 
2 8 1  NHELO=0 
282  NTPDS=0 
283  XXSD=DRAND(ISEED) 

284  NRST=NRSET 
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285  150  MST0P=­1 

286 RETuRiN 
287  160 FORMAT <1H1>  36HVARI0US APPROACHES FOR JOn SHO»  LOAD 
288  1»37HINT» USING DIFFERENT DISPATCHING  R U L E S , / 2 0 X , 3 H LO 
289  2,2lHADlN3 APPROACH NUMBER*I5,/20X,15HDI SPATCHI'lG  PUL 
290  3 , 9 H E  NUV13ER , 14///) 
291  172 FORMAT (1H ////5X,7HMACHINE,  13X,  16HDEVIATI0M  R̂OM 3 
292  1»6HALA'nICE»/21X»14HAGGREGATE  LOAD,14X»lOHQuEUE  LOAD) 
293  173 FORMAT (5X, 1611 OX,  F 1 2 . 3 * 4X»F12.3) 
294  174 FORMAT (/5Xt37HDEVIATION FROM BALANCE,AGGREGAT^  LOAD) 
295  175 FORMAT (1H »5X>7HAVERAGE,2X,FlO.3t8HVARIAk<CE,5v,F10.3) 
296  176 FORMAT (/5X» 33HDEVIATION FROM  BALANCE.OuEyE  LOAD) 
297  177 FORMAT (///5X*24HTIME  SPENT IN THE  SYSTEM) 
298  178 FORMAT (/5X»26HTÎ E  SPENT I.N THE JOB  POOL) 
299  179 FORMAT (/5X»38HTIME  SPENT IN THE SYSTÊ  W/O  POOL  TIME) 
300  252 FORMAT (10X» 37HW.I.P.(AVERAGE OPERATIONS PERFORMED  P 
301  120HER JOB IN THE SHOP)#/l5X,5HAVG=  ,Fl0.3f6H  ^TD=,Fl0.3) 
302  254 FORMAT(10X,39HW.I .P. (AVERAGE HOURS OF WoR«  DON 1 7  FOR J 
303  H7H03S IN THE SHOP)./15X,5HAVG=  , F 1 0 . 3 ' 6 H  STD=,F10.3) 
304  170 FORMAT (5X, 37H NUM3ER OF MACHINES IN THE  SIMULATED 
305  15HSH0P »I6/5X»26H NUM3ER OF R(jN IN PERIOD̂  »I8/5X» 
306  246H NUMBER OF TIME PERIODS SIMULATED  A F T E R  RUN  IN» 
307  3I6/5X*  28H LENGTH OF EACH  TIME PERIOD »F8#2) 
308  171 FORMAT (in »5X»16HSPECIAL FEATURES,4X»lOll) 
309  180 FORMAT (lHl////5Xr  7HMACHINE» 18H  UTILISATION  B A L 
310  1»12HANCE  MEASURE) 
311  185 FORMAT (//lH ,37HJ03S IN THE POOL BEFORE LOADING  AVG  t 
312  1F7.2,6H  STD  »F7,2) 
313  186 FORMAT (//1H ,37HJ08S IN THE  P O O L  AFTER  LOADING  AVG  » 
314  1F7,2,6H  STD »F7.2) 
315  190 FORMAT (5X,I6rF12.3,F14.3) 
316  200 FORMAT (///10X»  25HMACHINE BALANCE MEASURE  =»Fi2.3/ 
317  110X, 22MSH0P BALANCE MEASURE  =»Fl2.3/lOX» 
318  23CHNUM3ER OF J03S ENTERING SHOP  =rI7/lOx> 
319  329HNUM3ER OF J03S LEAVING SHOP =  ,17) 
320  210 FORMAT (10X» 23HAVERA3E JOB LATENESS =  »FiO,2/lOX» 
321  120HAVERAGE LATENESS VARIANCE = »F10.2) 
322  220 FORMAT (10X» 23HAVERAGE JOB TARDINESS =»Fi2.3/lOX» 
323  1 2tiHAVERAGE TARDINESS VARIANCE =,Fl2.3) 
324  230 FORMAT (10X» 26HAVERAGE SHOP UTILI7ATI0N =,Fl2,^) 
325  240 FORMAT (10X» 34HAVERAGE Wtl.P.UN HOURS O F WORK) = > 
326  1F12.3»1X»F14.3) 
327  250 FORMAT (loX»  3<*HAVERAGE NUMBER OF JOBS IN THE  SHOP, 
328  12H =rFl2.3,Fl2.3) 
329  260 FORMAT (10X» 29HLENGTH OF SIMULATION RUN wAS »/10X, 
330  1I5» 15B  TIME PERIODS , lH ( ,Fl0.1,  9 H HOijRS ) ) 
331  270 FORMAT (/////15X,  7HMACHINE,3X»  13HAVG  iNpUT/PO./ 
332  Kl5x, IU,BX»F7.2) ) 
333  280 FORMAT  ( 1 H 1 / / 9 X *  32HTHE J03 SHOP PR03A3lLlTY  TRANSIT 
334  1,10HIONI MATRIX,////) 
335  290 FORMAT  (3X,10F6.3) 
336  300 FORMAT (//// / ,  34H  IDUE  000  ITY^E 
337  1,23H  S E E D  I S E E D  NL™> 
338  310 FORMAT  (/5X»14»4X,7X,5X»IS»2y,̂ 10.4,3X* 18,14) 
339  320 FORMAT (/5X» 26HMEAN INPUT ARRIVAL RATE = »F7.u, 
340  1 l&H ARRIVALS/HOUR  ) 
341  321 FORMAT (5X,29HMEAN TIME BETWEEN ARRIVALS = »F7.4, 
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342  18H  HOURS) 
343  322  FORMAT  (5X»36HACTUAL  MEAN  TIME  PER  OPERATION  = 
344  1F7.4»7H  HOURS) 

345  330  FORMAT (1H //3X»7HNPREL=  »I5,3X»7HNPREP=  »l5,3vf3HNDE 
346  14HSL=  »I5»3X»7HDESLF=  , F l 0 . 3 ) 
347  335  FORMAT ( H  »3X»6HNDML=  »I5»3X»6HDMLF=  » F l o . 3 , 3 v » 3 H N AR 
346  13HR=  » I 5 ) 

349  336  FORMAT  (1H  »3X»8HFACDUD=  »Ffi .2»3X»PHSlNpEn= ,Fa .2 ) 

350  340  FORMAT  ( H  / / / 5 X » 3 3 H J 0 B  OPERATION  TIME  FACTORS FOR EA 
351  110HCH  MACHINE) 
352  345  FORMAT  (1H  / / /10X»32HMACHINE  CENTER  CAPACITIES  PER PE 
353  14HRI0J) 
354  350  FORMAT <1H  / / / 1 0 X »  34HDESIRED  AGGREGATE LOAD  PE?  MACHINE) 
355  355  FORMAT  (1H  / /10X»30HDESIRED  QUEUE L O A D PER  MACHINE) 
356  361  FORMAT  ( / / /5X»22H0THER  BALANCE  MEASURES/) 
357  362  FORMAT (/5X»27HMACHINE  QUEUE  BALANCE  iNDEx) 
358  363  FORMAT  (3X»7HMACH  N0,7X»7HAVERAGE»12X,3HQw3,flX.7HMAXlMUM) 
359  364  FORMAT  (5X , 1 4 » 2 F 1 5 . 311 0 X , 1 5 ) 
360  365  FORMAT (/5X,4H  ALL»2F15.3»10X»15) 
361  367  FORMAT  (/5X ,25HPERI0D  WORK  BALANCE  INDEx»4X,6H­=>wB  =  , F 9 . 3 ) 
362  368  FORMAT  ( /5X»26HPERI0D QUEUE  BALANCE  INDEX,4X ,6HPQB  =  » F 9 # 2 ) 
363 END 

3PRT SHOPQUEUE.PTJOB 
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3TLLER-RLCHA*SH0PQUEUE,?TJ03 

1 SUBROUTINE PTJOB (LNP » N S E T ) 

2  C 

3  C * * * SUBROUTINE  W H I C H  M O V E S JOB  T O  N E X T MACHINc 

4  C * * * CEMTER 

5 C 

6  D I M E N S I O N  N S E T ( 3 5 , 1 ) 

7  COMMON  I D , I M .  I N I T .  J E V N T * JMNLT » K ' F A,V< S T O P»MX,MXC . N C L C T , 

A  I N H I S T » N O Q , K ' O R P T » N O T . N P R M S » N R U N » N R U M S » N S T A T » O U T , S C A L E . 

9  2 I S E E D » T N O W , T B E G » T F I N » M X X . N P R N T » N C R D R » N E P » V N Q ( 2 ^ ) » 

1 0  3 K 0 F  R  K L E . K O L » A T R I 3 ( 3 3 ) »  E N O ( 2 5 ) > I N N ( 2 5 ) » J C E L S ( 2 0 , 3 2 ) » 

11  4 K R A N K ( 25)  » J C L R » M A X N Q ( 2 5 )  » V 1 P E(25)  , ^ L C ( 2 5 )  »MLE(2«5) » 

1 2 5 N C E L S ( 2 0 ) » N Q ( 2 5 ) » P A R A M ( 4 0 » 4 ) » 0 T I ^ E ( 2 5 ) » S S U M A ( T 5 » 5 ) 

13  6 , S U M A ( 1 3 0 » 5 ) , N A M E ( 6 ) , N P R O J ' M O N > N D A Y » N Y R 

1 4  1 » A R S ( 3 5 ) 

1 5  COMMON  P L E N » N T P D S » N T O T P D , N M , X I S Y S > X W K S Y » I D U E » 

1 6 IITYPE» M N E X T »  N E N » N L V . N H E L D » W 9 ( 10) »W3M(iO) » X < 1 0 M O ) » 

1 7  2  B U S ( 1 0 ) » N R S E T » N R U L E » M N O W » N R S T , N E N N S , N H N L » N R L , 

1 8  3 W W W ( 1 0 ) , S E E D , A R A T E , L O C ( 2 0 0 >  » M A X , A R ( L L ) 

1 9  COMMON  N P R E L , N P R E P , N 0 E S L , N D M L » C A P M ( 1 0 ) , D E S L ( 1 0 ) R 

20  1 D Q L ( 1 0 ) , D E S L F » D M L F , Q L O A D ( 1 0 ) , X O P S » X W K S » T L M E F ( L O ) » 

21  2 N S T S W » N L D R . N A R R » S H O P L D ( 1 0 > 

2 2  COMMON  A ( 2 5 » 2 0 0 ) » < 3 V ( 1 5 ) # C ( 2 0 0 ) R F A C D U D 

23  COMMON  I C 0 U N T » N C 0 U N T , S I N P E R » M S W ( 1 0 ) T A V G L D G 

2F • C -

2 5 C  * * *  C H E C K  I F  J O B  I S  A NEW ARRIVAL 

2 6 C 

2 7  I F  ( I N P . N E . L )  G O TO  1 0 

2 8  A T R I 0 ( 3 ) = T N O W 

2 9 NENSNEN+1 

3 0 C 

3 1 C * * • NEW ARRIVAL. CHECK  I F  A JOB POOL IS BEING USED 

3 2 C 

33 IF (NLDR.EQ.O) GO TO  2 0 

3 4 C 

3 5  C  * * *  C H E C K  I F  S H O P  I S  B E I N G PRELOADED AND  J O B POOL 

3 6 C * * * HAS  B E E N COMPLETED 

3 7 C 

3 8  I F  ( N S T S W . E O . L )  GO  T O  2 0 

3 9 C 

4 0  C  * * *  P U T ARRIVING  J O B I N THE POOL IF  O P .  1 MACH  I S  N O T IDLE 

4 1 C 

4 2  A T R I B ( 8 ) = T N 0 W 

4 3  J O B = A T R I 3 ( 3 0 ) + 0 . 0 0 1 

4 4  L 0 C ( J 0 3 ) = M F A 

4 5  C 

4 6 C * * * COLLECT STATISTICS  ON INTERARRIVAL TLMES  T O 

4 7 C  * * *  T H E J O B POOL 

48 C 

4 9 U=TN 0 .v'-AR ( 1 1 ) 

5 0  C A L L  H I S T O  ( D R 0 • 5» 0 . 5 » 1 5 » N S E T ) 

5 1  A R ( H ) = T N O W 

5 2  N F I R S T = A T R I B ( 1 1 ) + 0 . 0 0 0 0 1 

5 3  I F  ( M S,V ( 1 ) . E O . O ) GO  T O  4 

5 4  I F (TNOW.LE.  0 . 0 0 0 1 )  GO  T O *» 

5 5 IF  ( 3 U S ( N ­ I R S T ) ) 5 # 5 , 4 

5 6  4  C A L L F L L E M ( 1 2 » N S E T ) 
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57 GO TO 70 
53 C 

59 C  *** IF FIRST OPERATION MACHINE IS IDLE,CoNSIDrR THE 
60 C *** J03 AS COMING FROM POOL AND PUT IN  T H E SH")P 
61 C 
62 5 CONTINUE 
63 IF (MS,V(3) .EO .O) GO TO 6 
64 IF(SSJMA(NFIRST»3).GE.AVGLD9) GO TO 4 
65 6 MNEXT=NFIRST 
66 CALL COLCT <1•0»69»NSET) 
67 GO TO 20 
68 C 
69 C *** JOB IS NOT  A NEW ARRIVAL, CHECK IF  I T IS COMING 
70 C *** FROM THE POOL 
71 C 

72 10 IF (INP,EQ,2) GO TO 40 
73 C • 

10 IF (INP,EQ,2) GO TO 40 

74 C *** JOB IS COMING FROM THE POOL. 
75 C *** ALSO NEW JOBS WHEN  A POOL IS  NOT USEn ARRIVE 
76 C *** AT THIS POINT 
77 C *** UPDATE STATUS OF WORK IN SHOP AND ALsO UPDATE 
78 C *** AGGREGATE LOAD IN  S H O P QUEUES FOR EACH MArHlNE. 
79 C 

20 CALL TMST (XISYS,TNOW»12,NSET) 80 20 CALL TMST (XISYS,TNOW»12,NSET) 
81 CALL TMST (XWKSY,TNOWrH,NSET) 
82 XISYS=XISYS+1.0 
83 XWKSY=XwKSY+ATRl3<9) 
84 ATRIB(33)=TN0W 
85 NNN=g. 0 + 2. *ATRI3(10)1­, 00001 
86 DO 37 I=11,NNN,2 
87 J=ATRIB(I) 
88 37 SHOPLD(J)=SHOPLD(J)+ATRIB<I­H) 
89 C 

90 C *** JOB IS NOT GOING INTO THE POOL, COLLECT STATISTICS 
91 C *** ON INTERARRIVAL TIMES  T O THE CURRENT  M A C H T N E 

92 •C 
93 40 D=TNOW-AR(MNEXT) 
94 MN4=MNEXT+4 
95 
96 C * « * * * COLLECT DATA ON THE INTERARRIVAL TIMES  T O THE SHOP 
97 C * * * * * COLLECT  D A T A ON THE INTERARRIVAL TIMES To  A  M^HINE 
98 C * * * * « 

99 M72 = MNEXT • 71 
100 CALL COLCT (DrM72»NSET) 
101 CALL COLCT ( Dr82,NSET) 
102 ARS(MNEXT)=ARS(MNEXT)+ATRlB(12) 
103 ARS(ll)=ARS(ll)+ATRI3(12) 
104 CALL HlSTO (Dr0.5r0.5»MN4»NSET) 
105 AR(MNEXT)=TNOW 
106 C 
107 C  *** CHECK ON THE STATUS OF MACHINF  F O R  N E X T 

103 C *** JOB OPERATION 
109 C 
110 I F (BUS(MNEXT)) 60r60»50 
111 C 
112 C *** NEXT MACHINE IS BUSY. J03 CAN NOT 3E PUT ON 
113 C MACHINE 
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1 1 4  c 

U5  5 0  A T R L B ( B ) = T N O W 

1 1 6  M X L S M N I X T + 1 

1 1 7  J O Y = A T R L 3 ( 3 0 ) + 0 # 0 0 1 

1 1 8  L O C (  J 0 3 ) = V I F A 

1 1 9  Q L O A D  ( M N E X T )  S Q L O A D  ( M N E X T )  4­ATRLB  ( 1 2 ) 

1 2 0  C * * * * * 

1 2 1  C * * * * *  H O U R S  O F  WORK  I N  Q U E U E  I 

1 2 2  C * * * * * 

1 2 3  M 1 5 = 1 4 * M N E X T 

1 2 4  M O L D = M M E X T F L L 

1 2 5  X X X = A R S ( M O L D ) 

1 2 6  C A L L  R ­ 1 S T ( X X X » T N 0 W » M 1 5 , N S E T ) 

1 2 7  A R S ( M 0 L D ) = A R S ( M Q L D ) + A T R I B < 1 2 ) 

1 2 8  C A L L  F I L E M  ( M X L ' N S E T ) 

1 2 9  G O  T O  7 0 

1 3 0  C 

1 3 1  C  * * *  N E X T  M A C H I N E  I S  N O T  B U S Y . 

1 3 2  C  * * *  J O B  MAY  B E  P U T  ON  M A C H I N E 

1 3 3  C 

1 3 4  6 0  C A L L  T M S T  ( B U S ( M N E X T ) , T N O W » M N E X T , N S E T ) 

1 3 5  B U S ( M N E X T ) = 1 . 0 

1 3 6  W T = 0 . 0 

1 3 7  M X L 5=MNEXm5 
1 3 8  C A L L  C O L C T  < W T R M X 1 5 , N S E T ) 

1 3 9  T I M E V T = A T R I B ( 1 2 )  * ( 3 . 0 / C A P M { M N E X T ) ) 

1 4 0  A T R I 3 ( \ ) = T N O W + T L M E V T 

1 4 1  A T R I B ( 2 ) = 1 . 0 

1 4 2  J = A T R I 3 ( H ) 

1 4 3  S H O P L 0 { J ) = S H 0 P L D ( J ) ­ A T R I B ( 1 2 ) 

1 4 4  J O B = A T R I B < 3 0 ) + 0 « 0 0 1 

1 4 5  L 0 C ( J 0 3 ) = M F A 

1 4 6  C A L L F I L E M  < 1 » N S E T ) 

1 4 7  7 0  N S T S W = 0 

1 4 8  R E T U R N 

1 4 9  E N D 

3 F I N 
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APPENDIX E 

SAMPLE LISTING OF SIMULATION OUTPUT 
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V A R I O U S  A P P R O A C H E S  F O R  J U R  S H O P  L O A D I N G  U S I N G  P T F F E P E M T  D T S P A T C H I N G  R U | _ F S 

L O A D I N G  A P P R O A C H  N U M B E R 0 

D I S P A T C H I N G  D U L F  N U M B E R 1 

NUMBER OF MACHINES IN THE SIMULATED SHOP 10 
NUMBER OF RUN IN PFKIOHS 50 
NUMBER OF TI^E PERIODS SIMULATED AFTER RU*< AN 500 
LFNGTH OF EACH TIMF PERIOD 8.00 
SPECIAL FFATURES 0000000000 

MACHINE DEVIATION FROM BALANCE 
AGGfftGTlTF/ L<*AD 

1 «.557 -5.814 
2 a. 98^ -8.9?7 
3 13.19? -4.721 
4 B.53? -7.8*8 
5 10.510 -5.717 
6 P. 616 -6.312 
7 5.97U -8.4*5 
8 12.213 -3.318 
9 11.751 -5.033 

10 12.093 -5.5«9 

DEVIATION FROM BALANCE r AGGREGATE LOAD 
AVERAGE 171.367VARTANC r 4140.554 

DEVIATION FROM BALANCEr^UEUF LOAD 
AVERAGE 69.745VARTANC C 639.08ft 

UUEUE LOAn 

TIME SPFNT IN 
AVERAGF 

TIME SPFNT IN 
AVERAGF 

TIME SPFNT IN 
AVERAGF 

THE SYSTE M 

65.63<SVARTANC^ 

THF J O n P O O L 

.000VARTANC e 

THF SYSTEM ti/f) 

65.636VARTANC C 

1416.966 

.000 

POOL TIME 
1416.966 

JOBS IN THE POOL BEFORE LOAHING AVG .00 ^TU .00 

JOBS IN THE POOL AFTER LOADING AVG .00 <*TU .00 



134 

M A C H I N E : U T I L I Z A T I O N B A L A N r f _ M E A S U R E 

1 8 4 . 0 5 6 4 . b « 8 

2 8 4 . 2 9 4 4 . b 9 3 

3 7 6 . 9 9 9 S . 7 6 9 

4 8 3 . 6 5 4 4 . 6 7 3 

5 8 0 . 6 9 6 4 . 7 3 1 

6 8 ^ . 7 6 9 4 . 6 1 7 

7 8 S . 4 5 7 4 . 1 2 0 

8 7 7 . 2 6 9 5 , b 2 ? 

9 7 7 . 5 6 4 S . 8 4 8 

1 0 7 9 . 0 9 4 S . 3 ? 9 

M A C H I N E  R A L A N C F  M E A S U R E  = 5 . 0 0 0 

S H O P  R A L A N C E  M F A S U ^ E  = . 6 4 1 

N U M B E R  O F  J O B S  E N T F R I N G  S H O P  =  2 1 1 1 

N I J M R E R  O F  J O B S  L E A D I N G  S H O P  = 2 1 1 4 

A V F R A G F  J O B  L A T E N E S S  = - 2 6 . 4 6 

A V F R A G E  L A T E N E S S  V A R I A N C E  = 7 9 8 . 3 1 

A V E R A G F  J O B  T A R D I N E S S  =  1 . 1 8 9 

A V E R A G E  T A R D I N F S S  V A R I A N C E  =  1 2 . s 7 7 

A V E R A G E  S H O P  U T I L I S A T I O N  =  8 1 . 2 8 F 

A V F R A G F  W . i . p . d n  H O U R S  O F  W O R K )  =  5 7 0 . 9 5 5  1 7 1 . 4 2 1 

A V E R A G F M U M R E R O F J O t t S I N  T H E  S H O P r 3 4 . 6 1 3 l l . . 5 4 4 

W . I . P .  ( A V E R A G E  O P E R A T I O N S  P E R F O R M E D  P»"R J O ^  I N  T H E S H O P ) . 

A V G = 7 1 . 6 R ?  S T D =  2 0 . 2 7 1 

W . I  . P .  ( A V E R A G E m O U P S 0 ^  WORK D O N e .  F O R J O B S  I N  T H F  S H O P ) . 

AVtir . l f c d . 4 " ^  ^ T D =  5 5 . 5 2 2 

L E N G T H  O F  S I M U L A T I O N  R*IN  WAS 

5 0 0  T I M E  P E R I O D S  ( 4 0 0 0 . 0  H O U R S  ) 

M A C H I N E A V G I N P ' f T / P D . 

1 8 4 . 9\) 

? 8 4 . 7 j 

3 7 7 . 4 4 

4 8 4 . 1 (i 

5 8 1 . 0 0 

6 8 3 . o 0 

7 8 5 . 7 t , 

8 7 7 . » U 

o 7 7 . o ? 

i n 7 9 . 4 , ? 

O T H E R R A L A N C E M E A S U F . L S 
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M A C H I N E  O U F U t  H A L A N C F .  I N D E X 
fcCH  NO  A V E R A G E  OWR  MAATMUM 

1  2 . 5 7 8  7 . 1 3 a  1 5 

2  3 . 5 8 5  l b . 3 7 f t  17 
3  2 . 1 7 9  1 2 . 6 0 3  21 
4  3 . 1 3 5  1 5 . 9 0 0  21 
5  2 . 5 3 3  9 . 8 2 5  14 
6  2 . 7 8 8  9 . 7 3 4  15 
7  3 . 6 8 5  1 9 . 7 9 1  22 

8  1 . 5 9 9  4 . 3 5 1  12 
9  2 . 2 1 8  a .  010  16 

10  2 . 2 0 5  8 . 4 5 6  15 

A L L  2 . 6 5 0  1 1 . 1 1 8  22 

P E R I O D  WORK  B A L A N C E  I N D F X  PWB  =  4 . 4 1 4 

P E R I O D  Q U E U E  R A L A N C F  I N O E X  P Q B  ­ 2 6 . 9 4 

V A R I A N C E  O F  M A C H I N E  W A I T I N G  T I M F 250.409 
V A R I A N C E  O F  M A C H I N E  I N T F K A R " I V A L  T I M E S  Q . 6 2 5 

V A R I A N C E  O F  S H O P  I N T E R A R R I V A L  T T M E S 9.814 

V A R I A N C E  O F  WORK  A R R I V E D  P E *  P E R I O D  2 7 . 2 6 4 

V A R I A N C E  O F  S H O P  WORK  A R R I V E D  P«­R  P E R I O D  2 6 9 . 5 9 5 

V A R I A N C E  O F  O U T P U T  P E R  P E R I O D  1 . 9 6 5 

V A R I A N C E  O F  S H O P  O U T P U T  P E R  P E R I O D  2 6 . 2 6 P 

V A R I A N C E  O F  Q U F U E  L E N G T H  I N  H O U R S  O F  WORK 56.939 



136 

THF- JOB SHOP PROoAriTLlTY TRANSITION MATRIX 

.100 .200 .300 .400 .500 

.100 .2(10 .300 .4 00 .500 

. l n o  .200 .300 .400 ,50n 

.100 .200 .300 .400 .500 

. l n o  .200 .300 .400 .500 

.100 .200 .300 .4U0 .500 

.100 .200 .300 .400 .500 

.100 .?00 .300 .400 .500 

.100 .200 .300 .400 .500 

. l n o  .200 .300 .400 .500 

.600 .700 .BOO .900 1 . 0 0 0 

.600 .700 .BUO .^00 1 . 0 0 0 

.600 .700 .BUO .900 1 .000 

.600 .700 .BUO .900 i  . o o o 

.600 .700 .BUO .900 1 . 0 0 0 

.600 .700 .BOO .900 1 .000 

.600 .700 .BOO .900 1 . 0 0 0 

.600 .700 .BUO .900 l  . o o o 

.600 .700 .BOO .900 1 . 0 0 0 

.600 .700 .800 .900 1 . 0 0 0 

IDUE 000 ITYPF. SEED ISFFO N|_OR 

1 1 .0000 749387 0 

MEAN INPUT ARRIVAL RATE = .5300 ARRIVALS/HOUR 
MEAN TI ME BETWEEN ARRIVALS = 1.8068 HOUPS 
ACTUAL MEAN TIME PER OPERATION = 2.585° HOURS 

NPKEL= 45 NPRFP= 25 NDESL= 1 OESLF= 6.000 
NOML= 1 DMLFc .400 NARR= 2 
FACDUD= 80.00 SlNPEPs 16.00 

JOB OPERATION TIME FACTORS C 0 R EACH MACHINF 
I . O O O  l . o o o  l . o o o  l . o o o  l . o o o  l . o o n 1 . 0 0 0  l . o u o 1 . 0 0 0 1 . 0 0 0 

MACHINE CENTER CAPACITIES PER PERIOD 
8.000 B.000 B.000 fi.000 A.000 8.000 8.000 B.000 B.000 ft.POO 

OFSIRED AGGREGATE LOAD PER MACHINE 
48.00 04ri.00 0u8.0004B.O0 04R.00OuH.00048.00048.0U04B.0004B.000 

DESIRED OUFUF LOAD PER r.ACHlNE 
3.200  3.200  3.P00  3.200 "*.20o  3.200  3.200  3.200  3.200  3.200 

THL FIRST CARD NOT READ DURING EXLCUTION WAS I 
0 1 0 7 O . O O O 10 . 0 0 0 5 y u ° 

103 ADDITIONAL CARDS WE°E NOT READ• 

http://48.00
http://04ri.00
http://0u8.0004B.O0
http://04R.00OuH.00048.00048.0U04B.0004B.000


APPENDIX F 

RESULTS OF SIMULATION RUNS 



Table 15. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 81. 25 81. 53 81. 33 81. 29 81. 08 81. 30 
2. Average Number of Jobs in Shop 37. 50 37. 21 36. 11 34. 61 36. 54 36. 39 
3. Average Number of Operations for Jobs 

in the Shop 74. 24 74. 28 73. 18 71. 68 73. 30 73. 34 
4. Average Work (Hours) Done for Jobs in Shop 176. 01 175. 73 173. 08 168. 47 173. 20 173. 30 
5. Average Work in Process (Hours) 617. 44 611. 64 595. 56 570. 96 602. 86 599. 69 
6. Time Spent in the System 71. 39 70. 40 68. 55 65. 64 69. 46 69. 09 
7. Time Spent in the Shop 71. 39 70. 40 68. 55 65. 64 69. 46 69. 09 
8. Average Job Tardiness 2. 07 1. 93 1. 63 1. 19 1. 86 1. 74 
9. Variance of Job Tardiness, Average 26. 15 23. 94 18. 05 12. 38 21. 90 20. 48 
10. Average Lateness -20. 82 -21. 78 -23. 47 -26. 46 -22. 67 -23. 04 
11. Variance of Lateness, Average 765. 88 760. 00 794. 65 798. 31 805. 16 784. 80 
12. Machine Balance Measure 5. 183 4. 98 5. 10 5. 00 5. 21 5. 09 
13. Shop Balance Measure . 730 . 78 73 64 75 73 
14. Queue Workload Balance 13. 72 12. 19 12. 60 11. 12 12. 75 12. 48 
15. Period Queue Balance 37. 67 61. 11 26. 45 26. 94 19. 54 34. 54 
16. Variance of Waiting Time Per Operation, 

Average 310. 90 287. 45 281. 42 250. 41 289. 01 283. 84 
17. Average Queue Length in Number of Jobs 

(Shop) 2. 94 2. 91 2. 80 2. 65 2. 84 2. 83 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 104. 84 91. 94 99. 25 87. 27 100. 65 96. 79 
19. Variance of Interarrival Times, Average 

(Machine) 9. 89 9. 80 10. 36 9. 83 10. 30 10. 04 
20. Variance of Interarrival Times (Shop) 9. 87 9. 78 10. 34 9. 81 10. 28 10. 02 
21. Variance of Work Arrived Per Period, 

Average (Machine) 27. 22 27. 98 27. 72 27. 27 28. 07 27. 65 
22. Variance of Work Arrived Per Period (Shop) 299. 77 275. 37 292. 33 269. 60 297. 02 286. 82 
23. Variance of Output, Average Machine 2. 03 1. 95 2. 03 1. 97 2. 05 2. 01 
24. Variance of Output (Shop) 27. 91 26. 91 29. 11 26. 27 31. 89 28. 42 

Conditions: Low Utilization, No Pool, Dynamic Slack (1) 



Table 16. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 81. 47 81. 70 81. 22 81. 09 81. 91 81. 48 
2. Average Number of Jobs in Shop 38. 59 38. 20 37. 68 38. 10 37. 65 38. 04 
3. Average Number of Operations for Jobs 

in the Shop 92. 57 95. 60 93. 73 95. 21 93. 19 94. 06 
4. Average Work (Hours) Done for Jobs in Shop 222. 57 232. 13 225. 46 230. 25 224. 60 227. 00 
5. Average Work in Process (Hours) 626. 81 621. 34 612. 59 621. 85 615. 55 619. 63 
6. Time Spent in the System 73. 32 72. 22 71. 86 72. 23 71. 25 72. 18 
7. Time Spent in the Shop 73. 32 72. 22 71. 86 72. 23 71. 25 72. 18 
8. Average Job Tardiness 2. 14 1. 26 1. 22 1. 67 1. 54 1. 57 
9. Variance of Job Tardiness, Average 35. 21 15. 15 15. 15 20. 02 19. 06 20. 92 
10. Average Lateness -18. 90 -19. 92 -20. 38 -19. 79 -20. 98 -19. 99 
11. Variance of Lateness, Average 848. 27 741. 21 744. 32 802. 70 854. 56 798. 21 
12. Machine Balance Measure 5. 25 5. 09 5. 22 5. 12 5. 03 5. 14 
13. Shop Balance Measure 1. 04 . 91 1. 04 . 92 , 89 . 96 
14. Queue Workload Balance 13. 92 13. 62 13. 41 14. 78 13. 80 13. 91 
15. Period Queue Balance 50. 27 76. 51 34. 36 38. 02 48. 76 49. 58 
16. Variance of Waiting Time Per Operation, 

Average 299. 23 284. 66 277. 31 288. 56 287. 42 287. 44 
17. Average Queue Length in Number of Jobs 

(Shop) 3. 05 3. 00 2. 96 3. 00 2. 95 2. 99 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 103. 66 103. 32 99. 92 111. 28 107. 22 105. 08 
19. Variance of Interarrival Times, Average 

(Machine) 10. 59 10. 21 10. 57 10. 20 10. 13 10. 34 
20. Variance of Interarrival Times (Shop) 10. 57 10. 23 10. 56 10. 19 10. 11 10. 33 
21. Variance of Work Arrived Per Period, 

Average (Machine) 27. 70 27. 79 27. 35 27. 12 27. 53 27. 50 
22. Variance of Work Arrived Per Period (Shop) 369 . 97 322 . 01 336. 59 302. 23 300. 25 326. 21 
23. Variance of Output, Average Machine 2. 09 2. 06 2. 06 2. 03 2. 02 2. 05 
24. Variance of Output (Shop) 35. 01 30. 52 32. 61 31. 18 31. 04 32. 07 

Conditions: Low Utilization, No Pool, Dynamic Slack Per Operation (2) 



Table 17. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 81. 62 81. 56 81. 17 81. 15 81. 11 81. 32 
2, Average Number of Jobs in Shop 33. 21 32. 86 32. 67 32. 54 33. 23 32. 90 
3. Average Number of Operations for Jobs 

in the Shop 108. 94 107. 59 107. 10 105. 17 109. 06 107. 57 
4. Average Work (Hours) Done for Jobs in Shop 257. 69 257. 03 258. 59 253. 58 262. 69 257. 92 
5. Average Work in Process (Hours) 552. 47 549. 90 549. 45 544. 57 556. 26 550. 92 
6. Time Spent in the System 63. 29 62. 88 63. 75 62. 12 63. 13 63. 03 
7. Time Spent in the Shop 63. 29 62. 88 63. 75 62. 12 63. 13 63. 03 
8. Average Job Tardiness 12. 95 13. 07 13. 66 12. 25 12. 60 12. 91 
9. Variance of Job Tardiness, Average 1239. 04 1254. 22 1594. 76 1028. 39 1009. 91 1225. 26 
10. Average Lateness -28. 87 -29. 25 -28. 34 -29. 98 -29. 03 -29. 09 
11. Variance of Lateness, Average 4048. 24 4056. 33 4433. 78 3750. 91 3719. 21 4001. 69 
12. Machine Balance Measure 5. 44 5. 184 5. 37 5. 44 5. 50 5. 39 
13. Shop Balance Measure 1. 53 1. 13 1. 46 1. 62 1. 62 1. 47 
14. Queue Workload Balance 8. 73 9. 43 9. 19 8. 31 9. 00 8 .  93 
15. Period Queue Balance 65. 71 106. 29 48. 05 42. 97 16. 41 55. 89 
16. Variance of Waiting Time Per Operation, 

Average 394. 28 395. 75 465. 50 348. 31 360. 99 392. 97 
17. Average Queue Length in Number of Jobs 

(Shop) 2. 51 2. 47 2. 46 2. 44 2. 51 2. 48 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 90. 57 99. 95 95. 23 86. 81 8 8 .  16 92. 14 
19. Variance of Interarrival Times, Average 

(Machine) 10. 88 9. 92 10. 34 10. 48 10. 60 10. 44 
20. Variance of Interarrival Times (Shop) 10. 87 9. 88 10. 32 10. 46 10. 57 10. 42 
21. Variance of Work Arrived Per Period, 

Average (Machine) 26. 94 26. 39 25. 90 26. 19 26. 00 26. 28 
22. Variance of Work Arrived Per Period (Shop) 450. 36 353. 83 419. 58 449. 07 437. 01 421. 97 
23. Variance of Output, Average Machine 2. 10 2. 01 2. 11 2. 10 2. 07 2. 08 
24. Variance of Output (Shop) 43. 84 34. 18 42. 27 41. 57 42. 40 40. 85 

Conditions: Low Utilization, No Pool, Expected Work in Next Queue (3) 



Table 18. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 81. 63 81. 52 81. 63 81. 20 81. 47 81. 49 
2. Average Number of Jobs in Shop 24. 79 25. 32 26. 10 24. 71 24. 75 25. 13 
3. Average Number of Operations for Jobs 

in the Shop 63. 70 65. 29 66. 98 63. 67 64. 44 64. 82 
4. Average Work (Hours) Done for Jobs in Shop 145. 89 150. 31 154. 18 145. 03 147. 25- 148. 63 
5. Average Work in Process (Hours) 460. 53 473. 49 489. 26 459. 66 458. 51 468. 29 
6. Time Spent in the System 47. 69 48. 82 50. 62 47. 09 46. 78 48. 20 
7. Time Spent in the Shop 47. 69 48. 82 50. 62 47. 09 46. 78 48. 20 
8. Average Job Tardiness 7. 01 8. 13 8. 68 6. 61 6. 28 7. 34 
9. Variance of Job Tardiness, Average 629. 33 816. 70 1125. 43 534. 05 464. 64 714. 03 
10. Average Lateness -44. 47 -43. 30 -41. 66 -45. 05 -45. 27 -43. 95 
11. Variance of Lateness, Average 5200. 08 3503. 52 3850. 73 3060. 41 2963. 93 3315. 73 
12. Machine Balance Measure 5. 18 5. 30 5. 35 5. 40 5. 23 5. 29 
13. Shop Balance Measure . 

93 1. 21 1. 33 1. 40 1. 10 1. 19 
14. Queue Workload Balance 3. 60 3. 79 4. 05 3. 38 3. 61 3. 69 
15. Period Queue Balance 16. 00 45. 16 17. 81 14. 17 6. 75 19. 98 
16. Variance of Waiting Time Per Operation, 

Average 207. 18 265. 26 326. 68 205 . 88 191. 49 239. 30 
17. Average Queue Length in Number of Jobs 

(Shop) 1. 66 1. 72 1. 79 1. 66 1. 66 1. 70 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 125. 91 141. 12 156. 92 117. 10 126. 36 133. 48 
19. Variance of Interarrival Times, Average 

(Machine) 10. 57 10. 67 10. 94 11. 23 10. 62 10. 81 
20. Variance of Interarrival Times (Shop) 10. 55 10. 64 10. 91 11. 15 10. 60 10. 77 
21. Variance of Work Arrived Per Period, 

Average (Machine) 27. 97 28. 84 28. 30 28. 87 28. 44 28. 48 
22. Variance of Work Arrived Per Period (Shop) 402. 49 450. 24 468. 19 459. 54 434. 59 443. 01 
23. Variance of Output, Average Machine 1. 94 1. 97 1. 98 2. 05 1. 96 1. 98 
24. Variance of Output (Shop) 40. 02 44. 06 47. 96 47. 77 42. 31 44. 42 

Conditions: Low Utilization, No Pool, Shortest Processing Time (4) 



Table 19. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 81. 27 81. 52 81. 16 81. 28 81. 12 81. 27 
2. Average Number of Jobs in Shop 24. 90 24. 98 24. 78 24. 72 25. 14 24. 90 
3. Average Number of Operations for Jobs 

in the Shop 64. 09 64. 56 64. 48 63. 23 65. 63 64. 40 
4. Average Work (Hours) Done for Jobs in Shop 146. 10 148. 76 147 .79 144. 99 151. 82 147. 89 
5. Average Work in Process (Hours) 462. 65 465. 56 462. 14 457. 90 469. 42 463. 53 
6. Time Spent in the System 47. 67 47. 25 47. 18 46. 92 47. 84 47. 37 
7. Time Spent in the Shop 47. 67 47. 25 47. 18 46. 92 47. 84 47. 37 
8. Average Job Tardiness 6. 91 6. 60 6. 53 6. 48 6. 93 6. 69 
9. Variance of Job Tardiness, Average 567. 10 536. 60 474. 41 521. 55 541. 07 528. 15 
10. Average Lateness -44. 50 -44. 83 -44. 92 -45. 18 -44. 24 -44. 73 
11. Variance of Lateness, Average 3103. 47 2096. 28 2986. 31 3029. 95 3086. 38 2060. 48 
12. Machine Balance Measure 5. 39 5. 28 5. 37 5. 29 5. 52 5. 37 
13. Shop Balance Measure 1. 30 1. 28 1. 27 . 98 1. 32 1. 23 
14. Queue Workload Balance 3. 47 3. 69 3. 58 3. 70 3. 61 3. 61 
15. Period Queue Balance 12. 47 17. 00 7. 93 10. 79 5. 04 10. 65 
16. Variance of Waiting Time Per Operation, 

Average 204. 68 211. 68 192. 84 202. 00 200. 37 202. 31 
17. Average Queue Length in Number of Jobs 

(Shop) 1. 68 1. 68 1. 67 1. 66 1. 70 1. 68 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 121. 50 132. 77 128. 79 132. 33 126. 31 128. 34 
19. Variance of Interarrival Times, Average 

(Machine) 11. 02 10. 81 10. 77 10. 54 11. 18 10. 86 
20. Variance of Interarrival Times (Shop) 11. 00 10. 78 10. 75 10. 53 11. 15 10. 84 
21. Variance of Work Arrived Per Period, 

Average (Machine) 27. 95 28. 29 28. 66 27. 76 28. 74 28. 28 
22. Variance of Work Arrived Per Period (Shop) 447. 92 457. 27 443. 09 393. 01 474. 933 443. 24 
23. Variance of Output, Average Machine 1. 96 1. 99 1. 91 1. 88 2. 00 1. 95 
24. Variance of Output (Shop) 44. 98 43. 46 45. 87 36. 13 48. 23 43. 73 

Conditions: Low Utilization, No Pool, Due Date (5) 



Table 20. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 81. 26 81. 34 81. 74 81 .34 81. 23 81. 38 
2. Average Number of Jobs in Shop 37. 22 38. 21 37. 69 38 .99 37. 55 37. 93 
3. Average Number of Operations for Jobs 

in the Shop 97. 34 100. 32 98. 33 102 .59 98. 42 99. 40 
4. Average Work (Hours) Done for Jobs in Shop 234. 88 242. 67 237. 76 249 .10 238. 42 240. 57 
5. Average Work in Process (Hours) 619. 63 636. 13 628. 12 650. 39 624. 24 631. 70 
6. Time Spent in the System 70. 81 72. 63 71. 18 74 . 37 71. 23 72. 04 
7. Time Spent in the Shop 70. 81 72. 63 71. 18 74 .37 71. 23 72. 04 
8. Average Job Tardiness 12. 78 13. 40 12. 63 14 . 28 12. 70 13. 16 
9. Variance of Job Tardiness, Average 565. 26 608. 14 542. 54 670 .28 556. 11 588. 47 
10. Average Lateness -21. 29 -19. 47 -21. 08 -17 .76 -20. 90 -20. 10 
11. Variance of Lateness, Average 2824. 60 2850. 79 2775. 19 2944 .88 2768. 67 2832. 83 
12. Machine Balance Measure 5. 19 5. 25 4. 97 5 .31 5. 17 5. 18 
13. Shop Balance Measure . 97 . 99 68 1 .00 96 92 
14. Queue Workload Balance 13. 20 13. 78 13. 72 13 . 91 13. 77 13. 58 
15. Period Queue Balance 61. 96 128. 93 65. 77 74 . 20 25. 60 71. 29 
16. Variance of Waiting Time Per Operation, 

Average 105. 26 109. 41 109. 18 109 .15 111. 44 108. 89 
17. Average Queue Length in Number of Jobs 

(Shop) 2. 91 3. 01 2. 95 3. 09 2. 94 2. 98 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 100. 32 104. 05 104. 28 104 .12 105. 84 103. 72 
19. Variance of Interarrival Times, Average 

(Machine) 10. 00 10. 43 9. 96 10 .42 10. 27 10. 22 
20. Variance of Interarrival Times (Shop) 9. 98 10. 41 9. 95 10 .40 10. 25 10. 20 
21. Variance of Work Arrived Per Period, 

Average (Machine) 27. 35 28. 29 28. 10 27 .63 28. 19 27. 91 
22. Variance of Work Arrived Per Period (Shop) 337. 83 334. 99 313. 99 354 .47 326. 06 333. 47 
23. Variance of Output, Average Machine 2. 03 1. 98 2. 06 2. 06 1. 99 2. 02 
24. Variance of Output (Shop) 32. 29 31. 22 28. 60 33 .01 31. 76 31. 38 

Conditions: Low Utilization, No Pool, First Come First Served (6) 



Table 21. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 81.02 81. 32 81. 16 80. 82 81. 07 81. 08 
2. Average Number of Jobs in Shop 30.92 31. 74 31. 34 30. 77 31. 65 31. 28 
3. Average Number of Operations for Jobs 

in the Shop 67.96 67. 71 68. 46 67. 35 68. 42 67. 98 
4. Average Work (Hours) Done for Jobs in Shop 158.59 159. 41 160. 75 157. 59 161. 82 159. 63 
5. Average Work in Process (Hours) 500.92 513. 08 506. 39 499. 70 513. 13 506. 64 
6. Time Spent in the System 81.05 87. 82 81. 21 77. 75 84. 81 82. 53 
7. Time Spent in the Shop 58.65 59. 97 59. 49 58. 70 60. 12 59. 39 
8. Average Job Tardiness 6.77 10. 73 5. 95 4. 46 8. 37 7. 26 
9. Variance of Job Tardiness, Average 114.85 200. 66 86. 49 60. 61 142. 15 120. 95 
10. Average Lateness -11.07 -4. 22 -11. 03 -14. 38 -7. 39 -9. 62 
11. Variance of Lateness, Average 1038.68 1075. 97 901. 88 842. 27 1029. 05 977. 57 
12. Machine Balance Measure 5.12 5. 047 5. 04 5. 22 5. 19 5. 12 
13. Shop Balance Measure .66 . 60 . 58 . 54 . 63 . 60 
14. Queue Workload Balance 8.20 8 . 22 8. 21 7. 90 9. 06 8. 32 
15. Period Queue Balance 14.15 25. 21 15. 67 18. 79 12. 19 17. 20 
16. Variance of Waiting Time Per Operation, 

Average 13.15 190. 59 184. 51 183. 55 204. 19 189. 20 
17. Average Queue Length in Number of Jobs 

(Shop) 2.28 2. 36 2. 32 2. 27 2. 36 2. 32 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 54.57 52. 58 54. 44 52. 08 58. 80 54. 49 
19. Variance of Interarrival Times, Average 

(Machine) 9.80 9. 86 9. 91 10. 12 10. 03 9. 94 
20. Variance of Interarrival Times (Shop) 9.78 9. 83 9. 87 10. 10 10. 01 9. 92 
21. Variance of Work Arrived Per Period, 

Average (Machine) 25.06 25. 01 25. 59 25. 19 25. 33 25. 24 
22. Variance of Work Arrived Per Period (Shop) 209.19 193. 13 216. 72 191. 13 212. 50 204. 53 
23. Variance of Output, Average Machine 1.90 1. 97 1. 99 1. 99 1. 99 1. 97 
24. Variance of Output (Shop) 23.28 25. 04 25. 09 25. 32 25. 22 24. 79 

Conditions: Low Utilization, Math Pool, Dynamic Slack (1) 



Table 22. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 80. 23 81. 42 81. 32 80. 61 82. 52 81. 22 
2. Average Number of Jobs in Shop 32. 42 33. 10 32. 01 32. 54 34. 93 33. 02 
3. Average Number of Operations for Jobs 

in the Shop 75. 71 77. 22 80. 61 81. 79 72. 43 77. 55 
4. Average Work (Hours) Done for Jobs in Shop 178. 83 182. 58 192. 73 194. 94 168. 18 183. 45 
5. Average Work in Process (Hours) 523. 10 532 . 14 519. 29 526. 02 588. 68 537. 85 
6. Time Spent in the System 89. 10 89. 38 77. 9 9 79. 95 106. 01 88. 49 
7. Time Spent in the Shop 61. 94 62. 52 60. 75 62. 07 65. 52 62. 56 
8. Average Job Tardiness 12. 58 10. 71 3. 97 4. 78 22. 89 10. 99 
9 . Variance of Job Tardiness, Average 405. 21 267. 90 67. 51 77. 69 569. 84 277 . 63 
10. Average Lateness -2. 90 -2. 68 -14. 19 -12. 22 13. 89 -3. 62 
11. Variance of Lateness, Average 1442. 10 1082. 26 885. 36 874. 13 1428. 87 1142. 54 
12. Machine Balance Measure 5. 53 5. 21 5. 15 5. 26 4. 83 5. 20 
13. Shop Balance Measure . 89 . 66 . 84 . 68 . 539 . 72 
14. Queue Workload Balance 9. 21 9 . 24 8. 66 9. 34 10. 44 9. 38 
15. Period Queue Balance 18. 39 38. 96 17. 60 20. 56 14. 37 21. 98 
16. Variance of Waiting Time Per Operation, 

Average 203. 10 208. 08 181. 77 200. 70 223. 22 203. 37 
17. Average Queue Length in Number of Jobs 

(Shop) 2. 44 2. 50 2. 39 2. 45 2. 69 2. 49 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 57. 68 60. 06 56. 08 61. 88 66. 80 60. 50 
19. Variance of Interarrival Times, Average 

(Machine) 10. 57 10. 31 10. 14 10. 09 9. 76 10. 17 
20. Variance of Interarrival Times (Shop) 10. 54 10. 28 10. 13 10. 08 9. 75 10. 16 
21. Variance of Work Arrived Per Period, 

Average (Machine) 25. 76 25. 76 27. 02 26. 11 25. 81 26. 09 
22. Variance of Work Arrived Per Period (Shop) 241. 58 216. 37 259. 29 215. 93 202. 09 227. 05 
23. Variance of Output, Average Machine 2. 04 1. 98 2. 02 2. 02 1. 92 2. 00 
24. Variance of Output (Shop) 30. 08 26. 02 29. 51 27. 30 22. 69 27. 12 

Conditions: Low Utilization, Math Pool, Dynamic Slack Per Operation (2) 



Table 23. Simulation Results 

1 .  Average Shop Utilization 81. 71 81. 52 81. 26 81 .06 81. 09 81. 33 
2. Average Number of Jobs in Shop 29. 86 29. 45 29. 26 29 .80 29. 40 29. 55 
3. Average Number of Operations for Jobs 

in the Shop 95. 22 95. 06 93. 71 96 .31 93. 69 94. 80 
4. Average Work (Hours) Done for Jobs in Shop 228. 10 226. 48 222. 42 231 .06 222. 83 226. 18 
5. Average Work in Process (Hours) 496. 48 487. 75 485. 40 493 .99 486. 71 490. 07 
6. Time Spent in the System 65. 17 64. 28 63. 82 64 .39 63. 32 64. 20 
7. Time Spent in the Shop 56. 80 56. 31 55. 41 56 . 57 55. 80 56. 18 
8. Average Job Tardiness 12. 14 12. 27 11. 63 11 . 50 11. 03 11. 71 
9. Variance of Job Tardiness, Average 892. 83 901. 18 862. 36 769 .36 754. 56 836. 06 
10. Average Lateness -27. 04 -27. 79 -28. 38 -27 .76 -28. 83 -27. 96 
11. Variance of Lateness, Average 3446. 71 3529. 03 3391. 39 3249 .30 3218. 43 3366. 97 
12. Machine Balance Measure 5. 52 5. 22 6. 65 5. 57 5. 55 5. 50 
13. Shop Balance Measure 1. 52 1. 06 1. 51 1 .48 1. 60 1. 43 
14. Queue Workload Balance 6. 23 6. 90 6. 08 6 .56 6. 12 6. 38 
15. Period Queue Balance 17. 91 65. 64 18. 75 18. 35 11. 74 26. 48 
16. Variance of Waiting Time Per Operation, 

Average 245. 85 262. 12 237. 51 226. 84 224. 78 239. 42 
17. Average Queue Length in Number of Jobs 

(Shop) 2. 17 2. 13 2. 11 2 .17 2. 13 2. 14 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 59. 29 67. 05 59. 51 60 .74 62. 54 61. 83 
19. Variance of Interarrival Times, Average 

(Machine) 10. 91 9. 58 10. 27 10 .19 10. 48 10. 29 
20. Variance of Interarrival Times (Shop) 10. 85 9. 57 10. 25 10 .76 10. 45 10. 26 
21. Variance of Work Arrived Per Period, 

Average (Machine) 24. 86 24. 67 24. 69 24. 79 24. 64 24. 73 
22. Variance of Work Arrived Per Period (Shop) 381. 42 331. 29 362. 41 379 .04 394. 40 369. 71 
23. Variance of Output, Average Machine 2. 01 1. 97 2. 07 2 .05 2. 09 2. 04 
24. Variance of Output (Shop) 41. 29 35. 27 41. 47 39 .11 42. 44 39. 92 

Conditions: Low Utilization, Math Pool, Expected Work in Next Queue (3) 

I 2 3 ~~4 5 Avg. 



Table 24. Simulation Results 

1 2 

to 4 5 Avg. 

1. Average Shop Utilization 81. 79 81. 67 81. 74 81. 14 81. 46 81. 56 
2. Average Number of Jobs in Shop 22. 73 23. 08 23. 24 22 .70 22. 82 22. 91 
3. Average Number of Operations for Jobs 

in the Shop 58. 45 59. 84 59. 56 59 .16 58. 44 59. 09 
4. Average Work (Hours) Done for Jobs in Shop 134. 24 138. 05 135. 61 135 .13 134. 19 135. 44 
5. Average Work in Process (Hours) 412. 66 421. 03 421. 42 412 .16 412. 83 416. 02 
6. Time Spent in the System 51. 92 53. 61 54. 78 51. 53 51. 63 52. 69 
7. Time Spent in the Shop 42. 97 43. 85 44. 07 43 .17 43. 06 43. 42 
8. Average Job Tardiness 6. 49 7. 40 7. 66 6. 33 6. 27 6. 83 
9. Variance of Job Tardiness, Average 398. 64 494. 52 583. 42 399. 00 338. 89 442. 29 
10. Average Lateness -40. 34 -38. 71 -37. 39 -40 .68 -40. 44 -39. 51 
11. Variance of Lateness, Average 2734. 40 2894. 62 2965. 62 2690 .39 2652. 96 2787. 59 
12. Machine Balance Measure 5. 19 5. 40 5. 51 5 .62 5. 27 5. 40 
13. Shop Balance Measure . 90 1. 16 1. 25 1. 41 1. 02 1. 15 
14. Queue Workload Balance 2. 68 2. 80 2. 58 2 .49 2. 73 2. 66 
15. Period Queue Balance 6. 01 16. 46 5. 33 5. 02 3. 50 7. 26 
16. Variance of Waiting Time Per Operation, 

Average 118. 42 129. 31 131. 95 112. 14 113. 66 121. 10 
17. Average Queue Length in Number of Jobs 

(Shop) 1. 46 1. 49 1. 51 1 .46 1. 47 1. 48 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 80. 58 86. 36 75. 72 71 .90 78. 30 72. 57 
19. Variance of Interarrival Times, Average 

(Machine) 10. 07 10. 33 10. 64 10. 59 10. 27 10. 38 
20. Variance of Interarrival Times (Shop) 10. 04 10. 31 10. 62 10. 58 10. 25 10. 36 
21. Variance of Work Arrived Per Period, 

Average (Machine) 27. 12 26. 59 26. 53 27. 07 26. 75 26. 81 
22. Variance of Work Arrived Per Period (Shop) 314. 58 342. 79 323. 92 342 .94 339. 58 332. 76 
23. Variance of Output, Average Machine 1. 91 1. 89 1. 92 1. 93 1. 82 1. 89 
24. Variance of Output (Shop) 33. 98 36. 71 36. 23 41 . 22 35. 06 36. 64 

Conditions: Low Utilization, Math Pool, Shortest Processing Time (4) 



Table 25. Simulation Results 

1 2 3 < 4 5 Avg. 

1. Average Shop Utilization 81. 31 81. 49 81. 17 81 .24 81. 07 81. 26 
2. Average Number of Jobs in Shop 22. 72 22. 89 22. 77 22 . 57 22. 63 22. 72 
3. Average Number of Operations for Jobs 

in the Shop 59. 24 59. 65 58. 18 58 .06 59. 03 58. 83 
4. Average Work (Hours) Done for Jobs in Shop 136. 09 137. 37 133. 48 132 .42 135. 97 135. 07 
5. Average Work in Process (Hours) 412. 82 416. 61 412. 89 407 .37 411. 55 412. 25 
6. Time Spent in the System 52. 16 52. 39 51. 99 51 . 20 51. 62 51. 87 
7. Time Spent in the Shop 43. 14 43. 20 43. 23 42 .84 42. 98 43. 08 
8. Average Job Tardiness 6. 79 6. 68 6. 69 6 .03 6. 47 6. 53 
9. Variance of Job Tardiness, Average 429. 77 374. 28 394. 74 335 .41 378. 59 382. 56 
10. Average Lateness -39. 93 -39. 70 -40. 05 -40 .91 -40. 50 -40. 22 
11. Variance of Lateness, Average 2774. 20 2726. 33 2738. 24 2621 .62 2698. 90 2711. 86 
12. Machine Balance Measure 5. 48 5. 52 5. 52 5 .40 5. 55 5. 49 
13. Shop Balance Measure 1. 30 1. 19 1. 20 1 .0 1. 33 1. 20 
14. Queue Workload Balance 2. 52 2. 53 2. 66 2 .70 2. 58 2. 60 
15. Period Queue Balance 5. 93 9. 40 4. 20 6 .84 3. 04 5. 88 
16. Variance of Waiting Time Per Operation, 

Average 122. 31 112. 78 121. 26 114 .15 112. 98 116. 70 
17. Average Queue Length in Number of Jobs 

(Shop) 1. 46 1. 47 1. 47 1 .45 1. 45 1. 46 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 73. 79 73. 96 80. 23 79 .79 73. 43 76. 24 
19. Variance of Interarrival Times, Average 

(Machine) 10. 79 10. 59 10. 92 10 . 54 10. 95 10. 76 
20. Variance of Interarrival Times (Shop) 10. 77 10. 57 10. 89 10 . 51 10. 93 10. 73 
21. Variance of Work Arrived Per Period, 

Average (Machine) 27. 26 26. 74 27. 11 27 .50 26. 73 27. 07 
22. Variance of Work Arrived Per Period (Shop) 360. 43 342. 84 324. 78 333 .70 358. 39 344. 03 
23. Variance of Output, Average Machine 1. 96 1. 91 1. 91 1. 89 1. 90 1. 91 
24. Variance of Output (Shop) 40. 67 38. 29 40. 06 34. 91 38. 93 38. 57 

Conditions: Low Utilization, Math Pool, Due Date (5) 



Table 26. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 81. 22 81. 55 81. 71 81. 15 81. 27 81. 38 
2. Average Number of Jobs in Shop 30. 89 30. 45 31. 36 31. 01 31. 04 30. 95 
3. Average Number of Operations for Jobs 

in the Shop 80. 62 79. 21 81. 64 80. 24 80. 91 80. 52 
4. Average Work (Hours) Done for Jobs in Shop 192. 29 188. 37 194. 02 189. 88 193. 16 191. 54 
5. Average Work in Process (Hours) 511. 42 504. 65 518. 87 512. 47 515. 26 512. 53 
6. Time Spent in the System 73. 82 73. 13 73. 48 75. 78 74. 24 74. 09 
7. Time Spent in the Shop 58. 62 57. 54 59. 01 58. 86 58. 79 58. 56 

C
O
 

Average Job Tardiness 12. 63 12. 16 12. 25 13. 48 12. 79 12. 66 
9. Variance of Job Tardiness, Average 445. 70 394. 79 416. 02 450. 19 434. 68 428. 28 
10. Average Lateness -18. 37 -19. 07 -18. 77 -16. 31 -17. 87 -18. 08 
11. Variance of Lateness, Average 2556. 12 2462. 82 2445. 39 2539. 92 2524. 29 2505. 71 
12. Machine Balance Measure 5. 47 5. 24 5. 12 5. 31 5. 20 5. 27 
13. Shop Balance Measure . 91 . 97 . 61 . 87 . 82 . 84 
14. Queue Workload Balance 6. 94 6. 17 7. 76 7. 30 8. 00 7. 23 
15. Period Queue Balance 13. 66 35. 05 14. 18 19. 83 13. 54 19. 25 
16. Variance of Waiting Time Per Operation, 

Average 53. 92 47. 14 68. 44 57. 38 63. 78 58. 13 
17. Average Queue Length in Number of Jobs 

(Shop) 2. 28 2. 23 2. 32 2. 29 2. 29 2. 28 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 51. 62 45. 25 57. 55 52. 02 60. 11 53. 31 
19. Variance of Interarrival Times, Average 

(Machine) 10. 41 10. 38 9. 95 10. 25 9. 73 10. 14 
20. Variance of Interarrival Times (Shop) 10. 40 10. 36 9. 93 10. 24 9. 72 10. 13 
21. Variance of Work Arrived Per Period, 

Average (Machine) 26. 43 25. 23 23. 28 25. 72 26. 50 25. 43 
22. Variance of Work Arrived Per Period (Shop) 290. 94 267. 09 235. 29 253. 45 250. 38 259. 43 
23. Variance of Output, Average Machine 2. 01 1. 99 1. 94 2. 01 1. 93 1. 98 
24. Variance of Output (Shop) 31. 59 32. 88 25. 06 27. 82 26. 20 28. 71 

Conditions: Low Utilization, Math Pool, First Come First Served (6) 



Table 27. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 81. 05 81. 47 81. 26 81. 15 81. 16 81. 22 
2. Average Number of Jobs in Shop 33. 54 33. 70 32. 69 32. 40 33. 19 33. 10 
3. Average Number of Operations for Jobs 

in the Shop 70. 81 71. 54 70. 14 63. 39 70. 27 70. 43 
4. Average Work (Hours) Done for Jobs in Shop 168. 58 169. 56 166. 71 164. 52 166. 72 167. 22 
5. Average Work in Process (Hours) 552. 65 554. 91 540. 30 535. 06 546. 25 545. 83 
6. Time Spent in the System 78. 34 78. 63 74. 76 73. 20 77. 12 76. 41 
7. Time Spent in the Shop 63. 59 63. 63 61. 95 61. 40 63. 02 62. 72 
8. Average Job Tardiness 4. 77 4. 91 3. 60 2. 96 4. 46 4. 14 
9. Variance of Job Tardiness, Average 68. 77 71. 02 46. 77 34. 87 66. 75 57. 64 
10. Average Lateness -13. 75 -13. 41 -17. 46 -18. 91 -15. 09 -15. 72 
11. Variance of Lateness, Average 871. 78 824. 78 882. 84 799. 06 905. 56 856. 80 
12. Machine Balance Measure 5. 27 5. 29 5. 22 5. 27 5. 27 5. 26 
13. Shop Balance Measure . 75 . 84 . 70 64 , 70 73 
14. Queue Workload Balance 10. 27 9. 06 9. 48 8. 98 9. 60 9. 48 
15. Period Queue Balance 22. 02 34. 35 16. 17 23. 25 13. 24 21. 81 
16. Variance of Waiting Time Per Operation, 

Average 237. 40 215. 43 208. 79 211. 30 222. 25 219. 03 
17. Average Queue Length in Number of Jobs 

(Shop) 2. 54 2. 56 2. 46 2. 43 2. 51 2. 50 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 71. 18 65. 04 68. 02 68. 34 67. 55 68. 03 
19. Variance of Interarrival Times, Average 

(Machine) 10. 49 10. 11 10. 16 10. 22 10. 46 10. 29 
20. Variance of Interarrival Times (Shop) 10. 47 10. 09 10. 14 10. 21 10. 45 10. 27 
21. Variance of Work Arrived Per Period, 

Average (Machine) 27. 28 27. 93 26. 58 27. 30 26. 91 27. 20 
22. Variance of Work Arrived Per Period (Shop) 291. 85 298. 95 271. 82 275. 72 266. 89 281. 05 
23. Variance of Output, Average Machine 1. 94 1. 99 1. 97 1. 97 1. 98 1. 97 
24. Variance of Output (Shop) 27. 32 27. 64 28. 06 28. 75 27. 67 27. 89 

Conditions: Low Utilization, Pool Heuristics, Dynamic Slack (1) 



Table 28. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 81. 33 81. 63 81. 22 81. 12 82. 22 81. 50 
2. Average Number of Jobs in Shop 34. 30 34. 56 34. 39 34. 59 35. 05 34. 58 
3. Average Number of Operations for Jobs 

in the Shop 85. 49 87. 72 86. 95 88. 18 84. 59 86. 59 
4. Average Work (Hours) Done for Jobs in Shop 206. 78 212. 06 210. 96 212. 68 202. 72 209. 04 
5. Average Work in Process (Hours) 558. 48 563. 68 562. 17 564. 10 573. 98 564. 48 
6. Time Spent in the System 78. 18 77. 22 77. 04 76. 81 82. 06 78. 26 
7. Time Spent in the Shop 65. 00 65. 27 65. 30 65. 67 65. 94 65. 44 
8. Average Job Tardiness 3. 76 3. 21 2. 70 2. 81 6. 23 3. 74 
9. Variance of Job Tardiness, Average 64. 46 41. 97 35. 81 37. 76 122. 66 60. 53 
10. Average Lateness -13. 91 -14. 85 -15. 12 -15. 38 -10. 05 -13. 86 
11. Variance of Lateness, Average 841. 13 791. 16 753. 13 760. 01 972. 27 823. 54 
12. Machine Balance Measure 5. 43 5. 18 5. 37 5. 28 4. 96 5. 24 
13. Shop Balance Measure . 97 . 79 . 93 81 75 85 
14. Queue Workload Balance 9. 79 9. 97 10. 22 10. 44 10. 73 10. 23 
15. Period Queue Balance 22. 18 43. 25 24. 65 31. 54 24. 57 29. 24 
16. Variance of Waiting Time Per Operation, 

Average 206. 17 221. 70 220. 95 224. 98 245. 53 223. 87 
17. Average Queue Length in Number of Jobs 

(Shop) 2. 62 2. 64 2. 63 2. 65 2. 68 2. 64 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 65. 30 70. 93 71. 46 75. 62 76. 71 72. 00 
19. Variance of Interarrival Times, Average 

(Machine) 10. 48 10. 36 10. 60 10. 26 10. 09 10. 36 
20. Variance of Interarrival Times (Shop) 10. 45 10. 34 10. 58 10. 25 10. 07 10. 34 
21. Variance of Work Arrived Per Period, 

Average (Machine) 26. 80 27. 34 26. 95 27. 35 26. 66 27. 02 
22. Variance of Work Arrived Per Period (Shop) 303. 83 307. 71 311. 05 301. 43 303. 53 305. 51 
23. Variance of Output, Average Machine 2. 01 1. 98 1. 96 1. 94 1. 98 1. 97 
24. Variance of Output (Shop) 31. 70 27. 35 31. 58 29. 92 29. 03 29. 92 

Conditions: Low Utilization, Pool Heuristics, Dynamic Slack Per Operation (2) 



Table 29. Simulation Results 

i—
» 2 3 4 5 Avg. 

1. Average Shop Utilization 81. 66 81. 52 81. 20 81. 11 81. 09 81. 32 
2. Average Number of Jobs in Shop 30. 32 29. 62 29. 75 29. 53 29. 39 29. 72 
3. Average Number of Operations for Jobs 

in the Shop 97. 96 95. 46 95. 20 95. 94 94. 37 95. 79 
4. Average Work (Hours) Done for Jobs in Shop 234. 12 229. 22 226. 73 230. 41 226. 72 229. 44 
5. Average Work in Process (Hours) 504. 13 495. 40 494. 73 495. 72 488. 90 495. 78 
6. Time Spent in the System 66. 94 64. 58 65. 58 64. 32 63. 93 65. 07 
7. Time Spent in the Shop 57. 75 56. 12 56. 50 56. 09 55. 77 56. 44 
8. Average Job Tardiness 12. 91 12. 00 12. 35 12. 16 11. 54 12. 19 
9. Variance of Job Tardiness, Average 1005. 34 831. 99 984. 11 884. 80 763. 76 894. 00 
10. Average Lateness -25. 43 -27. 59 -26. 54 -27. 78 -28. 23 -27. 11 
11. Variance of Lateness, Average 3590. 22 3365. 37 3511. 10 3450. 12 3286. 99 3440. 76 
12. Machine Balance Measure 5. 48 5. 17 5. 48 5. 50 5. 64 5. 45 
13. Shop Balance Measure 1. 50 1. 04 1. 45 1. 50 1. 58 1. 41 
14. Queue Workload Balance 6. 70 7. 11 6. 71 6. 65 6. 43 6. 72 
15. Period Queue Balance 15. 52 54. 71 24. 39 18. 56 10. 93 24. 82 
16. Variance of Waiting Time Per Operation, 

Average 268. 63 259. 78 257. 35 203. 19 229. 94 243. 78 
17. Average Queue Length in Number of Jobs 

(Shop) 2. 22 2. 15 2. 16 2. 14 2. 13 2. 16 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 63. 50 74. 09 64. 16 67. 14 66. 49 67. 08 
19. Variance of Interarrival Times, Average 

(Machine) 10. 86 9. 60 10. 42 10. 14 10. 62 10. 33 
20. Variance of Interarrival Times (Shop) 10. 83 9. 58 10. 42 10. 12 10. 59 10. 31 
21. Variance of Work Arrived Per Period, 

Average (Machine) 26. 51 24. 91 24. 77 24. 88 25. 18 25. 25 
22. Variance of Work Arrived Per Period (Shop) 378. 14 337. 41 400. 06 374. 23 395. 56 377. 08 
23. Variance of Output, Average Machine 2. 05 1. 98 2. 03 2. 10 1. 99 2. 03 
24. Variance of Output (Shop) 41. 08 33. 83 42. 00 41. 07 41. 45 39. 89 

Conditions: Low Utilization, Pool Heuristics, Expected Work in Next Queue (3) 



Table 30. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 81. 63 81. 58 81. 65 81. 15 81. 49 81. 50 
2. Average Number of Jobs in Shop 23. 04 23. 62 23. 48 22. 93 23. 22 23. 26 
3. Average Number of Operations for Jobs 

in the Shop 59. 94 61. 27 60. 17 58. 82 59. 97 60. 03 
4. Average Work (Hours) Done for Jobs in Shop 138. 16 141. 43 138. 35 134. 26 137. 13 137. 87 
5. Average Work in Process (Hours) 421. 33 429. 59 429. 68 417. 12 422. 09 423. 96 
6. Time Spent in the System 52. 10 54. 13 54. 63 51. 89 52. 27 53. 00 
7. Time Spent in the Shop 43. 63 45. 15 44. 78 43. 51 43. 86 44. 19 
8. Average Job Tardiness 6. 68 7. 81 7. 79 6. 44 6. 98 7. 14 
9. Variance of Job Tardiness, Average 410. 04 592. 49 616. 65 377. 47 485. 72 492. 47 
10. Average Lateness -40. 16 -38. 16 -37. 67 -40. 24 -39. 80 -39. 15 
11. Variance of Lateness, Average 2749. 44 3025. 23 3022. 81 2684. 18 2854. 74 2867. 28 
12. Machine Balance Measure 5. 25 5. 35 5. 48 5. 55 5. 34 5. 39 
13. Shop Balance Measure . 97 1. 18 1. 28 1. 39 1. 09 1. 18 
14. Queue Workload Balance 2. 83 3. 05 2. 76 2. 59 2. 92 2. 83 
15. Period Queue Balance 6. 17 15. 87 7. 03 6. 43 3. 41 7. 78 
16. Variance of Waiting Time Per Operation, 

Average 145. 43 173. 86 160. 06 126. 14 145. 36 150. 17 
17. Average Queue Length in Number of Jobs 

(Shop) 1. 49 1. 55 1. 53 1. 48 1. 51 1. 51 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 92. 36 100. 02 88. 95 77. 46 92. 68 90. 29 
19. Variance of Interarrival Times, Average 

(Machine) 10. 35 10. 47 10. 64 10. 83 10. 46 10. 55 
20. Variance of Interarrival Times (Shop) 10. 32 10. 44 10. 62 10. 81 10. 43 10. 52 
21. Variance of Work Arrived Per Period, 

Average (Machine) 26. 99 33. 67 26. 74 27. 70 26. 59 28. 34 
22. Variance of Work Arrived Per Period (Shop) 378. 86 376. 63 388. 06 389. 83 371. 24 380. 92 
23. Variance of Output, Average Machine 1. 90 1. 91 1. 86 1. 90 1. 82 1. 88 
24. Variance of Output (Shop) 37. 91 37. 43 39. 17 40. 98 36. 89 38. 48 

Conditions: Low Utilization, Pool Heuristics, Shortest Processing Time (4) 



Table 31. Simulation Results 

1 2 3 4 5 Avg. 

t—
' Average Shop Utilization 81. 29 81. 51 81. 15 81. 29 81. 04 81. 26 

2. Average Number of Jobs in Shop 23. 10 23. 39 23. 33 22. 77 23. 27 23. 17 
3. Average Number of Operations for Jobs 

in the Shop 60. 04 60. 98 60. 07 58. 97 60. 31 60. 07 
4. Average Work (Hours) Done for Jobs in Shop 138. 21 141. 53 139. 15 136. 33 139. 77 139. 00 
5. Average Work in Process (Hours) 421. 60 428. 20 427. 70 416. 11 425. 47 423. 82 
6. Time Spent in the System 52. 67 52. 62 52. 78 51. 10 53. 04 52. 44 
7. Time Spent in the Shop 44. 05 44. 19 44. 26 53. 15 44. 18 43. 97 
8. Average Job Tardiness 7. 07 7. 07 6. 98 6. 24 6. 98 6. 87 
9. Variance of Job Tardiness, Average 480. 49 453. 44 446. 18 427. 64 421. 27 445. 80 
10. Average Lateness -39. 59 -39. 47 -39. 53 -40. 91 -39. 17 -39. 73 
11. Variance of Lateness, Average 2852. 13 2830. 47 2827. 95 2731. 83 2767. 16 2801. 91 
12. Machine Balance Measure 5. 49 5. 41 5. 53 5. 37 5. 57 5. 47 
13. Shop Balance Measure 1. 28 1. 20 1. 21 . 99 1. 27 1. 19 
14. Queue Workload Balance 2. 74 2. 81 2. 87 2. 86 2. 94 2. 84 
15. Period Queue Balance 5. 73 8. 99 3. 87 7. 33 3. 06 5. 80 
16. Variance of Waiting Time Per Operation, 

Average 145. 63 141. 90 145. 86 139. 85 142. 11 143. 07 
17. Average Queue Length in Number of Jobs 

(Shop) 1. 50 1. 51 1. 52 1. 46 1. 52 1. 50 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 87. 05 88. 33 93. 62 92. 52 92. 73 90. 85 
19. Variance of Interarrival Times, Average 

(Machine) 11. 07 10. 36 10. 85 10. 34 10. 78 10. 68 
20. Variance of Interarrival Times (Shop) 11. 04 10. 35 10. 84 10. 31 10. 76 10. 66 
21. Variance of Work Arrived Per Period, 

Average (Machine) 27. 36 26. 99 28. 23 28. 09 28. 11 27. 76 
22. Variance of Work Arrived Per Period (Shop) 373. 30 382. 95 372. 25 357. 81 413. 17 379. 90 
23. Variance of Output, Average Machine 1. 92 1. 86 1. 95 1. 86 1. 90 1. 90 
24. Variance of Output (Shop) 38. 53 37. 14 40. 03 37. 19 39. 94 38. 57 

Conditions: Low Utilization, Pool Heuristics, Due Date (5) 



Table 32. Simulation Results 

1. Average Shop Utilization 81. 
2. Average Number of Jobs in Shop 33. 
3. Average Number of Operations for Jobs 

in the Shop 8 7 . 
4. Average Work (Hours) Done for Jobs in Shop 209. 
5. Average Work in Process (Hours) 5 51. 
6. Time Spent in the System 73. 
7. Time Spent in the Shop 63. 
8. Average Job Tardiness 12. 
9. Variance of Job Tardiness, Average 499. 
10. Average Lateness -18. 
11. Variance of Lateness, Average 2583. 
12. Machine Balance Measure 5. 
13. Shop Balance Measure 
14. Queue Workload Balance 9. 
15. Period Queue Balance 18. 
16. Variance of Waiting Time Per Operation, 

Average 71. 
17. Average Queue Length in Number of Jobs 

(Shop) 2. 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 68 . 
19. Variance of Interarrival Times, Average 

(Machine) 10. 
20. Variance of Interarrival Times (Shop) 10. 
21. Variance of Work Arrived Per Period, 

Average (Machine) 26. 
22. Variance of Work Arrived Per Period (Shop) 311. 
23. Variance of Output, Average Machine 1. 
24. Variance of Output (Shop) 30. 

16 81. 37 81. 66 81. 32 81. 23 81. 35 
25 33. 83 33. 72 33. 34 33. 45 33. 52 

37 88. 67 88. 81 87. 57 87. 83 88. 05 
38 213. 21 213. 24 208. 68 211. 34 211. 17 
63 559. 95 559. 60 551. 94 555. 20 555. 66 
92 75. 33 74. 37 74. 74 73. 88 74. 45 
06 64. 11 63. 49 63. 24 63. 38 63. 46 
97 13. 50 13. 37 13. 44 13. 05 13. 27 
20 511. 34 507. 05 511. 93 510. 11 507. 93 
24 -16. 80 -17. 86 -17. 44 -18. 31 -17. 73 
44 2584. 73 2623. 20 2633. 76 2621. 95 2609. 42 
34 5. 31 5. 16 5. 39 5. 27 5. 29 
99 . 96 64 99 87 89 
07 9. 04 10. 19 8. 94 10. 20 9. 49 
28 60. 95 23. 59 25. 74 14. 66 28. 64 

98 71. 58 80. 91 73. 75 81. 78 76. 00 

51 2. 57 2. 56 2. 52 2. 53 2. 54 

17 60. 69 77. 05 65. 82 77. 29 69. 80 

22 10. 17 10. 10 10. 53 10. 20 10. 24 
21 10. 14 10. 09 10. 52 10. 17 10. 23 

92 27. 66 27. 94 27. 06 27. 85 27. 49 
99 309. 40 287 . 90 322. 21 323. 14 310. 93 
98 1. 98 1. 94 1. 96 1. 92 1. 96 
64 31. 01 25. 19 33. 64 29. 69 30. 03 

Conditions: Low Utilization, Pool Heuristics, First Come First Served (6) 

1 2 3 4 5 Avg. 



Table 33. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 90. 61 90. 72 91. 25 91. 29 91. 43 91. 06 
2. Average Number of Jobs in Shop 74. 01 79. 39 74. 78 71. 89 77. 52 75. 52 
3. Average Number of Operations for Jobs 

in the Shop 112. 15 118. 02 112. 50 111. 21 115. 24 113. 82 
4. Average Work (Hours) Done for Jobs in Shop 274. 87 288. 47 275. 50 271. 55 282. 04 278. 49 
5. Average Work in Process (Hours) 1189. 76 1270. 28 1198. 74 1155. 66 1243. 85 1211. 66 
6. Time Spent in the System 125. 07 134. 13 125. 81 120. 06 129. 78 126. 97 
7. Time Spent in the Shop 125. 07 134. 13 125. 81 120. 66 129. 78 126. 97 
8. Average Job Tardiness 37. 05 45. 65 36. 15 30. 68 39. 80 37. 87 
9. Variance of Job Tardiness, Average 1062. 65 1431. 29 750. 43 571. 36 776. 04 918. 35 
10. Average Lateness 33. 31 41. 84 33. 52 27. 77 37. 46 34. 78 
11. Variance of Lateness, Average 1463. 70 1948. 92 1036. 12 857. 76 1046. 84 1270. 67 
12. Machine Balance Measure 2. 80 2. 85 2. 72 2. 67 2. 65 2. 74 
13. Shop Balance Measure , 31 40 29 27 28 31 
14. Queue Workload Balance 42. 41 51. 60 40. 06 35. 99 41. 79 42. 37 
15. Period Queue Balance 92. 37 155. 07 78. 89 70. 51 60. 25 91. 42 
16. Variance of Waiting Time Per Operation, 

Average 1039. 13 1223. 97 1014. 83 897. 63 1064. 58 1048. 03 
17. Average Queue Length in Number of Jobs 

(Shop) 6. 50 7. 03 6. 57 6. 28 6. 84 6. 64 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 307. 16 360. 35 286. 21 267. 27 302. 01 304. 60 
19. Variance of Interarrival Times, Average 

(Machine) 7. 98 8. 07 7. 78 7. 88 8. 05 7 . 95 
20. Variance of Interarrival Times (Shop) 7. 97 8. 05 7. 77 7. 87 8. 04 7. 94 
21. Variance of Work Arrived Per Period, 

Average (Machine) 31. 86 30. 69 30. 13 31. 29 31. 11 31. 02 
22. Variance of Work Arrived Per Period (Shop) 304. 49 268. 19 264. 79 251. 35 275. 45 272. 85 
23. Variance of Output, Average Machine 2. 06 2. 12 2. 09 2. 04 2. 15 2. 09 
24. Variance of Output (Shop) 23. 82 26. 13 23. 01 21. 66 24. 08 23. 74 

Conditions: High Utilization, No Pool, Dynamic Slack (1) 



Table  3 4 . Simulation Results 

1  2 

to
  4  5  Avg. 

1. Average Shop Utilization 9 0 .  6 4  9 0 .  8 8  9 0 .  9 2  9 1 .  0 8  9 1 .  51  9 1 .  0 1 

2 .  Average Number of Jobs in Shop 7 3 .  8 2  7 8 .  1 2  7 5 .  2 0  7 4 .  4 7  7 8 .  3 0  7 5 .  9 8 

to
  Average Number of Operations for Jobs 

in the Shop 1 1 3 .  6 6  1 1 3 .  7 7  1 1 2 .  8 2  1 1 1 .  9 9  1 1 2 .  2 5  1 1 2 .  9 0 

4. Average Work (Hours) Done for Jobs in Shop 2 7 8 .  0 1  2 7 7 .  7 1  2 7 5 .  6 7  2 7 1 .  7 5  2 7 4 .  4 6  2 7 5 .  5 2 

5. Average Work in Process (Hours) 1 1 9 5 .  9 1  1 2 6 2 .  6 7  1 2 1 4 .  1 0  1 2 0 2 .  1 2  1 2 6 4 .  6 4  1 2 2 7 .  8 9 

6. Time Spent in the System 1 2 4 .  0 8  1 3 1 .  2 1  1 2 6 .  7 7  1 2 3 .  6 4  1 3 0 .  6 6  1 2 7 .  2 7 

7 .  Time Spent in the Shop 1 2 4 .  0 8  1 3 1 .  2 1  1 2 6 .  7 7  1 2 3 .  6 4  1 3 0 .  6 6  1 2 7 .  2 7 

C
O
 

Average Job Tardiness 3 5 .  4 7  4 1 .  6 9  3 6 .  6 1  3 3 .  7 2  3 9 .  5 9  3 7 .  4 2 

9 .  Variance of Job Tardiness, Average 1 6 7 1 .  5 1  1 6 1 7 .  2 8  1 4 4 1 .  7 1  1 1 3 3 .  8 4  1 1 9 2 .  9 3  1 4 1 1 .  4 5 

10. Average Lateness 3 2 .  5 4  3 9 .  0 9  3 4 .  6 5  3 1 .  5 7  3 8 .  1 2  3 5 .  1 9 

11. Variance of Lateness, Average 1 9 9 7 .  0 5  1 9 5 5 .  0 9  1 6 4 5 .  58  1 3 7 6 .  6 0  1 3 5 7 .  1 8  1 6 6 6 .  3 0 

1 2 .  Machine Balance Measure 2 .  8 8  2 .  7 6  2 .  7 1  2 .  6 9  2 .  5 4  2 .  7 2 

1 3 .  Shop Balance Measure . 3 8  . 3 5  . 3 3  . 3 0  2 9  . 3 3 

14. Queue Workload Balance 4 4 .  3 5  4 8 .  0 0  4 4 .  6 6  4 1 .  9 3  4 2 .  3 5  4 4 .  2 6 

15. Period Queue Balance 1 1 1 .  4 8  1 7 6 .  0 6  9 8 .  8 9  1 0 2 .  2 6  7 1 .  9 2  1 1 2 .  1 2 

16. Variance of Waiting Time Per Operation, 
Average 1 1 3 6 .  8 0  1 2 4 6 .  5 5  1 1 5 8 .  7 9  1 0 6 3 .  58  1 1 8 9 .  3 2  1 1 5 9 .  0 1 

17. Average Queue Length in Number of Jobs 
(Shop) 6 .  4 8  6 .  9 1  6 .  6 1  6 .  5 4  6 .  9 2  6 .  6 9 

18. Variance of Queue Length in Hours of Work, 
Average (Machine) 3 2 6 .  28  3 4 6 .  1 8  3 2 3 .  2 1  3 1 0 .  5 9  3 0 8 .  58  3 2 2 .  9 7 

19. Variance of Interarrival Times, Average 
(Machine) 7 .  8 3  7 .  8 6  7 .  7 4  7 .  9 1  7 .  6 2  7 .  7 9 

2 0 .  Variance of Interarrival Times (Shop) 7 .  8 1  7 .  8 3  7 .  7 3  7 .  88  7 .  6 1  7 .  7 7 

21. Variance of Work Arrived Per Period, 
Average (Machine) 2 9 .  8 9  3 1 .  8 3  3 1 .  0 1  2 9 .  54  3 0 .  3 4  3 0 .  5 2 

2 2 .  Variance of Work Arrived Per Period (Shop) 3 0 0 .  2 2  2 9 4 .  6 2  2 7 1 .  2 2  2 9 0 .  8 4  2 6 7 .  9 1  2 8 4 .  9 6 

2 3 .  Variance of Output, Average Machine 2 .  0 6  2 .  0 9  2 .  0 1  2 .  0 4  2 .  0 7  2 .  0 5 

2 4 .  Variance of Output (Shop) 2 4 .  9 6  2 6 .  2 7  2 2 .  0 9  2 2 .  5 2  2 2 .  6 6  2 3 .  7 0 

Conditions: High Utilization, No Pool, Dynamic Slack Per Operation  ( 2 ) 



Table 35. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 92. 26 91. 80 91. 95 91. 61 92. 86 92. 10 
2. Average Number of Jobs in Shop 68. 11 64. 98 71. 94 65. 20 77. 45 69. 34 
3. Average Number of Operations for Jobs 

in the Shop 252. 77 242. 48 274. 99 241. 99 293. 26 261. 10 
4. Average Work (Hours) Done for Jobs in Shop 622. 98 606. 06 685. 79 598. 93 729. 57 648. 67 
5. Average Work in Process (Hours) 1141. 76 1111. 32 1215. 42 1097. 67 1287. 08 1170. 65 
6. Time Spent in the System 114. 86 110. 84 122. 15 108. 56 125. 68 116. 42 
7. Time Spent in the Shop 114. 86 110. 84 122. 15 108. 56 125. 68 116. 42 
8. Average Job Tardiness 51. 00 48. 27 56. 60 44. 91 59. 13 51. 98 
9. Variance of Job Tardiness, Average 13031. 89 14960. 45 16271. 68 9609. 75 22326. 03 15239. 96 
10. Average Lateness 22. 98 18. 55 29. 91 16. 42 33. 20 24. 11 
11. Variance of Lateness, Average 17313. 19 19261. 06 20621. 24 13540. 69 26656. 03 19478 . 44 
12. Machine Balance Measure 2. 54 2. 56 2. 68 2. 76 2. 41 2. 59 
13. Shop Balance Measure . 56 . 43 . 67 . 60 . 63 58 
14. Queue Workload Balance 29. 78 27. 60 39. 90 26. 23 33. 40 31. 38 
15. Period Queue Balance 114. 27 216. 93 104. 39 101. 71 101. 57 127. 77 
16. Variance of Waiting Time Per Operation, 

Average 2799. 39 3139. 09 3689. 74 2214. 27 4625. 89 3293. 68 
17. Average Queue Length in Number of Jobs 

(Shop) 5. 89 5. 58 6. 28 5. 61 6. 72 6. 02 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 459. 15 399. 81 536. 81 355. 13 454. 41 441. 06 
19. Variance of Interarrival Times, Average 

(Machine) 8. 12 7. 92 8. 10 8. 00 7. 88 8. 00 
20. Variance of Interarrival Times (Shop) 8. 10 7. 91 8. 09 7. 99 7. 88 7. 99 
21. Variance of Work Arrived Per Period, 

Average (Machine) 29. 67 29. 39 30. 00 28. 92 30. 26 29. 65 
22. Variance of Work Arrived Per Period (Shop) 388. 67 394. 76 373. 18 389. 66 366. 51 382. 56 
23. Variance of Output, Average Machine 2. 16 2. 10 2. 19 2. 22 2. 21 2. 18 
24. Variance of Output (Shop) 31. 74 27. 16 29. 96 32. 03 31. 77 30. 53 

Conditions: High Utilization, No Pool, Expected Work in Next Queue (3) 



Table 36. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 91. 18 91. 65 92. 70 91. 86 91. 96 91. 87 
2. Average Number of Jobs in Shop 43. 64 44. 54 49. 00 45. 57 45. 30 45. 61 
3. Average Number of Operations for Jobs 

in the Shop 110. 74 113. 45 124. 33 115. 89 114. 91 115. 86 
4. Average Work (Hours) Done for Jobs in Shop 268. 08 272. 78 307. 20 279. 76 278. 32 281. 23 
5. Average Work in Process (Hours) 858. 51 873. 79 979. 50 893. 35 893. 21 899. 67 
6. Time Spent in the System 73. 01 76. 35 82. 22 73. 48 75. 23 76. 06 
7. Time Spent in the Shop 73. 01 76. 35 82. 22 73. 48 75. 23 76. 06 
8. Average Job Tardiness 24. 96 27. 53 32. 70 24. 89 26. 39 27. 29 
9. Variance of Job Tardiness, Average 7259. 98 7605. 05 24 6512. 14 7426. 46 7903. 37 
10. Average Lateness -18. 93 -16. 03 -9. 70 -18. 87 -17. 16 -16. 14 
11. Variance of Lateness, Average 11246. 22 11817. 95 15264. 08 10508. 94 11503. 32 12068. 10 
12. Machine Balance Measure 2. 89 2. 68 2. 36 2. 65 2. 67 2. 65 
13. Shop Balance Measure . 55 47 . 43 . 53 # 44 # 48 
14. Queue Workload Balance 9. 03 9. 08 11. 29 9. 59 8. 81 9. 56 
15. Period Queue Balance 27. 67 61. 97 33. 99 28. 82 13. 70 33. 23 
16. Variance of Waiting Time Per Operation, 

Average 1576. 92 1657. 52 2435. 37 1503. 74 1640. 60 1762. 83 
17. Average Queue Length in Number of Jobs 

(Shop) 3. 45 3. 54 3. 98 3. 64 3. 61 3. 64 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 486. 20 486. 36 663. 72 523. 62 470. 71 526. 12 
19. Variance of Interarrival Times, Average 

(Machine) 8. 34 8. 40 8. 13 8. 10 8. 37 8. 27 
20. Variance of Interarrival Times (Shop) 8. 32 8. 39 8. 11 8. 07 8. 35 8. 25 
21. Variance of Work Arrived Per Period, 

Average (Machine) 31. 36 31. 51 32. 52 31. 53 32. 07 31. 80 
22. Variance of Work Arrived Per Period (Shop) 464. 92 460. 10 452. 24 447. 90 485. 63 462. 16 
23. Variance of Output, Average Machine 1. 98 1. 90 1. 88 1. 93 2. 01 1. 94 
24. Variance of Output (Shop) 38. 31 38. 63 36. 86 36. 17 41. 34 38. 26 

Conditions: High Utilization, No Pool, Shortest Processing Time (4) 



Table 37. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 90. 92 90. 98 91. 35 91. 28 92. 05 91. 32 
2. Average Number of Jobs in Shop 81. 81 84. 92 83. 27 75. 90 92. 08 83. 60 
3. Average Number of Operations for Jobs 

in the Shop 210. 46 219. 22 215. 16 196. 71 236. 66 215. 64 
4. Average Work (Hours) Done for Jobs in Shop 527. 97 552. 16 539. 19 493. 45 596. 39 541. 83 
5. Average Work in Process (Hours) 1347. 66 1397. 05 1365. 45 1251. 51 1511. 91 1374. 72 
6. Time Spent in the System 137. 55 143. 32 140. 44 127. 57 152. 69 140. 31 
7. Time Spent in the Shop 137. 55 143. 32 140. 44 127. 57 152. 69 140. 31 
8. Average Job Tardiness 58. 75 62. 34 59. 98 48. 39 69. 63 59. 82 
9. Variance of Job Tardiness, Average 4565. 75 4359. 00 4098. 99 2881. 15 4810. 05 4142. 99 
10. Average Lateness 45. 62 51. 14 48. 51 35. 58 60. 40 48. 25 
11. Variance of Lateness, Average 6757. 20 6331. 31 5996. 70 4730. 56 6547. 85 6072. 72 
12. Machine Balance Measure 2. 83 2. 72 2. 66 2. 58 2. 50 2. 66 
13. Shop Balance Measure . 42 38 . 37 . 30 28 35 
14. Queue Workload Balance 53. 39 54. 67 54. 02 39. 73 56. 07 51. 58 
15. Period Queue Balance 139. 88 181. 85 163. 50 105. 51 109. 74 140. 10 
16. Variance of Waiting Time Per Operation, 

Average 374. 77 381. 10 381. 76 281. 32 393. 47 362. 48 
17. Average Queue Length in Number of Jobs 

(Shop) 7. 27 7. 59 7. 42 6. 68 8. 29 7 . 45 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 384. 28 390. 47 384. 76 291. 01 398. 05 369. 71 
19. Variance of Interarrival Times, Average 

(Machine) 7. 92 7. 83 8. 09 7. 89 7. 75 7. 90 
20. Variance of Interarrival Times (Shop) 7. 91 7. 81 8. 08 7. 87 7. 73 7 . 88 
21. Variance of Work Arrived Per Period, 

Average (Machine) 30. 97 31. 63 29. 55 30. 53 31. 31 30. 80 
22. Variance of Work Arrived Per Period (Shop) 309. 93 322. 93 307. 48 288. 79 311. 88 308. 20 
23. Variance of Output, Average Machine 2. 10 2. 08 2. 05 2. 05 2. 09 2. 07 
24. Variance of Output (Shop) 25. 98 24. 13 23. 35 21. 75 24. 22 23. 89 

Conditions: High Utilization, No Pool, First Come First Served (6) 



Table 38. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 89. 67 89. 53 89. 88 89. 60 90. 01 89. 74 
2. Average Number of Jobs in Shop 62. 75 64. 14 63. 24 62. 16 62. 50 62. 96 
3. Average Number of Operations for Jobs 

in the Shop 100. 28 99. 51 99. 73 100. 48 98. 32 99. 66 
4. Average Work (Hours) Done for Jobs in Shop 241. 06 239. 73 241. 14 241. 42 235. 72 239. 81 
5. Average Work in Process (Hours) 989. 24 1013. 30 996. 97 982. 36 985. 65 993. 50 
6. Time Spent in the System 164. 14 162. 68 168. 33 167. 25 169. 68 166. 42 
7. Time Spent in the Shop 107. 14 109. 39 107. 02 105. 26 105. 95 106. 95 
8. Average Job Tardiness 73. 63 73. 64 76. 53 75. 50 78. 67 75. 59 
9. Variance of Job Tardiness, Average 2034. 87 2550. 06 1770. 40 1467. 08 1186. 70 1801. 82 
10. Average Lateness 72. 25 70. 74 76. 06 75. 14 77. 69 74. 38 
11. Variance of Lateness, Average 2289. 75 3123. 11 1862. 09 1538. 83 1383. 72 2039. 50 
12. Machine Balance Measure 3. 12 3. 21 3. 16 3. 21 3. 07 3. 15 
13. Shop Balance Measure . 31 . 38 . 30 . 29 . 31 32 
14. Queue Workload Balance 29. 62 30. 18 31. 91 29. 08 27. 33 29. 62 
15. Period Queue Balance 50. 87 84. 18 53. 31 56. 21 37. 75 56. 46 
16. Variance of Waiting Time Per Operation, 

Average 633. 52 660. 33 652. 11 595. 75 573. 13 622. 97 
17. Average Queue Length in Number of Jobs 

(Shop) 5. 38 5. 52 5. 43 5. 32 5. 35 5. 40 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 203. 54 198. 78 223. 52 214. 39 200. 30 208. 11 
19. Variance of Interarrival Times, Average 

(Machine) 8. 31 8. 22 8. 21 8. 25 8. 39 8. 28 
20. Variance of Interarrival Times (Shop) 8. 29 8. 21 8. 19 8. 24 8. 37 8. 26 
21. Variance of Work Arrived Per Period, 

Average (Machine) 30. 11 29. 39 29. 78 20. 66 29. 88 29. 96 
22. Variance of Work Arrived Per Period (Shop) 249. 63 231. 44 244. 16 252. 72 241. 97 243. 98 
23. Variance of Output, Average Machine 2. 06 2. 12 2. 02 2. 04 2. 10 2. 07 
24. Variance of Output (Shop) 24. 03 25. 70 20. 74 26. 13 24. 15 24. 15 

Conditions: High Utilization, Math Pool, Dynamic Slack (1) 



Table 39. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 89. 34 89. 65 89. 36 89. 58 90. 01 89. 59 
2. Average Number of Jobs in Shop 65. 15 62. 45 64. 37 65. 09 63. 42 64. 10 
3. Average Number of Operations for Jobs 

in the Shop 88. 66 88. 99 85. 31 85. 17 85. 62 86. 75 
4. Average Work (Hours) Done for Jobs in Shop 210. 58 210. 21 201. 43 200. 62 203. 13 205. 19 
5. Average Work in Process (Hours) 
6. Time Spent in the System 1050. 41 1008. 66 1039. 00 1059. 49 1027. 09 1036. 93 
7. Time Spent in the Shop 167. 16 160. 81 171. 51 177. 86 173. 20 170. 11 
8. Average Job Tardiness 110. 60 106. 25 108. 98 109. 48 107. 22 108. 51 
9. Variance of Job Tardiness, Average 76. 37 70. 39 79. 58 85. 93 81. 55 78. 76 
10. Average Lateness 3643. 14 3021. 22 3178. 79 2520. 05 2057. 54 2884. 15 
11. Variance of Lateness, Average 75. 45 68. 74 79. 26 85. 78 80. 93 78. 03 
12. Machine Balance Measure 3827. 09 3343. 49 3243. 91 2552. 39 2186. 95 3030. 77 
13. Shop Balance Measure 3. 26 3. 13 3. 28 3. 30 3. 06 3. 21 
14. Queue Workload Balance . 41 . 36 30 32 31 . 34 
15. Period Queue Balance 35. 46 28. 14 34. 06 35. 00 28. 32 32. 20 
16. Variance of Waiting Time Per Operation, 

Average 54. 24 103. 14 55. 96 59. 80 43. 80 63. 39 
17. Average Queue Length in Number of Jobs 

(Shop) 933. 90 735. 39 904. 26 894. 17 733. 26 840. 20 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 5. 62 5. 35 5. 54 5. 62 5. 44 5. 51 
19. Variance of Interarrival Times, Average 

(Machine) 242. 27 191. 51 232. 49 256. 09 199. 74 224 . 42 
20. Variance of Interarrival Times (Shop) 8. 03 8. 23 8. 37 8. 39 8. 16 8. 24 
21. Variance of Work Arrived Per Period, 

Average (Machine) 8. 02 8. 22 8. 36 8. 38 8. 14 8. 22 
22. Variance of Work Arrived Per Period (Shop) 29. 56 29. 90 29. 67 29. 49 30. 34 29. 85 
23. Variance of Output, Average Machine 241. 52 215. 06 225. 18 239. 98 265. 80 237. 51 
24. Variance of Output (Shop) 2. 07 2. 02 2. 05 2. 08 2. 08 2. 06 

Conditions: High Utilization, Math Pool, Dynamic Slack Per Operation (2) 



Table 40. Simulation Results 

1 2 

to 4 5 Avg. 

1. Average Shop Utilization 92. 23 91. 87 91. 88 91. 46 92. 78 92. 04 
2. Average Number of Jobs in Shop 57. 22 54. 17 59. 29 54. 57 61. 16 57. 28 
3. Average Number of Operations for Jobs 

in the Shop 207. 57 194. 20 220. 86 198. 32 227 . 62 209. 71 
4. Average Work (Hours) Done for Jobs in Shop 510. 62 483. 48 556. 20 494. 33 564. 90 521. 91 
5. Average Work in Process (Hours) 959. 30 922. 17 1009. 34 924. 46 1028. 23 968. 70 
6. Time Spent in the System 108. 07 103. 52 113. 58 101. 63 115. 23 108. 41 
7. Time Spent in the Shop 95. 04 91. 23 99. 13 90. 44 100. 71 95. 31 
8. Average Job Tardiness 41. 13 38. 29 46. 41 36. 29 46. 98 41. 82 
9. Variance of Job Tardiness, Average 8970. 58 9033. 83 11011. 65 6645. 90 13841 . 58 9900. 71 
10. Average Lateness 15. 91 11. 18 21. 41 9. 62 22. 91 16. 21 
11. Variance of Lateness, Average 12289. 52 12430, 65 14576 . 93 9857. 24 17318 . 64 13294. 60 
12. Machine Balance Measure 2. 65 1. 58 2. 72 2. 87 2. 51 2. 67 
13. Shop Balance Measure 56 40 ,  67 . 60 60 57 
14. Queue Workload Balance 17. 41 15. 55 22. 56 15. 75 18. 29 17. 91 
15. Period Queue Balance 46. 04 105. 57 72. 78 57. 08 48. 05 65. 90 
16. Variance of Waiting Time Per Operation, 

Average 1808. 31 1776. 68 2131. 98 1393. 11 2674. 74 1956. 96 
17. Average Queue Length in Number of Jobs 

(Shop) 4. 80 4. 50 5. 01 4. 54 5. 19 4. 81 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 272. 38 242. 43 339. 98 234. 92 265. 11 270. 96 
19. Variance of Interarrival Times, Average 

(Machine) 7. 86 7. 73 7. 89 7. 93 7. 78 7. 84 
20. Variance of Interarrival Times (Shop) 7. 85 7. 72 7. 88 7. 92 7. 77 7. 83 
21. Variance of Work Arrived Per Period, 

Average (Machine) 27 . 27 27. 91 27. 05 28. 38 27. 06 27. 53 
22. Variance of Work Arrived Per Period (Shop) 338 . 86 286. 20 314. 48 334. 77 291. 26 313. 11 
23. Variance of Output, Average Machine 2. 12 2. 06 2. 12 2. 12 2. 10 2. 10 
24. Variance of Output (Shop) 33. 09 27 .21 31. 96 32. 55 29. 04 30. 77 

Conditions: High Utilization, Math Pool, Expected Work in Next Queue (3) 



Table 41. Simulation Results 

1. Average Shop Utilization 
2. Average Number of Jobs in Shop 
3. Average Number of Operations for Jobs 

in the Shop 
4. Average Work (Hours) Done for Jobs in Shop 
5. Average Work in Process (Hours) 
6. Time Spent in the System 
7. Time Spent in the Shop 
8. Average Job Tardiness 
9. Variance of Job Tardiness, Average 
10. Average Lateness 
11. Variance of Lateness, Average 
12. Machine Balance Measure 
13. Shop Balance Measure 
14. Queue Workload Balance 
15. Period Queue Balance 
16. Variance of Waiting Time Per Operation, 

Average 
17. Average Queue Length in Number of Jobs 

(Shop) 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 
19. Variance of Interarrival Times, Average 

(Machine) 
20. Variance of Interarrival Times (Shop) 
21. Variance of Work Arrived Per Period, 

Average (Machine) 
22. Variance of Work Arrived Per Period (Shop) 
23. Variance of Output, Average Machine 
24. Variance of Output (Shop) 

1 2 3 4 5 Avg. 

91. 16 91. 77 92. 49 91. 64 91. 91 91. 79 
36. 27 37. 60 39. 56 37. 18 37. 16 37. 55 

93. 54 98. 51 100. 67 96. 23 95. 73 96. 94 
, 223. 56 237 . 03 243. 42 229. 74 228. 45 232. 44 
691. 14 716. 27 763. 44 708. 12 705. 52 716. 90 
77. 31 80. 78 90. 31 79. 37 78. 02 81. 16 
60. 86 63. 12 65. 02 61. 53 61. 90 62. 49 
21. 27 22. 87 27. 79 21. 83 21. 28 23. 01 

4051. 70 4610. 63 5782. 69 3640. 60 3784. 67 4374. 06 
-14. 44 -11. 72 -1. 91 -12. 60 -14. 20 -10. 97 

7140. 91 7716. 56 8869. 45 6669. 22 6849. 85 7449. 20 
2. 88 2. 69 2. 43 2. 79 2. 61 2. 68 

46 38 38 52 42 43 
5. 07 5. 34 6. 36 5. 02 4. 98 5. 35 

11. 56 30. 76 13. 30 10. 45 7. 13 14. 64 

727. 31 813. 98 1027. 89 665. 01 705. 71 787. 98 

2. 72 2. 84 3. 03 2. 80 2. 80 2. 84 

229. 20 254. 07 329. 67 233. 46 228. 64 255. 01 

8. 17 7. 91 7. 81 8. 09 7. 90 7. 98 
8. 15 7. 89 7. 79 8. 08 7. 89 7 . 96 

30. 39 30. 30 28. 73 28. 70 29. 10 29. 44 
310. 92 293. 28 248. 49 280. 23 295. 13 285. 61 

1. 80 1. 90 1. 86 1. 89 1. 88 1. 87 
28. 24 25. 64 24. 35 26. 54 27. 26 26. 41 

Conditions: High Utilization, Math Pool, Shortest Processing Time (4) 



Table 4-2. Simulation Results 

1 2 3 4 5 Avg. 

1. Average Shop Utilization 90. 31 90. 19 90. 61 90 .29 91. 34 90. 55 
2. Average Number of Jobs in Shop 60. 63 66. 09 60. 30 55 .36 67. 71 62. 02 
3. Average Number of Operations for Jobs 

in the Shop 156. 19 170. 38 155. 35 143 .43 174. 97 160. 06 
4. Average Work (Hours) Done for Jobs in Shop 385. 01 422. 95 382. 64 352 .48 433. 85 395. 39 
5. Average Work in Process (Hours) 991. 82 1081. 64 982. 67 907 . 23 1108. 46 1014. 36 
6. Time Spent in the System 142. 28 158. 93 143. 41 129 .90 168. 27 148. 56 
7. Time Spent in the Shop 102. 97 111. 98 101. 74 94 .10 113. 54 104 . 87 
8. Average Job Tardiness 61. 37 75. 78 60. 36 48 .34 80. 65 65. 30 
9. Variance of Job Tardiness, Average 3268. 33 3731. 53 2834. 75 2025 .94 3128. 75 2997. 86 
10. Average Lateness 50. 78 67. 26 51. 47 38 .10 76. 22 56. 77 
11. Variance of Lateness, Average 5124. 08 5514. 65 4376. 32 3538 .17 4103. 35 4531. 31 
12. Machine Balance Measure 2. 95 2. 98 2 . 87 2 .91 2. 68 2. 88 
13. Shop Balance Measure 36 36 34 .26 . 29 32 
14. Queue Workload Balance 26. 69 31. 88 25. 45 20 .48 31. 64 27. 23 
15. Period Queue Balance 47. 84 85. 71 54. 04 40 .38 49. 55 55. 50 
16. Variance of Waiting Time Per Operation, 

Average 188. 94 225. 37 178. 97 149 .64 226. 65 193. 91 
17. Average Queue Length in Number of Jobs 

(Shop) 5.16 5. 71 5. 13 4 .63 5. 86 5. 30 
18. Variance of Queue Length in Hours of Work, 

Average (Machine) 192. 21 228. 23 182. 22 150 . 52 236. 16 197. 87 
19. Variance of Interarrival Times, Average 

(Machine) 8. 11 7. 99 8. 00 8 .06 7. 83 8. 00 
20. Variance of Interarrival Times (Shop) 8. 11 7. 97 7. 99 8 .04 7. 82 7. 99 
21. Variance of Work Arrived Per Period, 

Average (Machine) 28. 87 29. 79 28. 96 28 .62 30. 30 29. 31 
22. Variance of Work Arrived Per Period (Shop) 286. 28 252. 38 264. 47 218 .82 240. 13 252 . 42 
23. Variance of Output, Average Machine 2. 06 1. 96 2. 03 2 .01 2. 12 2. 04 
24. Variance of Output (Shop) 24. 75 23. 51 23. 07 20. 18 23. 49 23. 00 

Conditions: High Utilization, Math Pool, First Come First Served (6) 
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