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SUMMARY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this paper we study, theoretically and numerically, the influence of 2-D and 3-D 
random isotropic stationary inhomogeneities on the phase velocities of the transmitted 
compressional wavefield of an initially plane (or spherical) wave. Due to scattering by 
the inhomogeneities the wavefield becomes distorted as the wave propagates through 
the medium. The traveltimes fluctuate when considering different wavefield registrations 
acquired at the points of surfaces that are parallel to the wavefront of the initial wave. 
It is usually observed that the slowness obtained from the averaged traveltime differs 
from the averaged slowness of the medium. In the geophysical literature this effect has 
been termed the ‘velocity shift’. 

Using the Rytov approximation we establish formulas for the frequency- and travel- 
distance-dependent phase velocity of the transmitted wavefield in 2-D and 3-D randomly 
inhomogeneous media. We also compare our analytical results with finite-difference 
simulations. Good agreement between numerical simulations and theory is observed. 
The low-frequency limit of our analytical results coincides with the known effective- 
medium limit of the phase velocity in statistically isotropic inhomogeneous fluids with 
constant densities. In the high-frequency limit our results coincide with the results 
previously obtained by the ray-perturbation theory. However, in contrast to the ray 
theory, our description is not restricted to media with differentiable correlation functions 
of fluctuations. Moreover, our results quantify the frequency dependence of the velocity 
shift in the intermediate-frequency range. This frequency dependence is of major 
importance for estimating this effect in realistic situations. 

Key words: finite-difference methods, fractals, ray theory, scattering, seismic velocities 
wave propagation. 

INTRODUCTION 

Heterogeneities of geologic media affect traveltimes and velocities 
of seismic waves. In a randomly inhomogeneous medium 
characterized by homogeneous statistics (such a medium is 
said to be stationary), the phase velocity of the direct arrivals 
differs from the averaged velocity or from the inverse averaged 
slowness. Recently this phenomenon, termed ‘velocity shift’, 
has been considered by Miiller, Roth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Korn (1992), Roth, 
Miiller & Snieder (1993), van Avendonk & Snieder (1994) and 
Ikelle & Yung (1994). 

Numerical studies of this effect have involved different 
approaches to the wavefield simulation. These include finite 
differences (e.g. Miiller et al. 1992), the Huygens method of 
the numerical solution of the eikonal equation (see Roth et al. 
1993), and numerical procedures based on the ray-perturbation 
theory [Roth et al. (1993) used their eqs (8) and (9) for such 
numerical simulations]. 

Analytical studies of the velocity shift, however, have usually 
been restricted to the ray-perturbation theory, describing the 
velocity shift in the geometrical optic approximation. The 
resulting estimation of the velocity shift is independent of the 
frequency. However, it is physically obvious that the phase 
velocity of the transmitted wavefield is frequency-dependent, 
because inhomogeneities interact differently with wavefields of 
different wavelengths. This was also observed by Yin et al. 
(1994) and Mukerji et al. (1995) in numerical and laboratory 
experiments. 

In the case of random media with non-differentiable cor- 
relation functions (for example the exponential correlation 
function: if the Fourier-domain wavenumber is large enough 
then this correlation function will have a power-law Fourier 
spectrum describing fractal inhomogeneities), the ray-pertur- 
bation theory does not provide any analytical prediction. 

In this paper we consider the problem of the velocity shift 
as part of a theoretical description of the phase velocity of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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transmitted wavefield in a random structure. In the case of 
1-D randomly inhomogeneous media the frequency- and 
angle-dependent velocities of the transmitted seismic waves can 
be described by the generalized O'Doherty-Anstey formulae 
[which are a variant of the second-order Rytov approximation 
for 1-D structures; see e.g. Shapiro, Hubral zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Zien (1994); 
Shapiro & Hubral(1995)l. It is observed that in 1-D stationary 
media the phase velocity is independent of the travel distance 
(at least in an intermediate asymptotical range of the travel 
distances). The same is true for the attenuation coefficients (in 
this paper we consider media without anelastic loss, that is, 
the attenuation coefficients describe scattering effects only). In 
contrast, in 2-D and 3-D media the phase velocity, as well as 
the attenuation coefficient, essentially depends on the travel 
distance. 

Here we present a theory that establishes formulas for the 
frequency-dependent phase velocity of the transmitted wave- 
field in 2-D and 3-D randomly inhomogeneous media. This 
theory is a kinematic extension of the description of the 
scattering attenuation proposed by Shapiro & Kneib ( 1993). 
It is based on the Rytov approximation for the variances and 
covariances of the phase and of the logarithm of amplitude of 
the transmitted wavefield. The limitations of the theory are 
acoustic media with a constant density, isotropic stationary 
inhomogeneities with spatial sizes (correlation lengths) of the 
order of or larger than the wavelength, and small fluctuations 
of the wavefield. 

T H E O R Y  

Dynamic equations and formulation of the problem 

We consider a plane scalar wave propagating in a 2-D or 
3-D randomly inhomogeneous medium with constant density. 
In this medium we define the local squared slowness 
p2(r) = (l/ci)( 1 + 2n(r)), where the function n(r) is assumed to 
be a realization of a stationary statistically isotropic random 
field with zero average (n(r)) (the angular brackets denote 
statistical averaging). We also assume that this random field 
is ergodic. In these notations the local propagation velocity 
c in each point r of the medium zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s  defined by 
c(r) = co( 1 + 2n(r))-'Iz. The constant co gives the propagation 
velocity in a homogeneous reference medium. The function n(r) 
can be considered as a function describing velocity fluctuations 
in the case of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn1 << 1: c(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx c,( 1 - n(r)). Note, however, that 
the quantity co is not the average velocity, but rather the 
velocity obtained from the averaged squared slowness. 

In these notations the wave equation reads: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8% 

Au-p2(r)- = 0 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a t 2  

where u describes a scalar wavefield (for example the pressure). 
In the theoretical treatment we consider propagation of 

time-harmonic waves, that is, the time dependence of u is given 
by the term exp(-iiot), which we will omit below. At an 
arbitrary point of the random medium we can express the 
wavefield in the following form: 

4 9  = uo(r) exp(x(r) + id(r)), (2) 

where uo(r) is the wavefield in the homogeneous reference 
medium, the function x(r) denotes fluctuations of the logarithm 
of the wavefield's amplitude, and the function d(r) denotes 

fluctuations of its unwrapped phase (that is, the phase that 
changes continuously from zero to infinity, rather than from 
-7c to 7c). 

The plane wavefield uo(r) can, in turn, be written in a similar 

(3) 

form: 

uo(r) = A0 exp(ido(r)) 3 

where A, is its amplitude and do(r) is its unwrapped phase. 
Let us now consider the following geometry of the problem 

(see also Fig. 6). An initial plane wave propagates along the 
x-axis and impinges normally from a layer of a homogeneous 
medium on a layer of a 3-D (or 2-D) randomly inhomogeneous 
medium. The wavefront of this wave is parallel to the plane 
( y ,  2) .  The inhomogeneous medium starts at x = 0. The positive 
direction of the x-axis points into the inhomogeneous medium. 

In order to estimate the phase velocity of the wavefield in a 
random medium we must find traveltimes at points located 
along a plane defined by the equation x = L, where L is a 
constant travel distance. The expression 

v =  
(traveltime) (4) 

will give the phase velocity if arrivals of a given phase are 
picked. However, in the case of time-harmonic waves the 
traveltime is given by 

phase 
traveltime = - , 

W 

where the phase is assumed to be unwrapped. Taking into 
account eqs (2)-(4), we now obtain 

W L  
v =  (6) 

do(L) + (W)> . 
Therefore, we have reduced the problem to the consideration 
of the quantity (#(L)) .  

Weak- and strong-fluctuation regions 

In order to describe the quantity (# (L ) )  we consider scattering 
in two different regimes of wave propagation: regions of weak 
and strong fluctuations of the wavefield. At an arbitrary point 
r of a random medium the wavefield can be written as 

u(r) = (u(r)) + uf(r) 9 (7) 
where ( u )  is the coherent jield (the coherent field is the 
wavefield averaged over the statistical ensemble of medium's 
realizations; it is also called the mean jield), and uf is the 
fluctuation of u, subsequently called the incoherent field. Its 
mean is (uf) = 0. 

As a measure of wavefield fluctuations we introduce the 
parameter E defined as the ratio of the incoherent field to the 
coherent field: 

In a random medium without energy dissipation, the inten- 
sity of the coherent field I, = I ( u )  1' attenuates due to energy 
transfer from ( u )  to uf. The expression of energy conservation 
in terms of the intensities follows from eq. (7)  after multi- 
plication with the corresponding complex-conjugate equation 
and averaging: 

I, =I, +I,, (9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1996 RAS, GJI 127, 783-794 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ( lu1’) is the total intensity and I, = ( lufl’) is the 
intensity of the incoherent wavefield. Taking into account 
definition (8) we obtain 

( E ’ )  = &/Ic - 1 .  (10) 

The region of weak wavefield fluctuations is limited to small 
propagation distances, where (E’)  << 1, i.e. the total intensity 
is dominated by the coherent intensity. For large L the coherent 
intensity is small, i.e. we have ( E ~ )  >> 1 and this part of 
the medium is the region of strong wavefield fluctuations. 
The transition from the weak-fluctuation region to the 
strong-fluctuation region occurs where (E’ )  = O( 1).  

For small travel distances L in the weak-fluctuation region 
(E’ )  << 1 and we can roughly estimate this quantity from the 
exponential attenuation of the coherent intensity. Assuming 
that the total intensity is constant (i.e. neglecting backscattering 
and inelasticity) we obtain from (10) (E’ )  z 2aL, where a is 
the scattering coejicient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the coherent (i.e. mean) jield. If the 
correlation distance a of the inhomogeneities is of the same 
order as or larger than the wavelength I then the coefficient 
a can in turn be roughly estimated as a=O(a’k’a),  where 
k=2n / l  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa’ is the variance of the quantity n described 
above (i.e. velocity fluctuations). This estimation is valid for 
2-D as well as 3-D media and can be directly obtained from 
eqs (A2-16) and (A2-17) of Shapiro & Kneib (1993), for 
example. 

The wavefield behaves differently in the regions of weak and 
strong wavefield fluctuations. We solve the problem in the 
region of small wavefield fluctuations. Note that the ray- 
perturbation theory is also valid in the weak-fluctuation region 
only. Later in this section we consider the applicability of our 
results to the strong-fluctuation region using the estimation of 
the quantities E and a given above. 

The averaged phase of the wavefield 

In the following we assume that the quantity E is a small 
parameter. Using eqs (2) and (3), we obtain: 

u(r) e X + i +  

uo(r) - 

With x as defined in eq. (2), we obtain: 

After inserting eq. (7), omitting terms of order higher than 
S(E’) and averaging, we obtain the following result: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, = uf/(u) and I E , ~  = E .  

the coherent field ( u )  = 

phase of the coherent wavefield, we obtain: 

Substituting now in eq. (13) the following representation of 
exp(i#=), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdC represents the 

An analogous treatment yields: 

&:)) 

[note that lnl(u)/u,l is a quantity of order O(E’)]. 

defined by 
Taking into account that the variance of a property X is 

0: = ((X - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(X))’) = ( X 2 )  - ( X ) ’ ,  

0’ x@-((~-(x) ) (4- (4) ) )=(~4)- (x) (4) ,  = (18) 

(17) 

and the cross-variance I& reads 

using eqs (14)-( 16) and neglecting terms of order higher than 
O(E’), we obtain the following: 

0:,#,= - 
1 
4i 
- ( ( E y  - 

Eq. (19) shows that the last term in eq. (14) is the same as 
- r&. Therefore, eq. ( 14) becomes 

(4) = 4 c  - 40  - 0%. (20) 

We wish to emphasize that this equation can also be obtained 
without any assumption of weak fluctuation of the wavefield. 
For this, however, the normal distribution of the quantities x 
and 4 in eq. ( 1 1 )  must be assumed. To show this let us 
statistically average the left- and right-hand sides of eq. (11). 
The left-hand side then provides 

1 (u)/uol e’(@c-@o). (21) 

Averaging of the right-hand side of eq. (1 1) requires averaging 
of the exponential function. Assuming that the quantities x 
and 4 are normally distributed, and taking into account 
definitions (17) and (18), we obtain: 

(22) (ex + W e < ~ >  + i<@> e(u$- u$ +Z iu :+) /2 .  
> =  

Equating the imaginary parts of the logarithms of relations 
(21) and (22) we again obtain eq. (20), now, however, without 
any assumption of weak fluctuation of the wavefield. 

Substituting eq. (20) into eq. (6) we obtain 

In eq.(23) there are two unknown quantities. These are 4c 
and c&. The first one is found from a consideration of the 
coherent wavefield in a random medium. For this we applied 
the Bourret approximation (see Appendix A), which is well 
known in the theory of multiple scattering (Rytov et al. 1987). 
The second quantity, IS:@, is found using the Rytov approxi- 
mation (Ishimaru 1978; for the derivation in 2-D media see 
our Appendix B). Both these approximations are valid under 
our assumptions. 

The phase velocity in random media 

Eqs (6), (20), (A16), (A17), (B13) and (B14) provide the 
following results for plane waves. The phase velocity in 2-D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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random media is given by 

where k=w/co is the wavenumber in the homogeneous 
reference medium, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@iD(() is the 2-D power spectrum of velocity 
fluctuations (i.e. the 2-D Fourier transform of the auto- 
correlation function of the quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< is the absolute 
value of the Fourier-domain wavenumber. 

In 3-D random media we obtain: 

where @ZD(5) denotes a 3-D power spectrum of velocity 
fluctuations. 

Sometimes, for analytical as well as for numerical com- 
putations, another form of the last integral terms of the above 
formulas is useful. For the 2-D case the last term in the 
brackets of eq. (24) can be replaced by 

-nk2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlw No(kr)Jo(kr)B,(r)rdr , 

where N o  and .To are corresponding Neumann and Bessel 
functions and B,(r) is the autocorrelation function of the 
velocity fluctuations. (Due to our assumption of statistical 
isotropy of the media under consideration this function 
depends on the absolute value r of the correlation lag only.) 
Finally, the last term in the brackets of eq. (25) can be replaced 
by 

k lw sin(2kr)Bn(r) dr . 

In addition, we analyse these results for two types of 
statistically isotropic random media: with exponential and with 
Gaussian autocorrelation functions. In the following we call 
these media exponential and Gaussian, respectively. In a 
Gaussian medium the correlation function B,(r) is 

B,(r) = o2 e-rZ/aZ, (28) 

where a is the correlation length of the velocity fluctuations 
and o is their standard deviation. 

The Fourier transforms of the correlation function are 

and 

The corresponding quantities of an exponential medium are 

BJr)  = a2 e-"'", (31) 

(33) 

Substituting the analytical expressions of the power spectra 
of the velocity fluctuations in the above formulas for the phase 
sometimes provides explicit analytical results. 

Let us consider a 2-D Gaussian medium. For this, eq. (29) 
must be substituted in (24). The first integral term in (24) is 
a$+/(kL). The quantity o:+ for a Gaussian medium is calculated 
in Appendix C .  Therefore, for the first integral term we obtain 

After inserting the fluctuation spectrum and substituting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x = <', we obtain the second integral term in (24), 

w - xa2/4 1 

2 X' - 4k2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
- - k2a2a2 lkz J--- dx (35) 

00 4k2 ,-xaZ/4 1 
= - -k202a2(~o 2 -Jo )J--dx x2 - 4k2x (36) 

Here Zo and K O  are modified Bessel functions. To perform the 
integration we used tables of definite integrals [Gradshteyn & 
Ryzhik (1983), integrals (1) and (2) from p. 3221. Therefore, 
all terms in brackets in eq. (24) in the case of Gaussian media 
now have closed analytical forms. 

Generally, however, it is not always possible to perform the 
integration in (24) and (25) analytically and it is very instructive 
to analyse the frequency dependence of the phase velocities. It 
is clear that the frequency-dependent part of the phase velocity 
is given by the difference v - co. In the following, instead of 
this quantity we consider the velocity shift, which we introduce 
in accordance with its definition by Roth et al. (1993): 

(39) 

where vo = (l/c(r))-' co( 1 + 02/2). We will neglect all terms 
of order higher than S(02). Taking this into account and 
considering eqs (24) and (25), along with the above definition 
(39) for the case of small values of the velocity shift, we obtain 

6 V  
- = a2S(ka, L/a), 
V O  

where S(ka, L/a) is a function of two arguments. Before 
we analyse the form of the function S(ka, L/a), however, let 
us consider its asymptotical features in the high- and 
low-frequency limits. 

High- and low-frequency asymptotic solutions 

Let us first consider a 2-D Gaussian medium. The high-frequency 
limit of formula (34), where ak -+ 00, provides 

(41) 
o$+/(kL) -+ 02L- .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 

2a 
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This asymptotic result can also be directly obtained from the 
Taylor expansion of the cosine function in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(C2). 

In the limit ka zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ 00, the second integral term in the brackets 
of eq. (24), given by eq. (38), tends to zero as 

Therefore, in the high-frequency limit it provides no contribution. 
Analogous calculations can be made for plane waves in 3-D 

Gaussian media and for point sources in 2-D and 3-D Gaussian 
media [see formulas (B15) and (B16) in Appendix B]. 
Neglecting all terms of order higher than O(a2), we found the 
following results for the high-frequency (i.e. geometrical-optic) 
limit. 
2-D, plane wave: 

3-D, plane wave: 
?-- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

VO 

2-D, point source: 

3-D, point source: 

(43) 

(44) 

(45) 

These are exactly the same results as those given by 
ray-perturbation theory (van Avendonk & Snieder 1994). 

More generally, let us consider the high-frequency limits of 
the integral terms in the brackets of eqs (24) and (25). Then 
the first terms must be considered in the geometrical-optic 
limit ka >> L/a (Fresnel zone f l  is smaller than the size of 
inhornogeneities, i.e. the diffraction effects are weak). In this 
case we can approximate the sine functions by the first terms 
of their Taylor expansion [the large values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 >> l/a do not 
give a significant contribution in the integrals because of 
vanishing fluctuation spectra; see Ishimaru (1978), p. 361 for 
an excellent explanation of this argument]. We obtain the 
following expressions for the first integral terms: 

The second integral terms are independent of L/a and therefore 
can be considered just for ka >> 1. Using again the argu- 
mentation with vanishing fluctuation spectra for large values 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 we see that in the 2-D case the second integral term 
provides a zero contribution in the high-frequency limit. In 
the 3-D case, using the Taylor expansion of the logarithm, we 
obtain the following limit: 

(49) 

For Gaussian media, limits (47)-(49), after substitution in 

the corresponding equations for phase velocities, provide results 
(43)-( 46). However, integrals (47)-(49) are not necessarily 
converging for arbitrary models of stochastic structures. For 
instance, in the case of exponential media, integrals (47)-( 48) 
diverge due to too slow a rate of decay of fluctuation spectra 
in the high-frequency limit. Therefore, for such media the 
geometrical optics approximation of the velocity shift is singu- 
lar. This is the same singularity as was found by Roth et al. 
[ 1993, see their eq. (17)] using the ray-peturbation-theory 
consideration. 

We interpret this interesting fact in the following way. In 
exponential media, due to the fractal character of inhomogeneit- 
ies (in the high-frequency range the fluctuation spectra have 
power-law form), there always exist significant fluctuations of 
a spatial scale smaller than or of the same order as the 
wavelength, no matter how small the wavelength may be. 
Therefore, the diffraction effects are always significant and ray 
theory in its extreme high-frequency approximation becomes 
singular. For such media, eqs (24) and (25) also have a 
singularity in the high-frequency limit. However, they provide 
velocity estimations for any finite frequency. To what extent 
such estimations are reliable depends on the validity range of 
our results, which we discuss later in this section. 

Let us now consider the possibility of applying eqs (24) and 
(25) in the low-frequency range. Our theoretical consideration 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcrz4, providing the first integral terms in (24) and (25), is not 
valid for inhomogeneities of small spatial scale due to the 
approximations used in Appendix B in order to perform the 
integration in eq. (Bl).  Therefore, strictly speaking, expressions 
(24) and (25) are valid in the range ka > 1 only. However, in 
the low-frequency range ka < 1 the influence of gi+ on the phase 
velocity becomes vanishing in comparison with other factors. 
This can be acknowledged from the following short consider- 
ation of eq. (23). As is clear from eq. (19) the quantity a:+, at 
least in the weak fluctuation region, has the order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO( (E’) )  = 
O(aL) and, therefore, in the low-frequency range it is pro- 
portional to wm+’ in m-dimensional media (due to Rayleigh 
scattering). The quantity &, however, is proportional to w due 
to the frequency-independent part of the phase velocity of the 
coherent field (i.e. the static limit of this velocity). It is interesting 
to note that in the Rayleigh-scattering regime even the part of 
the phase $c corresponding to the frequency-dependent part of 
the coherent-field phase velocity has weaker frequency depen- 
dence than a. One can see this after a careful consideration of 
the low-frequency limits of the real and imaginary parts of the 
effective wavenumbers [given for example in formula (4.59), 
p. 138 of Rytov, Kravtzov & Tatarskii (1987) for 3-D media, 
and in formula (A14) of this paper for 2-D media]. Therefore, 
in the low-frequency range the term dc becomes dominant. The 
phase velocity tends to the velocity of the coherent wavefield. 
Our approximation for the coherent wavefield does not have 
any restriction limiting its validity range from below in the 
frequency domain. Therefore, the zero-frequency limit of 
eqs (24) and (25) should provide an exact result, and they can 
be used for other frequencies from the low-frequency range 
ka < 1, at least qualitatively. In the range ka > 1, eqs (24) and 
(25) again become quantitatively valid. The low-frequency limit 
of eqs (24) and (25) yields v ~ ~ , ~ ~ + c ~ ,  i.e. the velocity shift 
becomes negative, 6vju, --+ -(r2/2. It is interesting to note that 
this limiting value of the phase velocity exactly coincides with 
the well-known effective-medium limit for acoustic media with 
constant density (see e.g. Sheng 1995, p. 78). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Validity range 

The validity range of eqs (24) and ( 2 5 )  is restricted mainly 
by the three following basic assumptions that we made 
dunng our derivations. First, we assumed that the wavefield 
fluctuations are small. Using the estimations of the quantities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( F ‘ )  and u, which we found in our discussion of the weak and 
strong fluctuation regions, we obtain ( E ’ )  x 2aL= O(u’k’aL). 

Therefore, we can express the first limitation approximately 
by the inequality 

(50)  

Above, we have shown that for the derivation of eq.(20) the 
assumption of weak fluctuations of the wavefield can be replaced 
by the assumption of a normal distribution of the quantities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ in eq. (11). A short discussion on the probability distri- 
bution of the wavefield can be found in Ishimaru (1978, 
pp.447-448). It seems that this assumption is relevant for 
seismic practice, and inequality (50) should not be considered 
as a very restrictive one. However, it must be taken into account 
that the Rytov approximation of the quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr&+ requires that 
the wavefield fluctuations should not be too large, i.e. the 
quantity 9 should not be too large in comparison with 1. 

9 5 u’(ka)’(L/a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 1. 

The second restriction, 

k a >  1, (51) 

also relates to the derivation of the Rytov approximation of 
the quantity u$. It arises due to the neglecting of the contri- 
bution of the backscattering in the wavefield fluctuations. We 
have, however, seen from the above discussion of the low- 
frequency limits of eqs (24) and ( 2 5 )  that this restriction is not 
very critical. These equations provide an exact low-frequency 
limit and, at least qualitatively, can also be used in the 
frequency range ka < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. 

Finally, the third restriction is related to the derivation of 
the phase of the coherent wavefield, where we used the Bourret 
approximation. The validity domain of this approximation can 
be roughly expressed as (Rytov et al. 1987, pp. 140-141) 

a2(ka)’ < I .  ( 5 2 )  

A review of all three limitations of our theoretical results 
shows that the first restriction is the strongest. In the following 
we compare the theoretical predictions with results of numerical 
simulations in the very broad range of values of the quantity 
9,10-’<9<6 (see Fig. 8), and we find good agreement 
between the theoretical and numerical results for 9 < 4. It is 
interesting to note that in the case of Gaussian media a 
comparison of our theoretical predictions with results of the 
FD solutions of the eikonal equation (Huygens method) from 
the paper of Roth et al. (1993) shows that the theory can 
provide a correct order of the velocity shift even for much 
larger values of 9. 

Let us now consider the following seismologically relevant 
situation: A/a z 1 (for example, the wavelength I = 10 km and 
the correlation distance a = 10 km, which is a possible order 
of the correlation distances in the lithosphere), and a velocity 
fluctuation of 2 per cent. In this case the restriction 9 < 4  
implies that our theoretical results are applicable for L/a < 250. 

Frequency dependence of the phase velocity 

Because in our approximation the function S(ka, L/a) from 
eq. (40) has a universal form independent of a’ we can consider 

the normalized quantity 60/(o,a2) as a function of two argu- 
ments, ka and L/a, to gain an impression of the frequency 
dependence of the phase velocity. We shall, however, be more 
specific, in order to gain an idea of the possible orders of 
magnitude of the velocity shift. 

In the following we consider the frequency dependences of 
the velocity shift for 2-D and 3-D Gaussian and exponential 
media with u = 0.05 and L/a < 6. In the next section we use 
these parameters for some of our numerical illustrations of the 
velocity shift in 2-D exponential media. Further, we plot the 
velocity shift in 3-D exponential and Gaussian media for 
L/a 5 250 and u = 0.02. In spite of different values of u, the 
ka- and L/a-dependences of all these curves are universal. 

Figs 1 and 2 show the phase velocities versus the normalized 
frequency ka in the case of 2-D and 3-D Gaussian random 
media. These curves show a typical dispersion behaviour 
similar to frequency dependences of the phase velocities in 1-D 
media (Shapiro & Hubral1995). The most important difference 
is that now the phase velocity is also travel-distance-dependent. 
This dependence becomes more or less unimportant in the 
frequency range ka 5 5.  With increasing L/a the dispersion . 

‘I 

0.01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.1 1 10 100 

Figure 1. Velocity shift of an initially plane wave as a function of 
frequency at different distances L, produced by fluctuations of 5 per 
cent and a correlation length of 60 m in a 2-D Gaussian medium. 

k a  

2.5 I 1 

0.01 0.1 1 10 100 
k a  

Figure2. Velocity shift of an initially plane wave as a function of 
frequency at different distances L, produced by fluctuations of 5 per 
cent and a correlation length of 60 m in a 3-D Gaussian medium. 
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Phase velocity in random media zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA709 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
becomes larger. It is important for the frequency range 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAka zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 10 L/a. As is clear from the discussion above, in the 
frequency range ka < 1 features of the frequency dependence 
of the phase velocities are controlled by those of the phase 
velocity of the mean field. In turn, the behaviour of the mean- 
field phase velocity is closely related to the features of the 
frequency dependence of the scattering cross-sections. 

The corresponding curves for exponential media are similar 
to those for Guassian media. However, eqs (24) and (25) have 
singularities in the high-frequency limit, and, therefore, for a 
given relation L/u the velocity shift does not reach a constant 
value in the limit of infinite ka (Fig. 3). A general similarity 
between the curves in the 2-D and 3-D cases is seen. 

The next two plots of the velocity shift in 3-D Gaussian and 
exponential media (Figs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and 5) are especially interesting: 
they show this quantity in the intermediate-frequency range 
1 < ku < 100 for increasing L/a. It is clearly seen that if ka is 
not too large the velocity shift will decrease with increasing 

JJa = 6 (3D) 
Lla = 4 (3D) 

2 L/a = 6 (2D) 
2 5  i Ua=4(2D)  - 

1.5 - - 
> 1 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE . 
U 

0.5 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 -  

0.01 0.1 1 10 100 1000 
k a  

Figure 3. Velocity shift of an initially plane wave as a function of 
frequency at different distances L, produced by fluctuations of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 per 
cent and a correlation length of 60m in an exponential medium in 
two dimensions and three dimensions. Due to the broad range of 
the argument in each decade lo", only the ticks corresponding to 
1,2,5,8 x 10" are shown along the abscissa. 

1 10 
ka 

100 

Figure4. Velocity shift of an initially plane wave as a function of 
frequency at different distances L, produced by fluctuations of 2 per 
cent in a 3-D Gaussian medium. 

1.2 1 Lla=250 - 
Ua=lOO ---- 
Ua=50 
Wa=30 
Ua=lO ~ - -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/I 

1 - 
t" 0.8 

b 
> . 

0.6 

0.4 

0.2 

0 
1 

1 10 100 
ka 

Figure 5. Velocity shift of an initially plane wave as a function of 
frequency at different distances L, produced by fluctuations of 2 per 
cent in a 3-D exponential medium. 

travel distances. This can be explained by an increasing role 
of the diffraction effects in the intermediate-frequency range. 
The low- and intermediate-frequency diffraction tends to slow 
down the wavefield (for instance, as we have shown above the 
low-frequency limit of the velocity shift is always negative). 
The larger the travel distance, the more effective the diffraction 
(e.g. due to an increasing Fresnel zone). With increasing 
frequency for a given value of L/a the effect of diffraction 
decreases and the velocity shift starts to increase with increasing 
travel distance, because the wavefield enters the geometrical- 
optics regime of propagation. In this regime the more optimal 
ray paths are more probable in the case of larger travel 
distances. 

THEORETICAL VERSUS NUMERICAL 
RESULTS 

Strictly speaking, numerical computations of the phase velocities 
require an unwrapped (i.e. continuous) phase function of the 
time-harmonic transmitted wavefield. However, procedures for 
a smooth phase reconstruction of the numerically computed 
wavefields for a random medium are principally unstable. 
Moreover, due to practical reasons, numerical simulations in 
2-D and 3-D are usually not performed in the frequency 
domain, but in the time domain (this is the case for our study). 
In such a situation the problem of numerical simulation of the 
phase velocity is hardly resolvable from the problem of picking 
first arrivals [this was also clearly pointed out by Wielandt & 
Friederich (1996)l. 

Some additional restrictions of the numerical simulations 
arise from the following practical arguments. The theoretical 
computations (Figs 1 and 3) show that we are dealing here 
with effects of the order of one per cent in the velocity. 
Therefore, the numerical model should be large enough to 
make the effect visible. However, the model should not be too 
large in order to provide a reasonable computational time 
and the possibility of simulating wave propagation in many 
realizations of a model. Finally, the model should not be too 
large, so that in spite of the increasing phase and amplitude 
fluctuations of the wavefield, first arrivals can be picked safely. 
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Practically this means that we should not go too far into the 
strong-fluctuation region of the wavefield. 

All these factors together strongly restrict the suitable range 
of the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu, ka and L / a  and make the problem of 
numerical simulations of the phase velocity in random media 
fairly challenging. In this section we provide some numerical 
illustrations of our analytical results for the phase velocity. An 
exhaustive numerical test of the theory is, however, beyond 
the scope of this paper. 

In addition to our own numerical computations, we com- 
pared our theoretical velocity shift computed for 2-D Gaussian 
and exponential media in the case of u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 5 per cent (Figs 1 
and 3) with the FD numerical simulations performed by Roth 
et al. (1993, Figs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 and 8, bottom). We found a satisfactory 
agreement between these results (now shown here) in a rather 
broad frequency range, 6 < k a  < 50. 

The aim of our numerical computations was to compare the 
theoretical and synthetic results for a possibly broad range of 
the parameter 9 [see inequality zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(50) ]  controlling the validity 
of our approximation. In the examples given below values of 
the quantity 9 are restricted to the interval lo-' < 9 < 6. 

We compared our analytical results (eq. 24) with finite- 
difference solutions of the 2-D wave equation using the 
numerical codes of Kneib & Kerner (1993). Our model of a 
random medium has an exponential correlation function and 
a Gaussian probability distribution. Except for the parameters 
of the model, we reproduce here the same scheme of numerical 
simulation as in Shapiro & Kneib (1993). More details about 
our numerical simulations can be found in Schwarz (1995). 

Fig. 6 shows a sketch of the numerical experiment. The 
initially plane wave has the signature of the first derivative of 
a Gaussian pulse. In Fig. 7 the synthetic seismogram is shown 
for a medium with a = 60 m and u = 0.05. The wavefield has 
travelled 260 m in the inhomogeneous medium. The line of the 
picked arrivals and the straight line of the averaged traveltime 
are also shown. As the picking criterion we used the first zero- 
crossing after the first significant extremum of the waveform 
(i.e. the first minimum in the case of Fig. 7). 

Figs 8 and 9 show a comparison of the theoretical predictions 

400 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA800  1200 1600 
x-Position 

Figure 7. Synthetic seismogram for a realization of an exponential 
random medium with a=60m, c,=2688 m s-', cr=O.O5 and l /a=0.6.  

The wavefield has travelled 50 m of the homogeneous reference medium 
and 260 m of the inhomogeneous medium. 

and the results of numerical experiments. In both figures the 
velocity shift 6u/u, is plotted versus the normalized travel 
distance L/a. For a given travel distance and a given realization 
of the medium the traveltimes were obtained at 100 receiver 
points distributed parallel to the z-axis. The numerical values 
of the velocity shift are obtained by averaging traveltimes 
computed in eight realizations of the random medium. The 
values of the velocity shift in individual realizations of the 
model fluctuate strongly from their average. Generally, we 
observed the same order of fluctuations as shown in Roth 
et al. (1993, Figs 7 and 8). In the best cases we reached a 
standard deviation of the velocity shift of about 20 per cent of 
the average values. 

Fig. 8 shows the velocity shift versus L / a  for different 
variances of the velocity fluctuations. The dominant frequency 
of the wavefield is 80 Hz in this series of simulations. Fig. 9 
shows the velocity shift 6v/v, for different dominant frequencies 
of the wavefield. Now the standard deviation of the velocity 

Figure 6. Sketch of the numerical simulations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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1.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.8 

0.6 

0.4 

theory (10%) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
expenment (10%) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

theory (5%) 
experiment (5%) + 

theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3%) - 
expenment (3%) 0 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 
Wa 

Figure 8. Velocity shift of an initially plane wave in a 2-D exponential 
random medium versus normalized travel distance for different 
standard deviations of fluctuations and constant frequency (A/a = 0.6). 

1.6 

1.4 

1.2 

1 

> 0.8 

- 
E . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 

0.6 

0.4 

0.2 

0 

Huygens method ~ 

theory @ l a  = 0.1) 
expenment (h /a  = 0.625) o 

theory (hla = 0.625) 
experiment (hla = 1) + 

theory (h /a=1)  - - -  

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 
L/a 

Figure 9. Velocity shift of an initially plane wave in a 2-D exponential 
random medium versus normalized travel distance for different fre- 
quencies and a constant standard deviation of fluctuations (5 per 
cent). The curve computed by the Huygens method has been taken 
from Fig. 8 of Roth et al. (1993). 

fluctuations is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 per cent. Good agreement between theoretical 
and numerical results is observed. For comparison, the results 
of the high-frequency asymptotic calculations of Roth et al. 
(1993) are also shown in Fig. 9. The major importance of the 
frequency dependence of the effect is evident. 

Finally, Fig. 10 provides the theoretical results in the case 
of 3-D inhomogeneous exponential media that have the same 
statistical parameters as the 2-D models described above. This 
figure should be compared with Fig. 8. One can see a consider- 
able increase of the velocity shift in 3-D media in comparison 
with 2-D media. 

CONCLUSIONS 

In 2-D and 3-D random media the phase velocity is not only 
frequency-dependent, but travel-distance-dependent as well. 
This dependence becomes unimportant in the frequency range 
which can be approximately given by the inequality ka 5 5. 
Moreover, in the low-frequency range the velocity shift 

1.8 

c 

E 
> 
a 
. 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 
L / a  

Figure 10. Velocity shift of initially plane waves in 3-D exponential 
media for different variances of velocity fluctuations of l / a  = 0.6. 

becomes negative. With increasing L/a the dispersion becomes 
larger. It is important for the intermediate-frequency range, 
which can be approximately expressed as 1 < ka 5 10 L/a. In 
realistic cases the shift of the observed phase velocity relative 
to the reciprocal averaged slowness is smaller than 2 per cent. 
The frequency dependence of the velocity shift can be very 
strong. Therefore, the results of ray-perturbation theory and 
other high-frequency approximations may be non-applicable 
in relevant frequency- and travel-distance domains. Moreover, 
ray-perturbation theory is not able to describe the effect of 
fractal-like inhomogeneities. Here we have presented a theory 
that describes the frequency- and travel-distance dependences 
of the phase velocity of the transmitted wavefield. The low- 
frequency limit of our analytical results coincides with the known 
effective-medium limit of the phase velocity in statistically 
isotropic inhomogeneous fluids with constant densities. In the 
high-frequency limit our results coincide with the result pre- 
viously obtained by ray-perturbation theory. Our theory is, 
however, also valid in the case of media with non-differentiable 
autocorrelation functions (e.g. media with exponential auto- 
correlation functions or fractal media). Its results agree well 
with numerical simulations. 
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APPENDIX A: THE PHASE OF THE 
COHERENT WAVEFIELD zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In this appendix we derive a formula for the phase #c of 
the coherent wavefield in two dimensions, according to the 
calculation of Rytov et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. (1987) for a 3-D medium. 

The averaged Green's function G(r, ro) for a random medium 
is given by the so-called Dyson equation [see Rytov et al. 
(1987), eq. (4.28), p. 1311: 

where Go is the Green's function for a homogeneous reference 
medium and the integration is performed over the entire space. 
The generally unknown quantity Q is called the kernel-of- 
mass operator. 

By definition, the Green's function of the homogeneous 
reference medium Go satisfies 

(A + k2)Go(r, ro) = 6(r - ro). (A21 

Inserting eq. (A l )  into eq. (A2), we obtain 

AG(r, ro) + k'G(r, ro) - Q(r, r')G(r', ro) d2r' = 6(r - ro). 

('43 1 
s 

In a statistically homogeneous medium, Q(r, r') depends only 
on r - r'. This is also valid for Go(r, r'). Therefore, from eq. (A l )  
it is clear that G(r, r') has the same form. 

Now we can solve eq. (A3) by using the following Fourier 
transforms: 

Go(r - r l)  = go@) eiK(r-rl) d ' K ,  s 
s 
s 

G(r - r l )  = g ( K )  eiK('-'l) d'K, 

Q(r - r l)  = q ( ~ )  eiK('-'l) d ' K .  

By taking the Fourier transform of eq. (A2), we find go(lc): 

where k = (k( and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATC = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(K(. An infinitesimal absorption io 
( k  -+ k + i0/2k) is introduced in order to automatically satisfy 
the radiation conditions in the Green's functions after taking 
the integrals above (see Rytov et al. 1987, p. 132). 

Now g(lc) can be found by taking the Fourier transform of 
eq. (A3) and inserting eq. (A7): 

1 
4n2[k2 - lc2 + io - 477'q(1c)] g( l c )  

Substituting this into eq. (A5) and taking into account eq. (A6), 
we obtain the following expression for G(r - ro): 

k2 - K' + io - Q(r') e-'=' d2r' J 
Jo(lclr - r,l)lcdlc 

9 ('410) 
k2 - icz + io - 277 Q(r') Jo(lcr')r'dr' s 

where eq. (A10) is obtained by assuming statistical isotropy of 
the medium, and r = (r(. 

In order to specify the quantity Q, we use the Bourret 
approximation that keeps only the first term of the perturbation 
series expansion of Q(r): 

Q(r -ro) = 4k4Go(r -ro)Bn(r -ro), (A l l )  

where B,(r - ro) is the autocorrelation function of the velocity 
fluctuations: 

B,(r - ro) = ( 4 r o ) W ) .  (A121 

Our eq. ( A l l )  differs from the analogous eq. (4.37) of Rytov 
et al. (1987) by the factor 4, because in our paper we work 
with velocity fluctuations rather than with fluctuations of the 
squared refractive index, which are twice as large as the former. 

Substituting eq. ( A l l )  into eq. (A10) and taking into account 
the form of the Green's function for eq.(A2) in 2-D media 
[see, e.g. eq. (A2-2) from Shapiro & Kneib (1993)l we obtain 
the following results: 

1 Jo(lc(r -rO()milc 
2n: k:ff - lc2 + io ' 

G(r - ro) = - 

with 

H$(kr')B(r')Jo(kr')r'dr' , ('414) 1 
where H $  is a Hankel function and we neglect terms of higher 
than second order of velocity fluctuations in the brackets. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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A comparison of the average Green’s function (e.g. 

eq. A9) with the Green’s function of a homogeneous medium 
[e.g. eq. (A4) along with eq. (A7)] immediately shows that 
the quantity k,, in eq.(A13) plays the role of an effective 
wavenumber of the coherent wavefield. 

The only remaining problem now is to simplify eq. (A14). 
Using the Fourier transform zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@:”(() of the function B,(r) and 
integrating over r’, we obtain 

(‘415) 

The imaginary part of the effective wavenumber results only 
in an attenuation of the coherent wavefield. The phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbC, in 
turn, is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4c = {k,,}L. Therefore, the result for dC - 4o 
becomes 

By an analogous calculation, for a 3-D medium we obtain 

which corresponds to eq. (4.63) from Rytov et al. (1987). 

APPENDIX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB: CROSS-VARIANCE OF 
PHASE A N D  AMPLITUDE FLUCTUATIONS 

In this appendix we derive an expression for u;. in the 2-D 
case, following the known method of derivation of oZ4 in the 
3-D case [pp. 351-358, eqs (17.23)-( 17.53) of Ishimaru (1978)J 
In many of its details our derivation also repeats the derivation 
of the autocorrelation functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and 4 given for 2-D media 
in Appendix 1 of Shapiro & Kneib (1993). Therefore, referring 
to these two works for a detailed discussion, we try to keep 
our derivation below as short as possible. 

The first-order Rytov approximation of the quantity x + i4 
provides 

UO(T‘)  

U O W  
x(r) + $(r) x $l(r) = 2k2 G(r - r‘)n(r’)- d2r‘, (Bl) 

where uo(r) = eikx. 
Now we make the assumption that the correlation radius is 

of the order of or larger than the wavelength. In this case 
scattering is confined within an angle of order l / a  in the 
forward direction, so we can neglect backscattering. The inte- 
gration in eq. (B l )  can be limited to the interval 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 x’ 2 x.  
For the Green’s function we can now assume Iz - z’l<< Ix - x ’ I  
and obtain the following in two dimensions: 

Next we describe the random medium fluctuation n(r) in the 
space-wavenumber domain (see Ishimaru 1978, Appendix Al): 

W 

Inserting eq. (B3) into eq. (Bl) and integrating over z’ gives 

1 z) = ik [ dx‘ j:w dv(x‘, 5 )  eiC2 exp 

The corresponding complex-conjugate quantity reads zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
@(L, z) = -ik zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf dx’ 1:- dv*(x’, l )  eAi@ exp [;; i - ( L - x ’ )  ] 

= ik 1 dx‘ JIW dv(x’, 5 )  eic2 exp i-(L- x’)  . (B5) [;; ] 
In eq. (B5) the identity dv(x’, 5 )  = dv* (x’, - 5 )  (valid for real 
functions n) and the substitution 5 --f - 5 were used. 

Taking into account eq. (Bl), we can use the following 
representations of the functions x and 4: 

(B6) 
1 

x ( r ) = p l + $ T L  

We now calculate the cross-correlation function B ,  of the 
quantities x and 4. For this, we find the product x(r’)#(r”) 
using the right-hand sides of eqs (B6) and (B7) and taking 
into account eqs (B4) and (B5). The points r’ and r” have the 
coordinates (L, z’) and (L, z”)  respectively. After statistical 
averaging we obtain the following: 

B,,(Az) = k2 IW - m  d5 loL dx‘ joL dx“ ei@ sin [ g ( L -  x’)] 

x c o s [ $ ( L - x ” ) ] F ( / A x l ,  5 ) .  (B8) 

Here we defined Ax = x’ - X” and Az = z’ - z”. Furthermore, 
we used the 1-D version of the known relationship for 
statistically isotropic media (Ishimaru 1978, eqs (17-43) and 
(A-21), p. 356 and p. 516, respectively): 

( ~ v ( x ’ ,  5’) ~ v ( x ” ,  5 ” ) )  = F(lAx1, [‘)S(<’- 5”) dc’ ,  (B9) 

where the function F is the 1-D Fourier transform of the 
autocorrelation function of the velocity fluctuations: 

(n(x ,  z)n(x + Ax, z + A z ) )  eirAz dAz 

(B10) 

We now introduce the new variable q = ; ( X I  + x”) .  Using 
now q and Ax as the new integration variables in eq. (B8) we 
peform the integration over Ax from - 03 to 03. It is possible 
because we assume vanishing autocorrelation of the velocity 
fluctuations for large Ax. The integration yields: 

B,+(Az)=ak2JoLdqJ-~ dgei (Azs in l~(L-q) ]@~D(5)  (B11) 
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where we used the fact that for statistically isotropic media 
the 2-D Fourier transform of the autocorrelation function of 
the velocity fluctuations @iD is obtained from F by the integral 
@:D([) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1/(2n)jm, dAxF(lAxJ,[) [see eq. (A27) of Ishimaru 
(1978)l. Finally, using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu : ~  = B,(O), we obtain the desired 
quantity: 

By an analogous calculation one can get the result in the 3-D 
case [see Ishimaru (1978) eq. (17-53) for e = 01: 

For a point source in a 2-D random medium the correspond- 
ing results are obtained by the substitution of the cylindrical 
incident wave u,,(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcc ( l/lrl)1/2 exp(ik(r1) into eq. (Bl). After this, 
the chain of calculations described above must be repeated. 
The result reads: 

In the case of a point source in a 3-D random medium we 
use the corresponding result of Ishimaru (1978, p. 378, eq. 18-7 
in the case e = 0): 

o:,=2n2k2[dqr 5 d ( s i n ( y 5 2 ) @ ) D ( 5 ) .  (B16) 

APPENDIX C: 
GAUSSIAN MEDIA 

In this Appendix we calculate the quantity &, for 2-D Gaussian 
media. The first part of the calculation is straightforward: by 
substituting x E e2 in eq. (B13), taking from eq. (29) and 
using 2 sin2(xl/2k) = 1 - cos(xL/k) we obtain 

QUANTITY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcr:, I N  2-D 

Using tables of definite integrals (Gradshteyn & Ryzhik 1983) 
one can find the solutions for the two integrals in eq. (C2). We 
obtain: 

In this equation is the incomplete gamma function, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r(a, u) = [ e-'ta-' dt. (C4) 

The exact solution of eq. (C3) is the limiting value for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu + 0. 
Using 

(C5) r(a + 1, u) = ar(a,  u) + uil e-" 

and 

where @(u) is the probability integral, we are able to perform 
u + 0 and obtain the following: 

c2 a2 k' 
4 

The imaginary parts of the last two terms compensate each 
other. After adding the real parts of the last two terms we 
obtain result (34). 
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