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8 Abstract

9 Determining accurate genotypes is important for associating phenotypes to genotypes. De novo 

10 genome assembly is a critical step to determine the complete genotype for species for which no 

11 reference exists yet. The main challenge of de novo eukaryote genome assembly, particularly plant 

12 genomes, are repetitive DNA sequences within their genomes. The introduction of third generation 

13 sequencing and corresponding long reads has promised to resolve repeat-related problems. While 

14 there have been notable improvements, reads originating from these repeats are still creating 

15 errors because they introduce false overlaps in the assembly graph. This study focuses on analyzing 

16 the effect of repeats on de novo assembly and improving performance of existing de novo assembly 

17 algorithms by removing repeat-induced overlaps. First, we show the possible improvements in de 

18 novo assembly with removing repeat-induced overlaps. Then we propose several methods for 
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19 detecting and removing repeat-induced overlaps and evaluate their performance on several 

20 simulated datasets.

21 Introduction

22 The goal of de novo genome assembly is to reconstruct a species' genome sequence as completely as 

23 possible using a large number of relatively short sequences referred to as "reads" that are read 

24 from the species’ genome. While high-quality assemblies are already available for many species, 

25 many branches of the tree of life still need representative genome sequences. Recently, due to the 

26 popularity of long-read sequencing technologies, de novo assembly has once more become of 

27 interest. In this paper, we focus on improving the standard long read de novo assembly pipeline.

28 Most de novo assembly pipelines suitable for long reads follow the OLC paradigm: overlap-layout-

29 consensus. First, in the overlap step, pairwise alignments between the reads are identified. The 

30 output of the overlap step is a set of pairwise read overlaps that can be represented as a graph, 

31 where nodes are the reads, and edges indicate overlaps between the reads. This graph will be 

32 referred to as the assembly graph. Second, the layout step tries to identify bundles of overlaps that 

33 belong together. This is done by pruning unwanted edges from the graph such that it becomes more 

34 linear through several graph cleaning procedures. Once all procedures are done, the graph is split 

35 up into contigs. Finally, the consensus step of the assembly pipeline identifies the most likely base 

36 for each position. The layout step is arguably the most differentiating step between the various de 

37 novo assembly methods that exist. This can go from extremely simple, e.g. miniasm (1) to very 

38 intricate with many manually optimized rules and corresponding specific data types, e.g. DISCOvar 

39 (2).

40 A problem that has plagued de novo assembly since the beginning is interspersed repeats in the 

41 species’ genome sequence. The interspersed repeats are sufficiently similar sequences that occur in 
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42 two or more distinct genomic locations. The reads originated from any of the repeat instances 

43 introduce pair-wise overlaps with all instances of the repetition across the genome, which leads to 

44 cross-connections in the assembly graph. This will confuse the ‘layout’ step in the OLC assembly 

45 paradigm. Reads spanning the repetitive region can resolve the confusion by connecting the two 

46 sides of the repetitive regions together. While read lengths have been increasing dramatically for 

47 Third Generation Technologies (TGS), for the vast majority of eukaryotic species, the read length is 

48 still orders of magnitude smaller than the genome size. Moreover, it is unlikely that we will 

49 experience the luxury of chromosome-spanning reads like the ones observed for some microbial 

50 genomes soon (3–5). Finally, TGS reads are often still not (yet) long enough to span most of the 

51 repetitive regions in eukaryotic genomes.

52 In this paper, we analyze the effect of interspersed repeats on de novo assembly. Next, we show that 

53 removing repeat-induced overlaps can improve the performance of de novo assembly in different 

54 eukaryotic genomes, e.g. yeast, human, and potato. We demonstrate that a perfect classifier can 

55 increase the coverage of genome assembly by 0.1%, 4% and 7% in yeast, potato, and human 

56 chromosome 9, respectively. Finally, we also investigate some methods to detect and remove 

57 repeat-induced overlaps and compare their performance to the standard de novo assembly pipeline. 

58 Initially, we tried a baseline method and removed overlaps based on their degree in the assembly 

59 graph. Second, we trained a machine-learning model to detect and remove repeat-induced overlaps 

60 based on GraphSage node embeddings (6). While this method makes the overlaps set much smaller, 

61 it is not improving the assembly performance and the results are close to the standard de novo 

62 assembly pipeline. 
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63 Material and methods

64 Data

65 Reference sequences

66 In this study, we use the reference sequences of three species with differing degrees of repetitive 

67 sequences: S. cerevisiae (yeast) and S. tuberosum (potato), and H. sapiens (human) chromosome 9, 

68 which is the most repetitive chromosome in the human genome. We use high-quality available 

69 reference sequences as the source to simulate reads. We retrieve sequences from Genbank: yeast 

70 S288C genome assembly R63 (GCA_000146045.2), potato DM_1-3_516_R44 genome assembly 

71 version 6.1 (GCA_000226075.1), and human genome assembly T2T-CHM13v2.0 

72 (GCA_009914755.3). 

73 The potato reference sequence contains Ns to fill the gaps and unplaced sequences, complicating 

74 analysis. The Ns make problems for the evaluation step because we need a complete genome to 

75 compare the assemblies with it. We remove the unplaced sequences and the Ns to make the 

76 experiments straightforward. After removing Ns and unplaced contigs, we have one complete 

77 sequence for each chromosome.

78 Detecting interspersed repeats

79 We use Generic Repeat Finder (7) version 1.0 with the default parameters to detect interspersed 

80 repeats in these three reference sequences. 
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81 Simulating reads and genomes

82 We use aneusim (8) version 0.4.1 with default parameters to simulate diploid sequences (ploidy=2) 

83 close the reference sequences but with mutations and translocations. We use the simulated 

84 haplotype 1 and 2 sequences as genomes of two other individuals of these organisms for further 

85 analysis. 

86 We use SimLoRD (9) version 1.0.2 to simulate reads similar to PacBio with 40x of coverage (-c 40) 

87 from the reference, and the simulated sequences. Using simulated reads allows us to label the 

88 alignments between the reads since we know where the reads originated from.

89 Alignments and labeling

90 We use minimap2 (10) version 2.13-r858-dirty with the default parameters to find the pairwise 

91 alignments between the reads. We label each alignment according to the origination coordinates of 

92 the reads participating in it. If the origination coordinates of the reads participating in an alignment 

93 overlap, then we label the alignment as a normal overlap. Otherwise, we label the overlap as a 

94 repeat-induced overlap.

95 Genome assembly and evaluation

96 We use the miniasm (1) version 0.3-r179 with default parameters to assemble the sets of overlaps 

97 before and after intervening and removing the candidate alignments. 

98 We use compass (11,12) to evaluate the de novo assemblies. While compass reports many metrics, 

99 we only report coverage, validity, multiplicity, the number of contigs and the longest contig. 

100 Supplementary Table 1 list the metrics and explain them. Coverage is the most important metric for 

101 this study because it shows what percentage of the genome is missing in the assemblies and can 

102 show us how much extra sequence, we achieve by removing repeat-induced overlaps. Another 
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103 important metric is the number of contigs representing the assembly's contiguity. It is essential to 

104 achieve higher coverage while maintaining the contiguity of the assembly. 

105 Feature extraction and training classifier

106 We use the reference sequences and the first simulated haplotypes as the training set and the 

107 second simulated haplotypes for the test. To train the model, first, we need to extract features for 

108 each overlap based on the assembly graph. 

109 First, we create the graph using networkx (13) version 2.8.4. Then, we train a GraphSage (6) model 

110 on the assembly graph using the StellarGraph (14) library version 1.2.1 while the only attribute we 

111 add to the nodes is their degree. To learn the embeddings, we make a model which gets two nodes 

112 as input and predicts if there is a normal edge, repeat-induced edge, or no edge between them. Our 

113 model consists of three GraphSage layers with followed by a softmax layer for the prediction. We 

114 use categorical cross entropy as the loss function and Adam optimizer to train the network 

115 (learning rate = 0.001). This model contains 3 GraphSage blocks, which each contains 50, 50, 20 

116 GraphSage layers, respectively. Moreover, the network iterates each GraphSage block 20 times 

117 before delivering the output to the next block. We train the network for 20 epochs and the batch 

118 size is 50. Since GraphSage models are inductive, after training the model, we can use the output of 

119 GraphSage layers to get the node embeddings in other graphs. 

120 However, because the assembly graphs are huge, we need to subsample the graph for training and 

121 testing the model. We use the edgesampler module in the StellarGraph library to get the subgraphs. 

122 For yeast sequences, we take 20% of the nodes for training and 20% of the nodes for testing, while 

123 for human sequences, we use 2% of the nodes for training and 2% for testing.

124 Then, we use GraphSage embeddings to train a logistic regression classifier for separating repeat-

125 induced and normal overlaps. We use the first simulated dataset to train this classifier. First, we 
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126 create the assembly graph of the simulated dataset, and then extract the node embeddings using 

127 the previously trained GraphSage. 

128 We use the GraphSage model to extract node embedding for every node in the assembly graph, and 

129 we concatenate embeddings of the two nodes participating in an edge, to get embedding of that 

130 edge, which represents an overlap. After creating the embedding of each overlap, we use sklearn 

131 (15) version 1.0.2 to train a logistic regression classifier with parameter C=0.001 to detect repeat-

132 induced overlaps. We use 10-fold cross-validation to evaluate the classifier and select the model 

133 with the highest F1 score.

134 Finally, we use the GraphSage model to extract the embeddings of the second simulated dataset. 

135 Then we use the selected model from the previous step to remove overlaps classified as repeat-

136 induced. Next, use miniasm (1) version 0.3-r179 to assemble the remaining overlap set and 

137 compare the results with the standard genome assembly pipeline.

138 Results and discussions

139 Characteristics of interspersed repeats in yeast, potato, and human 

140 genomes.

141 In the first step, we used Generic Repeat Finder to detect interspersed repeats in the genome of 

142 yeast, potato, and human chromosome 9. Table 1 shows the statistics of the interspersed repeats 

143 available in these genomes. There are gaps in the potato reference sequence, which are indicated by 

144 Ns in the sequence. To simplify the analysis, we removed Ns from the reference sequence. 

145 Unresolved repeats are usually responsible for most Ns in the sequence. Consequently, in Table 1, 

146 we report fewer interspersed repeats for the potato genome than are present. The analysis is also 
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147 simplified for human chromosome 9 since it is separated from the rest of the chromosomes, 

148 thereby excluding the occurrence if interspersed repeats in the other chromosomes from the 

149 analysis.

150 Table 1: The amount of interspersed repeats in yeast, potato and human chromosome 9 genomes.

Organism Genome 
size

Number of 
repeats

Repeat content 
(%)

Yeast 12Mbp 4022 28Kbp (0.2%)

Potato 731Mbp 8582087 76Mbp (10.3%)

Human 
chromosome 9

150Mbp 625288 9Mbp (6%)

151

152 As shown in Table 1, the repeat content is much higher in human chromosome 9 and potato than in 

153 yeast. Around 10% of a potato genome is interspersed repeats, which shows the high repetitive 

154 content in that is a hallmark of plant genomes. Human chromosome 9 contains 6% interspersed 

155 repeats, but this number may be higher if the entire genome is considered. There are only 0.2% 

156 interspersed repeats in yeast's reference genome, indicating a simpler genome architecture.

157
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158

159 Figure 1: Histogram of the length distributions of interspersed repeats on chromosomes 9, potato, and yeast. In these 
160 three organisms, most interspersed repeats are smaller than 1000 bp. Despite this, all three organisms have repeats 
161 longer than 1000 bp, which complicates the de novo assembly process, as not all long reads will span the repeats 
162 completely. 

163

164 The distribution of interspersed repeats follows a similar pattern in the three test organisms. 

165 However, human chromosome 9 has many longer repeats than the other two organisms (see Figure 

166 1). As mentioned before, the count of repeats in the human genome can be even more than what is 

167 shown in Figure 1 because they might also be present in other chromosomes, which we did not 

168 consider in this study. Interestingly, although yeast has lower repeat content (see Table 1) than the 

169 other two organisms, it has some very long repeats. The longest repeats in the yeast genome are 

170 even longer than the potato's longest repeats. However, this is likely due to the fact that the potato 

171 reference sequence is incomplete and the Ns are representing unresolved repeats.
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172

173 Figure 2: Histogram of the number of times each repeat occurs in the genome. The majority of interspersed repeats occur 
174 less than 100 times, but there are repeats in potato and human genomes that occur more than 1000 and 10,000 times, 
175 respectively.

176 The number of times each repeat occurs varies from 2 to more than 1000 times in the three model 

177 organism (see Figure 2). There are interspersed repeats in Human chromosome 9 that occur more 

178 than 40000 times, without considering other chromosomes that these repeats might be present. It 

179 is worth noting that the smaller repeats occur more often through the genome (see Supplementary 

180 Figure 1).

181 The effect of interspersed repeats in genome assembly

182 Next, we inspected the effect of interspersed repeats in genome assembly based on simulated reads 

183 from the reference genomes. Since the simulator reports the coordinates where a simulated read 

184 originated from, it is possible to label the pairwise alignment of reads. If there is an alignment 

185 between two reads but the coordinates these reads are sampled from do not overlap, we 

186 considered the alignment as repeat-induced. Otherwise, we labeled the alignment as normal. Table 

187 2 shows the number of repeat-induced edges in yeast, human chromosome 9, and potato.
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188

189

190

191 Table 2: This table shows the number of repeat-induced and normal edges in the assembly graphs. Although human and 
192 potato have only 6% and 10% repetitive sequences in their genomes, they have 71% and 96% repeat-induced edges in 
193 their assembly graphs.

Organism Repeat-induced edges (%) Normal edges (%)

Yeast 189842 (8%) 2093297 (92%)

Potato 308658703 (96%) 12084513 (4%)

Human 
chromosome 9

63004592 (71%) 25221954 (29%)

194

195 Reads that originate from one of the interspersed repeats align with reads from all other instances, 

196 which creates repeat-induced edges in the assembly graph. The human and potato reference 

197 sequences have considerably high repetitive sequences. Therefore, in the human and potato 

198 assembly graphs, the majority of the edges are repeat-induced in their assembly graphs (see Table 

199 2). Subsequently, the reads originating from interspersed repeat regions also have a high degree in 

200 the assembly graph. Figure 3 shows the degree of the normal and repeat-induced edges in the 

201 assembly graphs. We define the degree of an edge as the sum of the degree of the two nodes 

202 connected by the edge. Figure 3 shows that most edges with a degree greater than 1000 are repeat-

203 induced.  

204
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(a) (b) (c)

205 Figure 3: This figure compares the histogram of the degrees of repeat-induced and normal edges in the assembly graphs 
206 of yeast (a), human chromosome 9 (b), and potato (c). The degree of an edge is defined as the sum of the degrees of the 
207 two nodes it connects. There is no significant difference between the degree of repeat-induced and normal edges in the 
208 yeast assembly graph. On the other hand, in human chromosome 9 and potato, most edges with degrees greater than 
209 1000 are repeat-induced.

210 To analyze the effect of repeat-induced overlaps in the assembly, we evaluated assemblies in the 

211 three model organisms before and after removing repeat-induced overlaps. In the normal scenario, 

212 we aligned the reads with minimap2 and assembled the genome with miniasm, reads, and the 

213 overlaps from the last step. In the removing repeat-induced overlaps scenario, we intervened in the 

214 assembly process, removed all the alignments labeled as repeat-induced, and used miniasm to 

215 assemble the remaining overlaps set. Table 4 shows the results of these two scenarios in the three 

216 model organisms. In all three datasets, removing repeat-induced overlaps improves genome 

217 assembly. In the yeast genome, removing repeat-induced overlaps lead to 6% more coverage. In the 

218 potato genome removing repeat-induced overlaps lead to 8% more coverage. This is expected since 

219 the potato genome is much more repetitive than yeast and suffers from more repeat-induced edges. 

220 In the human chromosome 9 dataset removing repeat-induced edges lead to 3% more coverage.

221 We tested whether removing a percentage of repeat-induced overlaps would still improve assembly 

222 performance in another experiment, where we removed 25%, 50%, and 75% of repeat-induced 

223 overlaps in the human chr9 genome and compared the final assemblies. It is clear from Table 3 that 

224 removing more repeat-induced overlaps improves coverage and validity and increases the length of 

225 the longest contig. However, the multiplicity, number of contigs and the assembly size is increasing 

226 after removing 25%, 50%, 75% repeat-induced overlaps and finally drops and get closer to one 
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227 after removing all of the repeat-induced overlaps. This means by removing a portion of repeat-

228 induced overlaps the assembler is replicating some of the repetitive regions which are valid 

229 sequences, but increases multiplicity and assembly size. Finally, with removing all of the repeat-

230 induced overlaps, the assembler can fully resolve these repetitive regions and merge the 

231 corresponding contigs together which results in multiplicity closer to one, assembly size closer to 

232 the reference size, and reduced number of contigs. In conclusion, comparatively to the standard de 

233 novo assembly pipeline, removing 25%, 50%, and 75% of repeat-induced overlaps produces more 

234 contigs. This means even removing a subset of repeat-induced overlaps accurately, without false 

235 positives, can improve de novo assembly performance.

236 Table 3: The performance of standard de novo assembly pipeline compared to de novo assembly after removing 25%, 
237 50%, 75% and all of the repeat-induced. These metrics are described in Supplementary Table 1. With removing more 
238 repeat-induced overlaps, the coverage of assemblies is increasing. However, with removing 25%, 50%, and 75% of the 
239 repeat-induced overlaps, the number of contigs, the assembly size and the multiplicity is increasing. Meanwhile, with 
240 removing all of the repeat-induced overlaps, the number of contigs drops significantly which shows the importance of 
241 removing all of the repeat-induced overlaps. 

Genome Method Coverage Validity Multiplicity Assembly 

size

# 

contigs

Longest 

contig

Baseline 0.850 9.17 1.075 150023015 1961 7250746

Repeat-

induced 

removal 

25%

0.858 0.913 1.092 154715454 2405 7254952

Human chr 9

(Genome 

size = 

150464616)

Repeat-

induced 

0.868 9.16 1.117 159261685 2673 8686274
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removal 

50%

Repeat-

induced 

removal 

75%

0.881 9.19 1.134 163756583 2806 8686376

Perfect 

repeat 

removal

0.907 9.23 1.031 152588360 924 27151259

242

243 Finally, we examined the sequence differences we got from removing the repeat-induced edges 

244 compared to following the normal genome assembly pipeline. The assembly with all repeat induced 

245 edges removed is covering additional 9476429 bp of the reference genome that is not covered in 

246 the baseline assembly. Of this additional sequence, 92% turns out to be interspersed repeat 

247 sequences. Conversely, the assembly with all repeat induced edges removed is also missing 

248 3293397 bp with respect to the baseline assembly. Again, 93% of these are from the interspersed 

249 repeat regions. In conclusion, the majority of the newly discovered regions as well as those lost 

250 when repeat-induced overlaps were removed come from repetitive regions of human chromosome 

251 9. It appears that repeat-induced overlaps are occasionally helpful in assembling repetitive regions, 

252 but that removing repeat-induced overlaps will result in the assembly of more repetitive regions 

253 overall.
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254 Training a classifier to remove repeat-induced overlaps

255 Since the sequence of the interspersed repeats is almost identical, we relied only on graph-based 

256 features to find and remove them. One of graph based features that can be informative to detect 

257 repeat-induced overlaps is degree. We expect the edges in the assembly graph representing repeat-

258 induced overlaps to have a high degree since they connect two reads from the repetitive regions 

259 and those reads also align to reads originating from all other instances of the repeat. Figure 3 

260 compares the degree of repeat-induced and normal edges in the assembly graphs. Based on Figure 

261 3, the number of repeat-induced edges with a degree greater than 1000 is more than normal edges. 

262 However, considering edges with a degree greater than 10000, the difference is much higher, and 

263 the number of repeat-induced edges is significantly more. Therefore, we intervened in the de novo 

264 assembly process and removed the nodes representing overlaps with a degree greater than 10000 

265 to see if removing them can improve the final assembly result. Table 4 shows the result of removing 

266 repeat-induced overlaps based on degree. No improvements are observed using this method over 

267 standard assembly pipelines. Since the yeast assembly graph does not have any edge with degree 

268 greater than 10000, we did not apply this method on it.

269 Table 4: The standard de novo assembly pipeline performance compared to perfect repeat-induced overlap removal and 
270 various repeat-induced overlap detection methods. The metrics are described in Supplementary Table 1. In all of the 
271 three test organisms, removing all of the repeat-induced overlaps improve the performance significantly, compared to the 
272 baseline scenario. In the degree method, edges with degree greater than 10000 are removed from the assembly graphs. 
273 Since the yeast assembly graph has no edge with a degree greater than 10000, we cannot apply the degree method to the 
274 yeast dataset. On the other hand, training and testing the machine-learning models require huge memory and is not 
275 achievable on the potato dataset. Our results show that, unlike the perfect repeat-induced removal scenario, these 
276 methods cannot improve the standard de novo assembly pipeline. The machine learning method results in fewer contigs 
277 compared to the standard de novo assembly pipeline, while it is losing some coverage.

Organism Model Coverage Validity Multiplicity Assembly 

size

# 

contigs

Longest 

contig

Yeast Baseline 0.973 0.943 1.014 12726687 33 958030
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Machine-
learning

0.933 0.934 1.004 12174134 29 1297877(Genome size 
= 12144833)

Perfect 
repeat 
removal

0.961 0.934 1.003 12531324 25 1162078

Baseline 0.811 0.878 1.082 150646955 2143 6179208

Degree-
based 
removal

0.811 0.879 1.084 150834800 2173 5430347

Machine-
learning 
removal

0.691 0.939 1.006 111503649 722 2659552

Human chr 9

(Genome size 

= 150617247)

Perfect 
repeat 
removal

0.907 9.23 1.031 152588360 924 2715125

9

Baseline 0.631 0.945 1.068 522035794 12794 315461

Degree-
based 
removal

0.629 0.945 1.069 520480215 12796 315461

Potato

(Genome size 

= 

(731207187)
Perfect 
repeat 
removal

0.701 0.941 1.008 549511126 11805 315508

278

279 Another way to detect repeat-induced overlaps is to train a machine learning-based classifier based 

280 on graph-based embedding. First, we generated separate train and test datasets to evaluate this 

281 method fairly. We simulated two reference sequences based on the reference genome of the three 

282 organisms we analyze. After that, we simulated reads from these simulated reference sequences 
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283 and performed a pairwise alignment between the reads. We used the reference genome and the 

284 first simulated read set to train and test the GraphSage embedding model. To train the GraphSage 

285 embedding, we select subgraphs using StellarGraph’s edgesplitter method. Then we labeled each 

286 pair of nodes in the subgraph as 0, 1, 2 where 0 represents normal edge, 1 repeat-induced edge, and 

287 2 no edge. Table 5 shows the performance of the GraphSage embedding model on train and 

288 validation data. Interestingly, the model is not efficient in separating the three classes of edges in 

289 the yeast dataset, while it is performing well on human chromosome 9 dataset. 

290 Table 5: This table shows the performance of the GraphSage embedding model and the logistic regression classifier. We 
291 use the edgesplitter module in the StellarGraph library to sample subgraphs for the train and test datasets. The size of 
292 subgraphs is 20% and 2% of the actual yeast’s and human’s assembly graphs, respectively. To test the performance of the 
293 logistic regression classifier, we use a 10-fold cross-validation. Interestingly, the human GraphSage and logistic regression 
294 models perform better than the yeast ones, showing more significant differences between the repeat-induced and normal 
295 edges in the human assembly graph.

GraphSage model

Metric Train accuracy Validation accuracy

Yeast 0.5356 0.5387

Human 
chromosome 9

0.7653 0.7646

Logistic regression classifier

Metric F1 score 
(SD)

Accuracy 
(SD)

Precision 
(SD)

Recall (SD)

Yeast 0.761 
(0.007)

0.936 
(0.002)

0.788  
(0.008)

0.740  
(0.007)

Human 
chromosome 9

 0.887 
(0.001)

0.911 
(0.001)

0.915 
(0.001)

0.868 
(0.001)

296

297 Next, we used the extracted embeddings of overlaps in the second simulated dataset to train a 

298 classifier for separating normal and repeat-induced overlaps. Since the dataset is imbalanced, and 

299 the graphs have more normal edges in yeast genome and more repeat-induced edges in human, we 

300 up-sampled and down-sampled repeat-induced edges in yeast and human datasets, respectively. 

301 Following that, we trained a logistic regression classifier and evaluated it with 10-fold cross-
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302 validation (see Table 5). While the GraphSage embedding model failed to separate the three classes 

303 of edges in the yeast dataset, the logistic regression classifier achieved impressive results in 

304 separating repeat-induced and normal edges using the same embedding model on the second 

305 simulated dataset. Interestingly, the GraphSage model performed much better on the human 

306 chromosome 9 assembly graph and achieved 76% validation accuracy.

307 Last, we extracted the embeddings of overlaps in the last dataset and used the classifier trained in 

308 the previous step that achieved the highest F1 score to predict the repeat-induced overlaps. After 

309 removing the overlaps predicted as repeat-induced, we assembled the remaining overlaps and 

310 evaluated the results (see Table 4). The performance of yeast assembly drops after removing the 

311 overlaps predicted as repeat-induced. That means that the disadvantage of losing some of the 

312 normal edges in the yeast assembly graph because of prediction errors is more than the advantage 

313 of removing repeat-induced overlaps. Since the yeast genome does not have many interspersed 

314 repeats and repeat-induced edges (see Tables 1 and 2), this is not surprising. On top of that, the 

315 only feature we assigned to the nodes before training the GraphSage model is the degree of nodes, 

316 while in the yeast assembly graph, the degree of repeat-induced and normal edges is not 

317 significantly different (see Figure 3.a). However, the length of the longest contig is increased, and 

318 the number of contigs is reduced, which shows that the method solved the previously challenging 

319 repetitive regions. 

320 Similar to yeast, human chromosome 9 assembly performance is lower than baseline after 

321 removing overlaps predicted to be repeat-induced (see Table 4). The coverage is ~12% lower and 

322 the assembly size is ~40Mbp smaller than the actual chromosome 9 size. The number of contigs is 

323 smaller than all the other cases, and the multiplicity and validity are close to one, which means the 

324 assembly and reference map are nearly one-to-one. As a result, the machine learning method is 

325 successful in removing some essential repeat-induced overlaps, which enables the assembler to 

326 merge the contigs that were split apart before. However, the model also incorrectly predicts some 
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327 critical normal overlaps as repeat-induced, resulting in decreased coverage and assembly size when 

328 they are removed. Despite our best efforts, we were unable to apply the machine-learning method 

329 to the potato dataset due to its large size and memory requirement. 

330 Conclusion

331 In this study, we study the effect of interspersed repeats on de novo genome assemblies of three 

332 organisms, i.e., yeast, human chromosome 9, and potato. The reads originating from interspersed 

333 repeat regions align with those from all instances. Therefore, it is possible to label the alignments 

334 with not overlapping originating coordinates as repeat-induced overlaps. Here, we analyze the 

335 effect of repeat-induced overlaps in the assembly graph and de novo assembly. At last, we 

336 investigate some strategies to detect and remove repeat-induced overlaps.

337 Interspersed repeats make up approximately 1, 6, and 10% of the yeast, human chromosome 9, and 

338 potato genomes, respectively. Although the repeats are causing only 1% of the overlaps in the yeast 

339 dataset, they correspond to 76% and 96% % of overlaps in human and potato datasets. Since most 

340 of the overlaps in the assembly graph of these two genomes are repeat-induced, this is the most 

341 challenging problem to solve in genome assembly.

342 To investigate the effect of repeat-induced edges in the assembly graph on the final assembly result, 

343 we removed all of the repeat-induced overlaps and compared the results to the normal de novo 

344 assembly pipeline. We observed that removing repeat-induced overlaps improved coverage and 

345 continuity of the assembly, even in yeast with much lower repetitive content. In potato, which has 

346 the most repetitive contents among the test organisms, removing repeat-induced edges leads to a 

347 9% improvement in coverage.
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348 We investigate if it is possible to detect repeat-induced overlaps based on the degree of their 

349 corresponding edges in the assembly graph. We define the degree of an edge as the sum of the 

350 degree of two nodes connecting the edge. As shown in Figure 3, most of the repeat-induced 

351 overlaps in human chromosome 9 and potato assembly graphs have more than degree 10000. 

352 Therefore, we remove edges with more than degree 10000 and see the effect of it on the final 

353 assemblies. As shown in Table 4, there is no improvement in the assemblies after removing edges 

354 with degree greater than 10000, and the final assemblies are very close to the standard assembly 

355 pipeline.

356 We also attempt to train a classifier to detect repeat-induced edges based on graph-based features. 

357 Although we achieved some improvement after removing repeat-induced edges with the classifier, 

358 the results are far from the results when all of the repeat-induced edges are removed. This shows 

359 great potential for a follow-up project to detect and remove repeat-induced overlaps accurately. 

360 We suggest that detecting and removing repeat-induced overlaps can be one a smart edge filtering 

361 method during assembly. Our attempt to train a classifier that accurately detects and removes 

362 repeat-induced overlaps did not achieve significant results. However, our results show that a 

363 perfect classifier that removes all the repeat-induced overlaps can make impressive improvements 

364 in the genome assembly process.
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