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ABSTRACT
This paper describes OneChip, a third generation recon-
figurable processor architecture that integrates a Reconfig-
urable Functional Unit (RFU) into a superscalar Reduced
Instruction Set Computer (RISC) processor’s pipeline. The
architecture allows dynamic scheduling and dynamic recon-
figuration. It also provides support for pre-loading config-
urations and for Least Recently Used (LRU) configuration
management.

To evaluate the performance of the OneChip architec-
ture, several off-the-shelf software applications were com-
piled and executed on Sim-OneChip, an architecture simu-
lator for OneChip that includes a software environment for
programming the system. The architecture is compared to
a similar one but without dynamic scheduling and without
an RFU. OneChip achieves a performance improvement and
shows a speedup range from 2.16 up to 32 for the different
applications and data sizes used. The results show that
dynamic scheduling helps performance the most on average,
and that the RFU will always improve performance the best
when most of the execution is in the RFU.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture
Styles—Adaptable architectures, Pipeline processors

General Terms
Experimentation, Performance

Keywords
OneChip, reconfigurable processors, superscalar processors

1. INTRODUCTION
Recently, the idea of using reconfigurable resources along

with a conventional processor has led to research in the area
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of reconfigurable computing. The main goal is to take ad-
vantage of the capabilities and features of both resources.
While the processor takes care of all the general-purpose
computation, the reconfigurable hardware acts as a spe-
cialized coprocessor that takes care of specialized applica-
tions. With such platforms, specific properties of applica-
tions, such as parallelism, regularity of computation, and
data granularity can be exploited by creating custom oper-
ators, pipelines, and interconnection pathways.

There has been research done in the Department of
Electrical and Computer Engineering at the University of
Toronto on such reconfigurable processors, namely, the
OneChip processor model has been developed. At first, this
model tightly integrated reconfigurable logic resources and
memory into a fixed-logic processor core. By using the re-
configurable units of this architecture, the execution time
of specialized applications was reduced. The model was
mapped into the Transmogrifier-1 field-programmable sys-
tem. This work was done by Ralph Wittig [22].

A follow-on model, called OneChip-98, then integrated a
memory-consistent interface. It is a hardware implementa-
tion that allows the processor and the reconfigurable array
to operate concurrently. It also provides a scheme for speci-
fying reconfigurable instructions that are suitable for typical
programming models. This model was partially mapped into
the Transmogrifier-2 field-programmable system. This work
was done by Jeff Jacob [11].

OneChip’s architecture has now been extended to a super-
scalar processor that allows multiple instructions to issue
simultaneously and perform out-of-order execution. This
leads to much better performance, since the processor and
the reconfigurable logic can execute several instructions in
parallel. Most of the performance improvement that this
architecture shows comes from memory streaming applica-
tions, that is, those applications that read in a block of data
from memory, perform some computation on it, and write
it back to memory. Multimedia applications have this char-
acteristic and are used to evaluate the architecture.

Previous subsets of the OneChip architecture1 have been
modeled by implementing them in hardware. The purpose
of this work is to properly determine the feasibility of the
architecture by building a full software model capable of
simulating the execution of real applications.

1We will use the term OneChip from now on to refer to the
latest version of the OneChip architecture.



1.1 Related Work
In general, a system that combines a general-purpose

processor with reconfigurable logic is known as a Field-
Programmable Custom Computing Machine (FCCM). Re-
search on FCCMs done by other groups [2, 5, 7, 14, 16, 18,
19] has reported speedup obtained by combining these two
techniques, however, most of the research in these groups
is focused on aspects of the reconfigurable fabric and the
compilation system. Much of the OneChip work is focused
toward the interface between the two technologies. As a re-
sult, the applications are modified by hand; no modification
was done to the compiler; and our simulations model only
the functionality and latency of the reconfigurable fabric,
not the specifics of the fabric architecture.

In our work, we study the effect of combining reconfigura-
bility with an advanced technique to speedup processors, a
superscalar pipeline, by focusing on the interplay between
them. With the use of out-of-order issue and execution,
one can further exploit instruction-level parallelism in ap-
plications, without incurring the overheads involved in re-
configuring a specialized hardware. Previously, performance
reports by other groups were done using application kernels
such as the DCT, FIR filters, or some small kernel-oriented
applications. Only recently have some groups [2, 18, 23]
reported on the performance using complete applications,
which give more meaningful results. In this work, we are
focused on the architecture’s performance with full applica-
tions.

2. ONECHIP ARCHITECTURE
In this section we give a brief overview of the OneChip

architecture, including the more recently added features.
The processor’s main features, as proposed in [22, 11] are:

• MIPS-like RISC architecture — simple instruction en-
coding and pipelining.

• Dynamic scheduling — allows out-of-order issue and
completion.

• Dynamic reconfiguration — can be reconfigured at
run-time.

• Reconfigurable Functional Unit (RFU) integration —
programmable logic in the processor’s pipeline.

In addition, OneChip has now been extended to include:

• a Superscalar pipeline — allows multiple instructions
to issue per cycle.

• Configuration pre-loading support — allows loading
configurations ahead of time.

• Configuration compression support — reduces config-
uration size.

• LRU configuration management support — reduces
number of reconfigurations.

2.1 Processor pipeline
The original OneChip pipeline described in [11] is based on

the DLX RISC processor described by Hennessy & Patterson
[9]. It consists of five stages: Instruction Fetch (IF), Instruc-
tion Decode (ID), Execute (EX), Memory Access (MEM)
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Figure 1: OneChip’s Pipeline
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and Writeback (WB). A diagram of the pipeline is shown
in Figure 1. The RFU is integrated in parallel with the
EX and MEM stages. It performs computations as the EX
stage does and has direct access to memory as the MEM
stage does. The RFU contains structures such as the Mem-
ory Interface, an Instruction Buffer, a Reconfiguration Bits
Table (RBT) and Reservation Stations.

OneChip is now capable of executing multiple instructions
in parallel. The EX stage consists of multiple functional
units of different types, such as integer units, floating point
units and a reconfigurable unit. Due to the flexibility of
the reconfigurable unit to implement a custom instruction,
a programmer or a compiler can generate a configuration
for the reconfigurable unit to be internally pipelined, paral-
lelized or both. Dynamic scheduling of RFU instructions is
implemented in OneChip. Data dependencies between RFU
and CPU instructions are handled using RFU Reservation
Stations.

2.2 RFU Architecture
The RFU in OneChip contains one or more FPGAs and

an FPGA Controller as shown in Figure 2. The FPGAs have
multiple contexts and are capable of holding more than one
configuration for the programmable logic [4]. These config-
urations are stored in the Context Memory, which makes
the FPGA capable of rapidly switching among configura-
tions. Each context of the FPGAs is configured indepen-
dently from the others and acts as a cache for configurations.
Only one context may be active at any given time.

Instructions that target the RFU in OneChip are for-
warded to the FPGA Controller, which contains the reser-
vation stations and a Reconfiguration Bits Table (RBT).



The FPGA Controller is responsible for programming the
FPGAs, the context switching and selecting configurations
to be replaced when necessary. The FPGA Controller also
contains a buffer for instructions and the memory interface.
The RBT acts as the configuration manager that will keep
track of where the FPGA configurations are located. The
memory interface in the FPGA Controller consists of a DMA
controller that is responsible for transferring configurations
from memory into the context memory according to the val-
ues in the RBT. It also transfers the data that an FPGA will
operate on into the local storage. The local storage may be
considered as the FPGA data cache memory. The multiple
FPGAs in the RFU share the same FPGA Controller and
each FPGA has its own context memory and local storage.

OneChip has been enhanced to support configuration
compression and reduce the overhead involved in configur-
ing the FPGA. An algorithm for compressing configurations
is proposed by Hauck et al. [8]. This feature has not been
modeled in our simulator for these results since the internal
architecture of the FPGA fabric is not yet defined, therefore
the actual size of the configuration bitstreams is unknown.
Futhermore, our benchmarks only use one configuration and
the effect of the overhead can be easily managed by pre-
loading the configuration.

The architecture has also been extended to support con-
figuration management. Although the FPGAs can hold mul-
tiple configurations, there is a hardware limit on the number
of configurations it can hold. OneChip uses the Least Re-
cently Used (LRU) algorithm as a mechanism for swapping
configurations in and out of the FPGA. LRU is implemented
in OneChip by using a table of configuration reference bits.
The approach is similar to the Additional-Reference-Bits Al-
gorithm described by Silberschatz & Galvin in [20]. A fixed-
width shift register is used to keep track of each loaded
configuration’s history. On every context switch, all shift
registers are shifted 1 bit to the right. On the high-order
bit of each register, a 0 is placed for all inactive configura-
tions and a 1 for the active one. If the shift register contains
00000000, it means that it hasn’t been used in a long time.
If it contains 10101010, it means that it has been used every
other context switch. A configuration with a history register
value of 01010000 has been used more recently than another
with the value of 00101010, and this later one was used more
recently than one with a value of 00000100. Therefore, the
configuration that should be selected for replacement is the
one that has the smallest value in the history register. No-
tice that the overall behavior of these registers is to keep
track of the location of configurations in a queue, where a
recently used configuration will come to the front and the
last one will be the one to be replaced. Our simulator does
not have this feature implemented at this time as it was not
required in the benchmarks.

The Reconfiguration Bits Table (RBT) acts as the con-
figuration manager that will keep track of where the FPGA
configurations are located. The information in this table
includes the address of each configuration and flags that
keep track of loaded and active configurations. The RBT
described in [11] has been enhanced to support the algo-
rithm for configuration management [3]. The history of each
configuration is also stored in the table to allow LRU con-
figuration management and to select configurations to be
replaced.

Table 1: Memory Consistency Scheme
Hazard Hazard

Number Type Actions Taken

1 RFU rd 1. Flush RFU source addresses from CPU cache when

after instruction issues.

CPU wr 2. Prevent RFU reads while pending CPU store

instructions are outstanding.

2 CPU rd 3. Invalidate RFU destination addresses in CPU cache

after when RFU instruction issues.

RFU wr 4. Prevent CPU reads from RFU destination addresses

until RFU writes its destination block.

3 RFU wr 5. Prevent RFU writes while pending CPU load

after instructions are outstanding.

CPU rd

4 CPU wr 6. Prevent CPU writes to RFU source addresses until

after RFU reads its source block.

RFU rd

5 RFU wr 7. Prevent RFU writes while pending CPU store

after instructions are outstanding.

CPU wr

6 CPU wr 8. Prevent CPU writes to RFU destination addresses until

after RFU writes its destination block.

RFU wr

7 RFU rd 9. Prevent RFU reads from locked RFU destination

after addresses.

RFU wr

8 RFU wr 10. Prevent RFU writes to locked RFU source addresses.

after

RFU rd

9 RFU wr 11. Prevent RFU writes to locked RFU destination

after addresses

RFU wr

2.3 Instruction specification
OneChip is designed to obtain speedup mainly from mem-

ory streaming applications in the same way vector coproces-
sors do. In general, RFU instructions take a block of data
that is stored in memory, perform a custom operation on
the data and store it back to memory.

Previously, OneChip supported only a two-operand RFU
instruction. To have more flexibility for a wider range of
applications, it has now been extended to support a three-
operand RFU instruction. In the two-operand instruction,
one can specify the opcode, the FPGA function, one source
and one destination register that hold the respective memory
addresses, and the block sizes. In this instruction, the source
and destination block sizes can be different. In the three-
operand instruction, one of the block sizes is replaced by
another source register. This allows the RFU to get source
data from two different memory locations, which need not
be continuous. In this instruction, all three blocks should
be the same size.

In OneChip, there are two configuration instructions. One
of them is the Configure Address instruction, which is used
for assigning memory addresses in the RBT. The other con-
figuration instruction is the Pre-load instruction, which is
used for pre-fetching instructions into the FPGA and re-
ducing configuration overhead. Some compiler prefetching
techniques have been previously published for other recon-
figurable systems [6, 21].

2.4 Memory controller
OneChip allows superscalar dynamic scheduling, hence in-

structions with different latencies may be executed in paral-
lel. The RFU in OneChip has direct access to memory and
is also allowed to execute in parallel with the CPU. When
there are no data dependencies between the RFU and the
CPU, the system will act as a multiprocessor system, pro-
viding speed up. However, when data dependencies exist
between them, there is a potential for memory inconsistency
that must be prevented.

The memory consistency scheme previously proposed for
OneChip, as described in [11], allows parallel execution be-
tween one FPGA and the CPU. The scheme has now been



extended to support more than one FPGA in the RFU. The
nine possible hazards that OneChip may experience along
with the actions taken to prevent them, are listed in Table 1.
This scheme preserves memory consistency when the CPU
and an FPGA, or when two or more FPGAs, are allowed to
execute concurrently.

OneChip implements the memory consistency scheme by
using a Block Lock Table (BLT). The BLT is a structure that
contains four fields for each entry and locks memory blocks
to prevent undesired accesses. The information stored in the
table includes the block address, block size, instruction tag
and a src/dst flag.

3. SIM-ONECHIP
This section will describe the implementation of sim-

onechip, the simulator that models the architecture of
OneChip. It is a functional, execution-driven simulator de-
rived from sim-outorder from the simplescalar tool set [1].

To model the behaviour of OneChip, we needed an already
existing simulator capable of doing out-of-order execution
and that was easily cutomizable to be used a basis to add
OneChip’s features. Two existing architecture simulators [1,
17] were considered for modification and SimpleScalar was
the chosen platform. Besides being a complete set of tools,
the annotations capability was an attractive feature, since
it would allow the addition of new instructions in a very
simple manner.

3.1 Modifications to sim-outorder
Modifications were done to sim-outorder to model

OneChip’s reservation stations, reconfiguration bits table,
block lock table and the reconfigurable unit. The overall
functionality of sim-outorder was preserved.

The reservation stations for Sim-OneChip were imple-
mented as a queue. Besides the already existing scheduler
queues for Basic Functional Unit (BFU) instructions and for
Memory (MEM) instructions, a third scheduler queue was
implemented to hold RFU instructions. This queue is re-
ferred to as the Reconfigurable Instructions Queue (RecQ).
The dispatch stage detects instructions that target the RFU
and places them in the RecQ for future issuing.

The RBT is implemented as a linked list. The RBT mod-
els the FGPA controller by performing dynamic reconfigura-
tion and configuration management. Functions are provided
for assigning configuration addresses, loading configurations
and to perform context switching.

The BLT is implemented as a linked list. Each entry holds
the fields for the two sources and the destination memory
blocks for each RFU instruction. It ensures the OneChip
memory consistency scheme by modeling the actions taken
for each of the hazards presented. By keeping track of the
memory locations currently blocked, conflicting instructions
are properly stalled.

The RFU was included with the rest of the functional
units and in the resource pool in the functional unit resource
configuration.

3.2 Pipeline description
To be able to adapt OneChip to the SimpleScalar ar-

chitecture, several modifications were done to the original
pipeline. Sim-OneChip’s pipeline, as in sim-outorder, con-
sists of six stages: fetch, dispatch, issue, execute, writeback
and commit. This section will describe the modifications

I-Cache D-Cache

Fetch Dispatch Issue BFU Writeback Commit

Mem

BLT

Main Memory

RFU

Execute

Figure 3: Sim-OneChip’s Pipeline

done to each stage in sim-outorder and the places where
each of OneChip’s structures were included. Sim-OneChip’s
pipeline is shown in Figure 3.

The fetch stage remained unmodified and fetches instruc-
tions from the I-cache into the dispatch queue.

The dispatch stage decodes instructions and performs reg-
ister renaming. It moves instructions from the dispatch
queue into the reservation stations in the three scheduler
queues: the Register Update Unit (RUU), the Load Store
Queue (LSQ) and the Reconfigurable Instructions Queue
(RecQ). This stage adds entries in the BLT to lock memory
blocks when RFU instructions are dispatched.

The issue stage identifies ready instructions from the
scheduler queues (RUU, LSQ and RecQ) and allows them
to proceed in the pipeline. This stage also checks the BLT
to keep memory consistency and stalls the corresponding
instructions.

The execute stage is where instructions are executed in
the corresponding functional units. Completed instructions
are scheduled on the event queue as writeback events. This
stage is divided into three parallel stages: BFU stage, MEM
stage and RFU stage. The BFU stage is where all oper-
ations that require basic functional units, such as integer
and floating point are executed; the MEM stage is where all
memory access operations are executed and has access to
the D-cache, and; the RFU stage is where RFU instructions
are executed.

The writeback stage remained unmodified and moves com-
pleted operation results from the functional units to the
RUU. Dependency chains of completing instructions are also
scanned to wake up any dependent instructions.

The commit stage retires instructions in-order and frees
up the resources used by the instructions. It commits the
results of completed instructions in the RUU to the register
file and stores in the LSQ will commit their result data to
the data cache. This stage clears BLT entries to remove
memory locks once the corresponding RFU instruction is
committed.

The BLT is accessed by the dispatch, issue and com-
mit stages. The memory consistency scheme requires that
instructions are entered in the BLT and removed from it
in program order. In the pipeline, the issue, execute and
writeback stages do not necessarily follow program order
since out-of order issue, execution and completion is allowed.
Hence, memory block locks and the corresponding entries in
the BLT need to be entered when an RFU instruction is dis-
patched, since dispatching is done in program order. Like-
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wise, entries from the BLT need to be removed when RFU
instructions commit, since committing is also performed in
program order.

All actions in the memory consistency scheme are taken in
the issue stage. The issue stage is allowed to probe the BLT
for memory locks. Instructions that conflict with locked
memory blocks are prevented from issuing at this point. All
others are allowed to proceed provided there are no depen-
dencies.

3.3 RFU instructions
Annotation of instructions in SimpleScalar are useful for

creating new instructions. They are attached to the opcode
in assembly files for the assembler to translate them and ap-
pend them in the annotation field of assembled instructions.

Taking advantage of this feature, new instructions can
be created without the need to modify the assembler.
OneChip’s RFU instructions will be disguised as already
existing, but annotated instructions that the simulator will
recognize as an RFU instruction and model the correspond-
ing operation. Without the annotation, instructions are
treated as regular ones; with the annotation they become
instructions that target the reconfigurable unit.

The four instructions defined for OneChip (i.e. two RFU
operation instructions and two configuration instructions)
were created for Sim-OneChip. Macros are used to trans-
late from a C specification to the corresponding annotated
assembly instruction.

3.4 Programming model
Currently, the programming model for OneChip is the use

of circuit libraries. Programming for Sim-OneChip is done
in C. The user may use existing configurations from a library
of configurations, or create custom ones. Configurations are
defined in C and several macros are available for accessing
memory or instruction fields.

The complete simulation process is shown in Figure 4. A
C program that includes calls to RFU instructions is com-
piled by the simplescalar gcc compiler ssgcc along with the
OneChip Library oc-lib.h. This will produce a binary file
that can be executed by the simulator sim-onechip. All the
program configurations specified in fpga.conf must be pre-
viously compiled by gcc along with the simulator source code
to produce the simulator. Once both binaries are ready, the
simulator can simulate the execution of the binary and pro-
duce the corresponding statistics.

Sim-OneChip’s processor specification can be defined as
command-line arguments. One can specify the processor
core parameters, such as fetch and decode bandwidth, inter-

nal queues sizes and number of execution units. The mem-
ory hierarchy and the branch predictor can also be modified.

3.4.1 OneChip library
The library defines the following five macros:
oc configAddress(func, addr) is used for specifying

the configuration address for a specified function. It will as-
sociate the function func with the address addr where the
FPGA configuration bits will be taken from and will enter
the corresponding entry in the BLT.

oc preLoad(func) is used for pre-loading the configu-
ration associated with the specified function func into an
available FPGA context.

rec 2addr(func, src addr, dst addr, src size,
dst size) is the two-operand reconfigurable instruction.
func is the FPGA function number, src addr and dst addr

are the source and destination block addresses, src size and
dst size are source and destination block sizes encoded.

rec 3addr(func, src1 addr, src2 addr, dst addr,
blk size) is the three-operand reconfigurable instruction.
func is the FPGA function number, src1 addr, src2 addr

and dst addr are the source-1, source-2 and destination
block addresses, and blk size is the block size encoded.

Both reconfigurable instructions will perform the context
switch to activate function func and will execute the corre-
sponding operation associated with it. They will also lock
their respective source and destination blocks of memory
by entering the corresponding fields in the BLT for as long
as the function takes to execute. When finished, the BLT
entries corresponding to the instruction will be cleared.

oc encodeSize(size) is a macro used for encoding the
size of memory blocks. It obtains the encoded value from
a table that is defined by the function log2(size) − 1. This
macro should be used to encode block sizes in reconfigurable
instructions.

For example,

rec_3addr(2,&a,&b,&c,oc_encodeSize(16));

where a, b and c are defined as

unsigned char a[16], b[16], c[16];

will activate function 2 and perform the operation with ar-
rays a and b as source data and array c as destination data.
The encoded size passed to the reconfigurable instruction
will be log2(16) − 1 = 3.

3.4.2 Configuration definition
The behavior of the RFU is modeled with a high-level

functional simulation. It is given some inputs, and a func-
tion produces the corresponding outputs without perform-
ing a detailed micro-architecture simulation of the pro-
grammable logic.

Configurations are defined as follows,

DEFCONF(<addr>, <oplat>, <issuelat>,

{

<EXPR>

}

)

where

<addr> Configuration address (i.e. the location of
the configuration bits in memory).



<oplat> Operation latency (i.e. the number of
cycles until result is ready for use).

<issuelat> Issue latency (i.e. the number of
cycles before another operation can
be issued on the same resource).

<EXPR> Expression that describes the
reconfigurable function.

The separation of the instruction latency into operation
and issue latencies, allows the specification of pipelined con-
figurations. For example, assume one configuration takes 20
cycles to complete one instruction, but the configuration is
pipelined and one instruction can be started every 4 cycles.
In this case, the operation latency will be 20 and the issue
latency will be 4. Hence, the configuration can have 20

4
= 5

executing instructions at a time and the throughput for the
configuration is implied as 20

5
= 4 cycles per instruction.

The expression field is where the semantics of the configu-
ration will be specified. It is a C expression that implements
the configuration being defined, the expression must modify
all the processor state affected by the instruction’s execu-
tion.

All memory accesses in the DEFCONF() expression must
be done through the memory interface. There are macros
available for doing memory reads and writes; for accessing
general purpose registers, floating point and miscellaneous
registers; for accessing the value of the RFU instruction
operand field values, and; for creating a block mask and
decoding a block size. Some configuration examples are in-
cluded in [3].

4. PROGRAMMING FOR SIM-ONECHIP
This section will present an example of how to port an ap-

plication so that it uses the RFU in OneChip to get speedup.
The application to be implemented is an 8-tap FIR filter.

Consider that you have this C code in a file called fir.c.

1: /* FILE: fir.c */
2:
3: #include <stdio.h>
4:
5: #define TAPS 8
6: #define MAX_INPUTS 1024
7:
8: int coef[TAPS] = {1,2,3,4,5,6,7,8};
9: int inputs[MAX_INPUTS];

10:
11: void main(){
12: int i, j;
13: int *x;
14: int y[MAX_INPUTS];
15:
16: /* Set the inputs to some random numbers */
17: for (i = 0; i < MAX_INPUTS; i++){
18: inputs[i] = 3 * (i % 1000) - MAX_INPUTS % 123;
19: y[i] = 0;
20: }
21: x = inputs;
22:
23: /* FIR Filter kernel */
24: for (i = 0; i < MAX_INPUTS-TAPS; i++){
25: for (j = 0; j < TAPS; j++){
26: y[i] += coef[j] * x[j];
27: }
28: x++;
29: }
30:

31: printf("\nFIR filter done!\n");
32: }

The inner loop in the FIR filter kernel on lines 25–27 of
fir.c can be ported to be executed entirely on the OneChip
RFU. For that, we need to do some modifications to the C
code. The file fir.oc.c that reflects this changes is shown
below.

1: /* FILE: fir.oc.c */
2:
3: #include <stdio.h>
4: #include "oc-lib.h"
5:
6: #define TAPS 8
7: #define MAX_INPUTS 1024
8:
9: int coef[TAPS] = {1,2,3,4,5,6,7,8};
10: int inputs[MAX_INPUTS];
11:
12: void main(){
13: int i, j;
14: int *x;
15: int y[MAX_INPUTS];
16:
17: oc_configAddress(0, 0x7FFFC000);
18: oc_preLoad(0);
19:
20: /* Set the inputs to some random numbers */
21: for (i = 0; i < MAX_INPUTS; i++){
22: inputs[i] = 3 * (i % 1000) - MAX_INPUTS % 123;
23: y[i] = 0;
24: }
25: x = inputs;
26:
27: /* FIR Filter kernel */
28: for (i = 0; i < MAX_INPUTS-TAPS; i++){
29: rec_3addr(0, x, coef, &y[i], oc_encodeSize(8));
30: x++;
31: }
32:
33: printf("\nFIR filter done!\n");
34: }

The first step was including the OneChip library in the
code as shown on line 4 in fir.oc.c. The second step was
defining the address of the configuration bitstream for the
FIR filter. In this case, we are using configuration #0 and
the memory address is 0x7FFFC000, as shown on line 17. As
a third step, notice that lines 25–27 on fir.c have been
removed and replaced by a 3-operand RFU instruction in
line 29 on fir.oc.c. This instruction is using configuration
#0 and is passing the address of the two source memory
blocks, x and coef, which are pointers, as well as the address
of destination memory block, which for each iteration will
be &y[i]. The block size, 8, is passed using the function
oc encodeSize.

The previous three changes are necessary. Furthermore,
if we want to reduce configuration overhead, we would in-
troduce a pre-load instruction as in line 18. This instruction
tells the processor that configuration #0 will be used soon.
This way, by the time it gets to execute the RFU instruc-
tion, the configuration is already loaded and no time is spent
waiting for the configuration to be loaded. This instruction
is not necessary, because if the configuration is not loaded
in the FPGA, the processor will automatically load it.

Now that the C code has been modified to use the RFU,
we need to define the FPGA configuration that will perform
the FIR filter. Configurations are defined in fpga.conf. The
fir filter definition used is shown below.



1: /* This configuration is for a 3-operand instruction.
2: It is used for a fir filter program. */
3:
4: DEFCONF(0x7FFFC000, 17, 17,
5: {
6: int oc_index; /* for indexing */
7: unsigned int oc_word; /* for storing words */
8: unsigned int oc_result; /* for storing result */
9:

10: oc_result = 0;
11: for(oc_index = 0;
12: oc_index <= OC_MASK(OC_3A_BS);
13: oc_index++)
14: {
15: oc_word = READ_WORD(GPR(OC_3A_S1R)+(4*oc_index));
16: oc_word*= READ_WORD(GPR(OC_3A_S2R)+(4*oc_index));
17: oc_result += oc_word;
18: }
19: WRITE_WORD(oc_result, GPR(OC_3A_DR));
20: }
21: )

This configuration is the equivalent of the inner loop in
the FIR filter kernel on lines 25–27 in fir.c. Note that
in the configuration, each memory access is done through
the memory interface. Line 4 defines the configuration ad-
dress 0x7FFFC000 and the operation and issue latencies of
17. Lines 11–13 define the iteration loop for the FIR fil-
ter. Line 15 reads a word from the memory location defined
by the address stored in the general purpose register that
contains one source address plus the corresponding memory
offset. In the same way, line 16 reads a word from the other
source block and multiplies it with the data previously read
and stored in the oc word variable. Line 17 simply accu-
mulates the multiplied values across loop iterations. When
the loop is finished, line 19 writes the result into the memory
location defined by the address stored in the general purpose
register that has the destination block address.

The simulator will generate statistics for the number of in-
structions executed in each program. The speedup obtained
with Sim-OneChip can be verified.

5. APPLICATIONS
To evaluate the performance of the OneChip architecture,

several benchmark applications were compiled and executed
on Sim-OneChip.

5.1 Experimental Setup
To do the experiments, four steps were performed for each

application. Step one is the identification of which parts of
each application are suitable for implementation in hard-
ware. Step two is modeling the hardware implementation
of the identified parts of the code. Step three is the re-
placement of the identified code in the application, with
the corresponding hardware function call. And step four
is the execution and verification of both the original and the
ported versions of the application.

The pipeline configuration used for both simulations was
the default used in SimpleScalar. Among the most rele-
vant characteristics are an instruction fetch queue size of
4 instructions; instruction decode, issue and commit band-
widths of 4 instructions per cycle; a 16-entry register update
unit (RUU) and an 8-entry load/store queue (LSQ). The
number of execution units available in the pipeline are 4 in-
teger ALU’s, 1 integer multiplier/divider, 2 memory system
ports available (to CPU), 4 floating-point ALU’s, 1 floating-

point multiplier/divider. Also, in the case of sim-onechip, 1
reconfigurable functional unit (RFU), an 8-entry RBT and
a 32-entry BLT were used. The branch predictor and cache
configuration remained unmodified as well.

5.2 Benchmark applications
There is currently no standard benchmark suite for recon-

figurable processors. C. Lee et al.[13] from the University
of California at Los Angeles have proposed a set of bench-
marks for evaluating multimedia and communication sys-
tems, which is called MediaBench. Since current reconfig-
urable processors available are used mostly for communica-
tions applications, MediaBench was taken as the suite for
evaluating OneChip. Not all of the applications were used
for the evaluation. Some of them could not be ported to
SimpleScalar, due to the complexity of the makefiles or due
to some missing libraries. However, the rest of the applica-
tions can provide good feedback on the architecture’s per-
formance.

5.3 Profiles
Profiling the execution of an application helps to identify

the parts of the application take a lot of time to execute
and hence, being candidates for rewriting to make it ex-
ecute faster. Profiling of the applications was performed
using GNU’s profiler gprof included in GNU’s binutils 2.9.1
package.

From the profiling information, we identified specific func-
tions in each application that are worth improving by ex-
ecuting them in specialized hardware implemented in the
OneChip reconfigurable unit. To port an application to
OneChip, a piece of code must have a long execution time
and perform memory accesses in a regular manner, as in
applications suitable for vector processors. In general, any
application that can be sped up by a vector processor, will
be also suitable for OneChip.

5.4 Analysis and modifications
Four applications met our requirements and were ported

to OneChip [3]. JPEG Image compression, ADPCM Au-
dio coding, PEGWIT Data encryption and MPEG2 Video
encoding. The encoder and the decoder for each one was
ported. The modifications to the applications are done by
hand (i.e. no compiler technologies are used). For the RFU
timing in each of the applications, we assume that mem-
ory accesses dominate the computational logic and that our
bottleneck is the memory bandwidth. If we also assume
that one memory access is perfomed in one cycle, the la-
tency of an operation will be obtained from counting the
total number of memory accesses performed by the opera-
tion. This timing approach may not be precise for highly
compute intensive operations, but it is not the case on these
applications.

6. RESULTS
The original and the modified versions of the eight cho-

sen applications were executed on the simulator. Each ap-
plication was tested with three different sizes of data, one
small, one medium and one large. Four experiments were
done for each application. Our first experiment was exe-
cuting the original applications with in-order issue (A) to
verify how many cycles each one takes to execute. As a sec-
ond experiment, we executed the OneChip version of each



Table 2: Speedup

Application Data size

Onechip
inorder
(A/B)

OneChip
outorder

(C/D)

Outorder
original
(A/C)

Outorder
OneChip

(B/D)
Total
(A/D)

JP
EG

e
nc

o
d

e Small 1.37X 1.34X 2.29X 2.25X 3.08X

Medium 1.36X 1.33X 2.29X 2.24X 3.05X

Large 1.38X 1.35X 2.33X 2.29X 3.15X

JP
EG

d
e

c
o

d
e Small 1.29X 1.20X 2.47X 2.29X 2.96X

Medium 1.29X 1.19X 2.52X 2.34X 3.01X

Large 1.25X 1.16X 2.53X 2.35X 2.93X

A
D

PC
M

e
nc

o
d

e Small 22.38X 17.04X 1.54X 1.18X 26.31X

Medium 26.25X 17.85X 1.62X 1.10X 28.94X

Large 29.92X 20.57X 1.56X 1.07X 32.02X

A
D

PC
M

d
e

c
o

d
e Small 18.32X 13.47X 1.60X 1.18X 21.55X

Medium 21.79X 14.81X 1.62X 1.10X 24.02X

Large 24.43X 16.27X 1.61X 1.07X 26.13X

PE
G

W
IT

e
nc

ry
p

t Small 1.46X 1.43X 2.09X 2.06X 3.00X

Medium 1.33X 1.36X 2.20X 2.26X 3.00X

Large 1.16X 1.24X 2.48X 2.65X 3.07X

PE
G

W
IT

d
e

c
ry

p
t Small 1.40X 1.42X 2.08X 2.11X 2.95X

Medium 1.28X 1.32X 2.27X 2.35X 3.00X

Large 1.13X 1.18X 2.62X 2.72X 3.08X

M
PE

G
2

d
e

c
o

d
e Small 4.69X 5.44X 2.02X 2.34X 11.00X

Medium 5.07X 5.70X 2.07X 2.33X 11.82X

Large 5.23X 5.91X 2.08X 2.36X 12.33X

M
PE

G
2

e
nc

o
d

e Small 1.16X 1.14X 1.90X 1.87X 2.16X

Medium 1.30X 1.26X 1.86X 1.81X 2.34X

Large 1.28X 1.24X 1.87X 1.81X 2.32X

application also with in-order issue (B). The third experi-
ment was executing the original version of the applications
with out-of-order issue (C). And the fourth and last exper-
iment was executing again the OneChip version, but now
with out-of-order issue (D). This way we could verify the
speedup obtained by using both features, the reconfigurable
unit and the out-of order issue, in the OneChip pipeline. All
output files were verified to have the correct data after being
encoded and decoded with the simulator.

The speedup obtained from the experiments is shown in
Table 2. The first column (A/B) shows the speedup ob-
tained by only using the reconfigurable unit. The second
column (C/D) shows the speedup obtained by introducing
a reconfigurable unit to an out-of-order issue pipeline. The
third column (A/C) shows the speedup obtained by only
using out-of-order issue. The fourth column (B/D) shows
the speedup obtained by introducing out-of-order issue to a
pipeline with a reconfigurable unit as OneChip. The fifth
column (A/D) shows the total speedup obtained by using
the reconfigurable unit and out-of order issue at the same
time.

Further analyzing the simulation statistics, we note that
there are no BLT instruction stalls (i.e. instructions stalled
due to to memory locks) in the applications, except for
JPEG. This means that either the RFU is fast enough to
keep up with the program execution or there are no memory
accesses performed in the proximity of the RFU instruction
execution. The second one is the actual case. It is impor-
tant not to confuse BLT stalls, which prevent data hazards,
with stalls due to unavailable resources, which are structural
hazards. If there are two consecutive RFU instructions with
no reads or writes in between, there will most likely be a
structural hazard. Since there is only one RFU, the trailing
RFU instruction will be stalled until the RFU is available.
This is not considered a BLT stall.

In the case of JPEG, there are CPU reads and writes
performed in the proximity of RFU instructions. These are
shown in Table 3. RFU instructions shows the total dynamic

Table 3: JPEG RFU instructions

Application Data size

RFU
instructions

(X)

BLT
instruction

stalls
(Y)

Stalls per
RFU

instruction
(Y/X)

RFU
Overlapping
(128 - Y/X)

JP
EG

e
nc

o
d

e Small 851 99531 116.96 11.04

Medium 5720 669204 116.99 11.01

Large 18432 2156508 117.00 11.00

JP
EG

d
e

c
o

d
e Small 851 104422 122.71 5.29

Medium 5720 702466 122.81 5.19

Large 18432 2264375 122.85 5.15

count of RFU instructions in the program, BLT instruction
stalls is the number of CPU reads and writes stalled after
an RFU write is executing (this was the only type of haz-
ard present). The next column shows the Stalls per RFU
instruction and the last one shows the average RFU instruc-
tion overlap with CPU execution. Note that 128 is the op-
eration latency for JPEG. We can see that for the JPEG en-
coder there is an overlap of approximately 11 instructions,
and for the JPEG decoder an overlap of approximately 5
instructions.

6.1 Discussion
In Table 3 we can see that there is an approximate overlap

of 11 instructions for the JPEG decoder. This means that
when an RFU instruction is issued, 11 following instructions
are also allowed to issue out-of-order because there are no
data dependencies. Then, even if the RFU issue and opera-
tion latencies are improved (i.e. reduced) by new hardware
technologies, the maximum improvement for this applica-
tion will be observed if the configuration has a latency of 11
cycles. That is, any latency lower than 11 will not improve
performance because the other 11 overlapping instructions
will still need to be executed and the RFU will need to wait
for them. The same will be observed for the JPEG decoder
with a latency of 5 cycles. For the rest of the applications
there is no overlap, so any improvement in the RFU latency
will be reflected in the overall performance.

ADPCM shows a fairly large speedup from OneChip. This
is because the application does not perform any data valida-
tion or other operations besides calling the encoder kernel.
The data is simply read from standard input, encoded on
blocks of 1000 bytes at a time, and written to standard out-
put, so the behaviour of the application is more like that of a
kernel. It is expected that ADPCM is the application with
the most speedup due to Amdahl’s Law [9], which states
that the performance improvement to be gained from using
a faster mode of execution is limited by the fraction of time
the faster mode can be used. ADPCM’s performance clearly
depends on the size of the data. The larger the data, the
less time the application reads and writes data, and most of
the time the RFU executes instructions. There are no BLT
instruction stalls in this application.

PEGWIT’s performance also shows a dependence on the
data size. However, different behavior is observed for the
RFU and the out-of-order issue features. The RFU shows
better performance with small data, while out-of-order is-
sue shows a better performance improvement with larger
data. The overall speedup with both features is greater as
the input data is larger. This is because for the decoder,
the application makes a number of RFU instruction calls
independent of the data size, and even if the data size for
each call is different, the latency is the same for every call.



With the encoder, almost the same thing happens. No BLT
instruction stalls were originated in this application.

MPEG2’s performance is also data size dependent. In
the case of the decoder, the larger the data, the greater the
performance improvement. This applies for both, the RFU
feature and the out-of-order issue feature. In the case of
the encoder, the performance improvement is shown to be
larger, as the frame sizes get larger. There is a a higher
performance improvement between the tests with small and
medium input data, which have a different frame size and
almost the same number of frames, than between the tests
with medium and large data, which have the same frame size
and different number of frames. In the application, there are
no BLT instruction stalls.

For all the applications, we can see that out-of-order issue
by itself produces a big gain (A/C). Using an RFU still adds
more speedup to the application. Speedup obtained from
dynamic scheduling ranges from 1.60 up to 2.53. Speedup
obtained from an RFU (A/B)ranges from 1.13 up to 29.
When using both at the same time, even when each tech-
nique limits the potential gain that the other can produce,
the overall speedup is increased. Dynamic scheduling seems
to be more effective with the applications, except for AD-
PCM, where the biggest gain comes from using the RFU.
This leads us to think that for kernel-oriented applications,
it is better to use an RFU without the complexity of out-of-
order issue and for the other applications it is better to use
dynamic scheduling possibly augmented with an RFU.

7. CONCLUSION AND FUTURE WORK
In this work, the behavior of the OneChip architecture

model was studied. Its performance was measured by exe-
cuting several off-the-shelf software applications on a soft-
ware model of the system. The results obtained confirm the
performance improvement by the architecture on DSP-type
applications.

From the work, a question arises whether the additional
hardware cost of a complex structure, such as the Block
Lock Table, is really necessary in reconfigurable processors.
It has been shown that the concept of the BLT does accom-
plish its purpose, which is maintaining memory consistency
when closely linking reconfigurable logic with memory and
when parallel execution is desired between the CPU and the
PFU. However, considering that only one of the four applica-
tions (i.e. JPEG) used in this research actually uses the BLT
and takes advantage of it, we conclude that by removing it
and simply making the CPU stall when any memory access
occurs while the RFU is executing, will not degrade per-
formance significantly on the types of benchmarks studied.
In JPEG there is an average of 11 overlapping instructions,
which is only 8.6% of the configuration operation latency
slot of 128. If the RFU is used approximately 20% of the
time in the JPEG encoder, the performance improvement by
the overlapping is only 1.72%. This is a small amount com-
pared to the performance improvement of dynamic schedul-
ing, which is approximately 56% (i.e. 2.29 speedup). Hence,
dynamic scheduling improves performance significantly only
when used with relatively short operation delay instructions,
as opposed to OneChip’s RFU instructions, which have large
operation delays.

Based on the four applications in this work, it appears to
be that the number of contexts does not need to be large
to achieve good performance improvement with an RFU.

In these applications, only one context was used for each
application and a considerable speedup was obtained. For
some applications, a second context could have provided an
increase in this improvement, but not as much as for the
first context. This is because, based on our profiles, we could
implement a different routine in a second context in the same
way the first one was, but it would not be so frequently used.

Another question that arises from this work is whether
the configurations are small enough to fit on today’s re-
configurable hardware, or if they can be even implemented.
Hardware implementations of DSP structures done in our
and other groups [22, 11, 12], and which have even been
shown to outperform digital signal processors, have been
proven to fit on existing Altera and Xilinx devices with a
maximum of 36,000 logic gates. Today’s FPGAs have more
than 1 million system gates available.

To estimate the silicon area of this version of OneChip,
we can start with the area of the processor that is required.
It will be much larger than the simple processor used in
the previous version of OneChip. A similar processor is the
MIPS R10000 processor core [15], which is a 4-way super-
scalar processor that supports out-of-order execution and in-
cludes a 32KB instruction cache and a 32KB data cache. Us-
ing a CMOS 0.35µm process, the die area is approximately
297mm2. We can estimate that as fabrication technology
approaches a 0.13µm process, the size of the processor core
would be approximately 41mm2. The OneChip-98 proces-
sor [10] includes a small processor core of insignificant area,
an eight-context FPGA structure with about 85K gates of
logic, and 8 MBytes of SRAM. In a 0.18µm process, this
was estimated to take about 550mm2. Scaling to 0.13µm
brings this to 287mm2 to which we can add the 41mm2

for the processor. The complete OneChip device would be
about 328mm2, which is quite manufacturable. Obviously,
it would be desirable to add more gates of FPGA logic and
as the process technology continues to shrink, this would be
easy to do.

We also conclude that dynamic scheduling is important
to achieve good performance. By itself it produces a big
gain for a number of applications. With kernel oriented
applications, the gain obtained by an RFU is bigger, but
with complete applications, the biggest gain is obtained from
out-of-order issue and execution.

Further investigation is necessary in the area of compil-
ers for reconfigurable processors. Specifically, a compiler
designed for the OneChip architecture is needed to fully ex-
ploit it and to better estimate the advantages and disad-
vantages of the architecture’s features. Developing a compi-
lation system that allows automatic detection of structures
suitable for the OneChip RFU, as well as generating the
corresponding configuration and replacing the structure in
the program, will allow further investigation of the optimal
number of contexts for the RFU. The compiler should be
able to pre-load configurations to reduce delays, and should
also make an optimal use of the BLT by scheduling as many
instructions in the RFU delay slot.

Also, future work should investigate the architecture of
the RFU. In our work we have assumed an optimal RFU. No
work has been done on what type of logic blocks or intercon-
nection resources should be used in the FPGA. The simula-
tor should be extended to properly simulate the FPGA fab-
ric and any configuration latency issues. Ye et. al. [23] have
modeled RFU execution latencies using simple instruction-



level and transistor-level models. However, their architec-
ture target fine-grain instructions, while OneChip targets
coarse-grain instructions.

At this point, it becomes difficult to make a detailed com-
parison between OneChip’s performance and other current
reconfigurable systems. This is because there are no stan-
dard application benchmarks available for reconfigurable
processors. However, other groups have reported perfor-
mance improvement results similar to the ones presented
in this paper, using Mediabench and SPEC benchmarks [2,
23]. Although Onechip shares certain similarities with other
systems [2, 19] that target memory-streaming applications
and focus on loop-level code optimizations, a standardized
set of benchmarks and metrics for reconfigurable processors
is needed to properly evaluate the differences between them.
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