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SUMMARY

Rotation, a magnetic field and any other symmetry-breaking agent raise the
degeneracy of the resonant frequencies of stellar oscillations. Here a perturbation
method is presented for calculating the resultant frequency modification caused by
rotation and an internal magnetic field. The shift in the average multiplet frequency is
also addressed. Only axisymmetric magnetic fields are considered explicitly, though
the axis of symmetry is not constrained to coincide with the rotation axis. A short-
wavelength asymptotic analysis derived from ray theory is also presented. The effects
on high-order solar acoustic modes of various hypothetical angular velocity and
magnetic field configurations are investigated using both methods of calculation. The
asymptotic formulae provide a good estimate for the frequency splitting of five-
minute modes when the field and the rotation vary sufficiently smoothly. On the other
hand, a localized magnetic field, for example at the base of the convection zone,
produces a characteristic oscillatory perturbation to the eigenfrequencies. We present
our results in a form that we hope will be useful for comparison with future
observations, and discuss them in the light of currently available splitting data.

1 INTRODUCTION

Resonant oscillations provide a probe of the interior of a star. Considerable effort is already being put into investigating the use
of helioseismic data to improve our spherically symmetric models of the Sun and to learn about its internal rotation. One of the
most intriguing aspects of the Sun is its magnetic activity, made manifest for example by surface features such as sunspots, whose
number and distribution vary with the solar cycle. Little is known about the magnetic field in the interior, although it is widely
believed that the field is maintained by a dynamo, with its seat possibly located near the base of the convection zone. It has also
been suggested that the Sun’s core may contain a strong magnetic field, perhaps the remnant of a primordial field. There is
therefore considerable interest in the possibility that solar oscillations can be used to probe the magnetic field in the solar
interior. Ultimately, limited information about the field structure in other stars might also be obtainable.

A magnetic field modifies the equilibrium structure of the star (including, in general, the shape of the surface), which changes
the frequencies of oscillation. In addition, there is a direct effect on the frequencies arising from the perturbation to the Lorentz
force caused by the wave as it propagates through the fluid. Similarly, there are indirect perturbations from modifications to the
equilibrium state and direct perturbations from any other symmetry-breaking agent.

Before we can begin to make inferences about the field of any star we must be able to calculate the eigenfrequencies of a
model with a given magnetic field. The principal aims of this paper are two-fold: first, to set out a method for calculating the effect
on the eigenfrequencies of a prescribed large-scale magnetic field; and secondly to investigate the effect on different modes of
oscillation for a variety of field geometries, presenting the results in sufficient detail for initial comparisons with future
observations to be possible. We also discuss currently available solar observations in the light of our calculations.
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The normal modes of oscillation of a spherically symmetric stellar model have radial displacement
Re[&(r)Y/(6,¢) exp( — iw?)], (1.1)

where Y/" is a spherical harmonic of degree / and azimuthal order m, (r, 6, ¢) are spherical polar coordinates with respect to
arbitrarily orientated axes with origin at the centre of the star, and ¢ is time; w is the corresponding eigenfrequency. By
symmetry, & and w cannot depend on m (the value of which is dependent on the orientation of tlie axes) and so they are
determined only in terms of / and the order, n, of the mode. If a weak axisymmetric perturbation is introduced, then to a first
approximation the displacement eigenfunction has the same form as before, provided the polar axis is taken along the axis of
symmetry; & is still essentially independent of m, but the degeneracy of the eigenfrequencies is raised. Hence frequencies of
modes of like /and » but different m are split. For the well-studied case of a star rotating slowly with angular velocity Q(r, 8), it is
well known that

”‘J Q(0)| Y sin 6d6

0

Wy ™ Wi =

J | Y/ sin 646
0

to first order in Q, where Q(0) is a depth average of Q which depends on n and I (cf. for example, Cowling & Newing 1949;
Ledoux 1951; Hansen, Cox & Van Horn 1977; Gough 1981; Brown 1985). To this level of approximation the average
frequency for given n and [ is unchanged by the rotation, though in general a weak perturbing force will shift the average
frequencies as well as splitting the frequency multiplets.

Observations of the splitting of solar five-minute p-mode frequencies were first reported by Claverie et al. (1981), and subse-
quently by Gough (1982) and Hill, Bos & Goode (1982) (in both cases using the data of Bos & Hill 1983), Duvall & Harvey
(1984), Duvall, Harvey & Pomerantz (1986), Brown (1985), Libbrecht (1986) and Brown & Morrow (1987). At fixed frequency
the penetration depth of the oscillations decreases as / increases, while as | m| increases at fixed / the mode is more nearly
confined to the equatorial region. Thus when Duvall & Harvey (1984) measured the splitting between sectoral modes (m= + 1)
for a large number of values of /, it was possible to infer the variation with depth of the angular velocity near the equatorial plane
(Duvall et al. 1984).

The splitting w,,;,,— w ,;, can be separated into one component that is odd in m and another that is even. The odd component
arises from advection (and from Coriolis force, if the system is viewed from a rotating frame of reference), the effect of which
changes sign when the direction of propagation of the wave is reversed. Centrifugal force, which does not distinguish between
waves propagating in opposite directions, and any large-scale magnetic field or non-spherically symmetric distortion of the
equilibrium state of the star, affect only the even component. Hence the data of Duvall & Harvey (1984) contain no information
about magnetic fields. The possibility of inferring the latitudinal dependence of the rotation, and of observing a magnetic effect,
is raised by the more complete data on the m dependence presented by Brown (1985, 1986), Duvall et al. (1986), Libbrecht
(1986) and Brown & Morrow (1987). From the odd component of such data one might hope to determine the latitudinal and
depth dependence of Q. Then, provided Q does not have a significant component that is antisymmetric about the equatorial
plane [which from equation (1.2) does not contribute to the first-order frequency splitting], one may calculate the centrifugal
contribution to the even component of the splitting. With this knowledge one can then hope to use the observed even component
to make inferences about the magnetic field or other departures of the Sun’s structure from spherical symmetry.

The consideration of the effect of a large-scale magnetic field on stellar oscillations is not new. References to early work may
be found in the article by Ledoux & Walraven (1958; see also Unno et al. 1979 and Cox 1980). This work was advanced
considerably by Goossens (1972), who included in his calculation the effect of the distortion from sphericity of the equilibrium
state, which is of the same order as other leading terms in the magnetic perturbation to the eigenfrequencies. The work was
simplified by specializing to a homopycnic stellar model; in general the calculation of the distortion is by no means trivial. We
follow a method developed by Simon (1969) and Lebovitz (1970), and employed by Smeyers & Denis (1971), for calculating
rotational distortion. In the magnetic context, some results using this method for a realistic solar model have previously been
presented by Gough & Taylor (1984). When the field strength does not vanish at the surface of the star, singular perturbation
theory must be used (Goossens, Smeyers & Denis 1976). We shall not include such complications; this seems not unreasonable
in the case of the Sun, though it would probably not be adequate for considering stars with much stronger large-scale surface
fields, such as some Ap stars [see the work by Biront et al. 1982; Roberts & Soward 1983; Campbell & Papaloizou 1986]. We
also consider only briefly the effect of fibril fields (see Bogdan & Zweibel 1985; 1987; Zweibel & Bogdan 1986; Gough &
Thompson 1988b).

Of course the Sun not only has a magnetic field but is also rotating. Even when (as we shall suppose) the magnetic field is
axisymmetric, the two perturbations combine in a non-trivial way unless the axes of rotation and magnetic symmetry coincide
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(Dicke 1982a). Motivated by Isaak’s (1982) suggestion of the possible detection of a magnetic effect in the data of Claverie et al.
(1981), Dziembowski & Goode (1984, 1988) and Gough & Taylor (1984) obtained asymptotic estimates for the combined
effect of rotation and a magnetic field for a realistic solar model. The present work is a further advance on these investigations, in
that we include all terms up to second order in Q and in magnetic field strength B, and we use numerical eigenfunctions rather
than asymptotics. We also derive new asymptotic estimates valid when //n is not necessarily small.

Rotation and a magnetic field not only split the frequency multiplet but also shift the average frequency of each multiplet. The
shift arises both from the direct effect of the perturbed inertial and Lorentz forces on the waves, and because the unperturbed
centrifugal and Lorentz forces change the spherically symmetric component of the structure of the star. The former cause was
investigated asymptotically by Gough & Taylor (1984) and similar results were obtained for a plane-parallel stellar envelope
model by Roberts & Campbell (1986). We present a more comprehensive discussion in Section 7.

Finally we discuss the available observational data in the light of our results.

2 THE PERTURBATION METHOD

To seek modes of oscillation with time dependence e~ */, where w is constant, we suppose there exists a frame %, rotating with
respect to an inertial frame with steady angular velocity ., in which the structure of the non-oscillating star, its magnetic field
B(r) and its velocity field v(r) are independent of time. We shall refer to this as the equilibrium state. For the purpose of
elucidating the perturbation method, and in this section only, we express ., v and B in units of Q, QR and B, where Q; is a
characteristic angular velocity (say the equatorial photospheric value of Q ), Bis a characteristic magnetic field strength and R is
the radius of the star. Further, we define dimensionless parameters ¢ =Q (GM/R?)~'/2 and 6 = B(u,GM?*/R*)~ /> which are
presumed to be small compared with unity. Here M is the mass of the star, 4, is the magnetic permeability of the stellar material
(which we presume to take the constant, vacuum value; in cgs units x,=4x), and G is the gravitational constant. For example,
using solar values and taking B=10°G, ¢=4.4x 107 and 6~2.7x 1073 It is supposed that Q_, v and B are nowhere much
greater than unity. We shall assume that the velocity is wholly due to rotation about an axis parallel to R, so v+, X r=Q xr,
say.

Following Lynden-Bell & Ostriker (1967) one may easily derive the linearized adiabatic oscillation equation in frame &
under the Cowling approximation (Cowling 1941), which results from neglecting the Eulerian perturbation to the gravitational
potential. Expressing the pressure p, density o, adiabatic sound speed c, position r and angular frequency w in units of GM?/R*,
M|R?,(GM/R)', R and (GM/R?)'/2, respectively, and ignoring viscous forces, the oscillation equation is

LE+pw’E=coME+ 2 NE+ O2BE, (2.1)
where

LE=—V[(p—pc*)V-&E—&-Vp]+pV(V-&)— & V(In p)Vp (22)
ME=—2i0(Q X E+V-VE)

NE=p[2R X(v-VE)—2Q %X (& Vv)— & V(v-Vv)+(v-V)2E] (2.4)
.99§=—mg——)(VxB)xB—(VxB')xB—(VxB)xB' (2.5)

and B'=V x (& X B) is the linearized Eulerian perturbation to B in the approximation of infinite conductivity. The real part of
&(r) exp( - iwt) is the displacement of a particle from its equilibrium position r. The quantities p, 0 and c? refer to the
equilibrium state.

In applying boundary conditions we shall adopt the approximation that there is a surface, which we shall call the surface of the
star, above which lies an isothermal atmosphere in hydrostatic equilibrium. In our explicit application to the Sun, we apply the
boundary condition in the chromosphere, our isothermal atmosphere being a representation of the high-temperature corona.
The boundary condition is obtained by matching the eigenfunctions of our problem to the causal adiabatic oscillations of the
atmosphere. The details are presented in the Appendix. For oscillations with frequencies well below the critical acoustic cut-off
frequency w, (see, for example, Deubner & Gough 1984) at the chromospheric temperature minimum, the eigenfunctions in the
interior of the star are quite insensitive to the temperature and position of the base of the corona. Indeed, for many practical
purposes it is adequate to assume that pressure essentially vanishes on the surface. Then, as the magnetic field is presumed not to
penetrate the surface, continuity of stress implies that the Lagrangian pressure perturbation, and consequently pc2V- &, must
vanish. (We have indeed confirmed that, to the accuracy quoted, the numerical results presented in this paper are unchanged
when this simpler boundary condition replaces that derived in the Appendix.) In addition we require that & be regular atr=0.

A typical p-mode solution of the non-rotating, non-magnetic star can be represented in the form

Er)=&¢r)= 2 cnbunlr), (2.6)

m=-1
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where, with respect to spherical polar coordinates (7, 6, ¢),

m YT n(r) aY7T
=&y ) B L 22 27
&.un(r) [E(r) O e 2% (2.7,
The amplitude functions & and # depend on n and /, but not on m. We omit subscripts for clarity. We choose to norinalize the

surface harmonics such that

n 2z
J dOJ d¢ | Y(6, ¢)* sin =1, (2.8)
0 0

and we normalize & such that £(R)=1.

Lorentz and centrifugal forces distort the shape of the star. We wish to represent the oscillation eigensolution of the rotating,
magnetic stellar model 9 as a perturbation to the non-rotating, non-magnetic solution. Our expansion utilizes the fact that for
the unperturbed state (¢=0, d = 0) the operator %, together with its associated boundary conditions, is very nearly Hermitian,
and we wish to preserve this property for the distorted star. To this end, we find it convenient, following Simon (1969) and
Lebovitz (1970), to map each point r in the distorted model IR to a point x in the spherical volume occupied by a corresponding
spherically symmetric stellar model 3, by means of a transformation (r, 6,¢)~(x, 6, ¢) with:

x=[1+ &2hg(r)+ 82hy(r)]r + O[max(e?, 62)] (2.9)

chosen in such a way that x= R can be regarded as the surface of M. {In what follows we shall drop terms small compared with
&2 or 62, without explicitly writing ‘ + O[max(e?, 62)]".} The precise forms we choose for the functions hq and 4, which depend
on Q and B, respectively, are given in Section 3.1. (The choice is by no means unique. Indeed, it is not even necessary to perform
the transformation; it is merely a preference to retain simplicity in the boundary conditions at the minor expense of adding extra
terms to the governing differential equations.)

The equilibrium quantities p, o, c2 can be expanded about their values in M,, so for example
p(r)=po(x) + &2pg(x) + 67py(x), (2.10)

where p,(x) is the equilibrium pressure distribution in M. Writing vectors with respect to the unit base vectors e,, e, e, of the
true spherical polar coordinate system (r, 6, ¢), we define operators V,,, V and . according to

d 10 1 0
Ve e,a—x‘i'eg;a—o+e¢ma—¢, (2.11)
VO'E=X2S::H p {a—i(xzsin n9e,-§)+l£9 (xsin 0e9-§)+%(xe,-5)} (2.12)
and
Z0&=—Vollpo(x) - Po(x)C%(x)]Vo & =& Vopot+poV(Vor &)= & Vo(ln po)Vopy. (2.13)

(Note that the partial derivatives with respect to 6 and ¢ are now taken at constant x and not at constant r.) Then the function
&,(x), defined by

Y7 + n(x) Y7

E(x)=&(x)e,+ n(x) 20 € sin 0_é¢— e, (2.14)
[where & and 7 are the same functions as in equation (2.7)], and its associated eigenfrequency w satisfy the equation

Zo&o+ powsE,=0. (2.15)
The operator . may be written

LE=LE+ Lok +0° 2,8, (2.16)

where £, and & are perturbations due to Q and B, respectively. Their forms are made explicit in Section 3.1. Only the leading
terms of operators .#, # and # are required. Thus equation (2.1) and the accompanying boundary conditions become

L+ pyw’E= 8J/{05+52(-A/0‘f9“in2)§+62(3?0"fB‘PBwZ)E,
E regular at x=0,

e, Ve, &)—xe, E=O[max(¢’,6°)] atx=R, ) (2.17)

where « is defined in the Appendix.
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We seek a solution that is a small perturbation about a mode &, of the unperturbed equilibrium state:
E=E5(x)+A&(x)) ow=wtAo, (2.18)

where AE and Aw are O[max(e, 62)]. The mode &, is expressed as a linear combination of the degenerate eigenfunctions &,
as in equation (2.6). Accidental degeneracies between modes of different » and / are ignored in the present treatment; if such
degeneracies exist it would be necessary to include the additional modes in the sum [c¢f. equation (2.6)]. Substituting equation
(2.18)into (2.17) yields

(Lot Powd)AE= = 20000(Aw)Eo+ ewotloE o+ XNy~ Lo~ Powi)§o+ 6 (B o~ Ls— psd)Eo— po(Aw)E,

—=2000o(AW)AE + ew o MAE+ e(Aw) M E,. (2.19)

It is a straightforward matter to demonstrate by partial integration that

<E:Im‘(fo+Pow<2))A§)=J

x=

PocoVo (AE) € dS, (2.20)
R
where angular brackets (...) denote
J ... x* sin 0dxd6dg,

x<R

namely integration over the volume of M. In deriving this equation one uses equations (2.13) and (2.15), the fact that p,, o, and
¢, are functions only of x, and the property that pocf,Vo -&,.-(x) is essentially zero at x = R. We now take the scalar product of
&7, with equation (2.19), where the asterisk denotes the Hermitian conjugate. At the surface of the star V,-(A&)= O[max(e, 62)],
00Cs <R pycdy and, provided o is less than and not nearly equal to w,, the eigenfunction is evanescent in the subsurface
layers; thus (as can be confirmed by numerical integration) one can ignore surface integrals after application of the divergence
theorem, and obtain to a good approximation:

2wo<Po§:1m'Eo>Aw= 5wo<§:1m'v/”050>+ 82<§:lm'(=/Vo‘f9‘ing)§o>+ 62(§:zm‘( %0_33‘103(03)50}‘(Aw)2<POE:Im'§o>
_2wko<Po§:1m‘A§)+ 5wo<§:1m'v/”o(A§)>+ 5Aw<§:1m"/”050>, m=-1..,1 (2.21)

To be specific we now select coordinates such that =0 is the rotation axis. Let (x, 8, ¢') be another set of spherical polar
coordinates with 8’ = 0 being the axis of symmetry of the magnetic field. Let the angle between the two axes be f. Define

o o QYT p(x) OYT
= Y, A 7 T 222
Eulm §(x) 1 (0,¢),7](X) ao sm0 a¢ ( )
The vectors &, and &,,, are related by
]
Enlm"—' z d(ml)m'(ﬂ)gnlmy (2-23)

m=—1

where the coefficients d'n,{8) relate spherical harmonics under rotation (Edmonds 1957). We choose the origins of ¢ and ¢'
such that the planes ¢' =0 and ¢ = 0 coincide. Then the d',(8) are real. From the symmetry properties of d',(8) one also has

gnlm= Z d(rlt)m’(ﬂ)énlm' (2‘24)

m=-1

A leading approximation w; to Aw is obtained by neglecting terms on the right of equation (2.21) that are small compared
with ¢ or 6% namely the O(&?) term and the last four terms. Noting that by normalization the integral / defined by

I=<p0l§nlm|2> (2.25)
is independent of m, one obtains
w,c=Ac+DBD’c, (2.26)

where ¢ has elements c,, [the coefficients in equation (2.6)], D is a matrix with elements D,,,, = d'",(f8) and DT is its transpose,
and the matrices A and B are diagonal (this is implied by the axisymmetry of the magnetic and velocity fields, as may easily be
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seen by noting that the ¢ dependence of Y7 is simply e™?) with elements

Amm = (21(00)_ ! 8(00(6:1,,, "’”0 gnlm)’

Bm’m’= (2Iw0)—162<£:1m"( B 0 _XB_ png)Erxlm’>' ' (2‘27)

Hence w;, ¢ are the eigenvalues and eigenvectors of the matrix equation (2.26). [This is the eigenvalue problem of Dicke
(1982a), Gough & Taylor (1984), Dziembowski & Goode (1985, 1986) and Kurtz & Shibahashi (1986).] From equation (2.26)
one sees that, to this level of approximation, if d =0

§0=§nlm’ wlemm’ (m= _l""7 l) (2.28)
whereif e=0
§0= Enlm” w1=Bm'm'5 (ml= - l’-"’ l) (229)

When ¢ is much larger than 82, one can expand the solutions of equation (2.26) in powers of £ ~! 2, obtaining to first order.

;= Amm + z (Dmm')zBm’m" (230)

with the eigenvector ¢ being close to the corresponding eigenvector of the non-magnetic state. This approximation is valid
provided there is no element A, say, which differs from A, by as little as O(62/¢). One should be aware that the validity of
the approximation (2.30) may therefore depend on n and /. Notice also that even though the splitting viewed from an inertial
frame may be dominated by rotation, it does not necessarily follow that rotation dominates magnetic effects in the frame & in
which we must work.

Finally, we include all the remaining second-order rotation terms for the case &> ¢ [Numerical results presented in Section 5
support the belief that for the Sun these terms are small for /<100. For the Sun, therefore, it is probably adequate to use
equations (2.26), (2.27) and, if circumstances permit, equation (2.30).] We restore the five terms in equation (2.21) that were
previously neglected, by making O(e) approximations €§, and ewg, to A§ and Aw. The function &, is obtained by solving
equation (2.19) up to terms of order &:

L&+ powiE = — 20000001 Enimt 00t o E i, (2.31)
subject to &, being regular at x=0 and
e, Ve, &) xoe, & =xe°§  atx=R (2.32)

(see Appendix). We consider the calculation of &, in Section 3.2. It is necessary, as a solubility condition, to evaluate the
perturbed eigenvalue, also just to O(¢) thus:

War=(2100) Emm M o & im)- (2.33)

Substituting these first-order corrections into the previously neglected terms on the right-hand side of equation (2.21) yields an
improved approximation to Aw, which in the rotating frame . can be written

W=y +Amm +Z IDmm’lzBm’m'+ 82<€:1m.(‘/V0 - fﬂ_pﬂwg)gnlm>+ £2(2(00)_1((091)2 - 821_](091(/0()5:1,,,' §1>
+ 82(21)— 1<§:1m"/¢0§1>+ 32“’91(21‘00)_1<E:Im‘¢//{0§n1m>+ Ol[max(e?, 62)]. (2.34)

In the inertial frame the frequency is augmented by mQ, due to the kinematic transformation from the rotating frame .
Asis well known, when Q is a function of ralone, g, is proportional to m: explicitly

R
Wor = —mgf+%,{o [(&- 17)2+(L2—2)172]§2(r)pr2 dr,

= - mQ,+ m(Q)), (2.35)

where L2=(I+1).

We refer to the term —(21w,) ' 0% E (L + 00 35)E ) in B, as the distortional contribution to B,,,,, and we call that part
of B,,, arising from %, the direct contribution. (We shall also refer loosely to these contributions as the distortional and direct
magnetic effects on the eigenfrequencies.) Similarly, we call the term —(21w,)~'eX & (Lot Powd) & in equation (2.34) the
distortional effect of rotation. All the other second-order rotational terms in equation (2.34) we refer to as the direct rotational
contribution.
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3 METHOD OF CALCULATION

Having established the ordering of the expansion we now find it convenient to restore dimensions. The equations of Section 2
still hold, but with ¢ and ¢ formally set to unity, provided the right-hand side of equation (2.5) is divided byu,. In addition, we
specialize to toroidal magnetic fields of the form

d
B= — P, .
[O, 0, a(r) 10 (cos 6) ], (3.1)
with respect to coordinates (7, 6, ¢) now about the axis of symmetry of B, poloidal fields of the form
1db d
[k(k+ 12 pycos 0 2L L pcos 6), 0, (32)

and angular velocity distributions that are independent of latitude: that is,
Q=Q(r)e, (3.3)

where e, is a unit vector along the axis of rotation. Here P,(cos 6)is a Legendre polynomial in cos 6 of degree k, and g, b and Q
are functions of » which will be specified for the numerical calculations below. The axis of symmetry of the magnetic field need
not coincide with the axis of rotation. In that case, in order for the frame & to exist, as we have presumed, Q must be uniform
where B# 0. When the axes of B and  coincide, Q need be uniform only where b# 0. Of course, there are more general
configurations of B and @ for which frames % exist, but we do not consider them here.

The Lorentz force due to a field of the form in equations (3.1) or (3.2) may be written as

F=p(r) 3 | £i)Pi ful no0) (34)

where the sum is over even values of A only. For each value of 4, the term in the sum (equation 3.4) gives rise to a perturbation of
each of p, p, ¢, etc. proportional to P;(cos 8). To O(|B|?) each value of A may be considered separately, and its contributions to
Zpand pgwe call &5, and pg, P;(cos 0), respectively. The contribution to matrix element B,,,, from %5, and pg, is

21(1)0 (Enlm fBl+pB).})lw0)£nIm>' (3.5)

The angular integrals may be performed analytically. It may easily be shown that expression (3.5) is equal to an integral over r
(which is independent of m) multiplied by Q;,,,, where

Qmj Py(2)[P(2)f dz / J [PI(2) dz. (3.6)

Thus the distortional contribution to B,,, is a sum of terms each proportional to Q;,,, for A=0, 2,..., 2k. Similarly, for a field
of the form in equations (3.1) or (3.2) the direct contributions to B,,,, is also a sum of terms proportional to Q,,,, (1=0,2,..., 2k).
Thus we may write

2k
Bmm= Z ITagQ).Im, (3-7)

A=0 (even)

mag

where I;°® depends on n and /, and the strength and geometry of the magnetic field, but not on m. The integrals I3 must in
general be computed numerically.

The centrifugal force is also of the form (3.4), with k=1 for latitudinally independent rotation. [More generally, if Q(r) in
equation (3.3) were replaced by Q(r, )= 2?',, 1Q;(r) cos’6, the appropriate value of k would be k= N+ 1. The sum would be over
even values of A if Q were symmetric or antisymmetric about the equatorial plane, and over both odd and even values in the

more general case.] The second-order rotation terms may be written in the form

Z I;.mQ).lma (3-8)

A=0,2

and equation (2.34) may be written as

w=w0+Amm+ Z I}.Qi.lm' (39)

A even
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It is a useful property of the integrals Q,,, that

1

Y {d(ml)m'(ﬂ)}zQ2jlm= P,{cos B)Qjim (3.10)

m=-1

Thus, when equations (2.34) and (3.9) are valid,
IA=I;0'+PA(COS ﬂ)];nag< (3.11)
Another useful property is that when /> 4

szlmz%;gzj)! P,(m|L), (3.12)

where
L={I{I+1). (3.13)

(See Appendix 2 of Edmonds 1957.) Thus the coefficients I, are simply related to the splitting coefficients quoted by observers
(Duvall, Harvey & Pomerantz 1986; see also Section 8).

Many of the terms in equations (2.27) and (2.34) are straightforward to calculate. In particular, w, is the familiar linear
splitting term due to advection and the Coriolis force in frame &, given by equation (2.35) in the case of latitudinally
independent rotation, and mQ_ is the kinematic effect of the rotation of the frame: wq; + mQ_ is simply the right-hand side of
equation (1.2). The evaluation of the terms involving /4, and #,, which arise from the direct effect on the wave of the perturbed
centrifugal and Lorentz forces, presents no difficulty in principle. The remaining second-order rotation terms in equation (2.34),
excluding the distortion terms and those involving &, sum to { w g, 2/ w,.

3.1 Non-spherically symmetric distortion

We follow closely the method of Lebovitz (1970). In the presence of a small perturbing force F the equations of hydrostatic
equilibrium of the self-gravitating star are

Vp=poV®+F=pg+F, (3.14)
V2@ = - 47Gp, (3.15)
with

®—-0as|r|— o, (3.16)

where @ is the gravitational potential and g the gravitational acceleration. To the order to which we are working the distortion
due to the Lorentz and centrifugal forces may be considered separately. To illustrate the method we consider the Lorentz force.
For the fields considered this takes the form of equation (3.4). To order |B|? each value of A can be considered separately. The
transformation (coordinate 2.9) is chosen to be

x=[1+ hg(r)P,(cos 9)]r, (3.17)
with 6 and ¢ unchanged, and the equilibrium quantities p, p, etc. expanded in the form

P =po(x)*+ pi(x)P(cos 6). (3.18)
Working throughout with respect to the original base vectors (e,, e, €4) the gradient operator is

V=V,+Vg, (3.19)

where V is given by equation (2.11) and

d a dP, o @ hyP, 0
V,—e % 2, @0, 9 <. . 2
m=e (hu) P e (h’“ do or ao) © xsin 0 96 (320)
The divergence is
V'§=Vo‘§+vm'e, (3-21)
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where V, is given by equation (2.12) and

1 d
VBA'E=;2_ZX

dhg

d m m_ g2l om, APy dy Y]
(xh) By — (€)Y =2 2 PV, = I “E P+ by =0

20 dx 90 (3.22)

The operator .£ is given by
fe=fof+fsa§ (3.23)
where .%, is given by equation (2.13) and
L E=V[(051c0+200CoCs)PiVo" &+ & Vo(psPy)] = Vo(PsiP)Vo  E+ VoloocoV i &+ &V mpo)

+V5(00caVo E+ EVopo) = (Vspo)Vo & = (Vopo)V 51 & = & Vo(05:Pi/ 00)VoPo — (& Vo In 00)Vo(PsiP2)

—(&'VoIn pg)V 5,09 (& Vi In po)Vopo. (3.24)

The photospheric distortion amplitude /,(R) is such that the stellar surface maps to x =R, but there remains much freedom

in choosing k(7). We determine A ; by choosing surfaces of constant x to be surfaces of constant pressure (i.e. pp;=0) and by
taking hg,(x)=hg(R) for x> R. Expressing V and V? in terms of x, equations (3.14) and (3.15) together yield three scalar
equations for each non-zero value of 4, enabling @, 05, /s to be found. However, hydrostatic equilibrium is insufficient to
determine the spherically symmetric component of the structure. For =0 the horizontal component of equation (3.14) is
automatically satisfied, and provides no constraint relating @0, 05, and /. Consequently, only two non-trivial equations
remain. As the spherically symmetric distortion does not affect the fine splitting, however, we postpone consideration of this
issue until Section 7.

For 4 #0, an inhomogeneous differential equation and boundary conditions for A(x) are obtained by matching ® on to the
vacuum potential in x> R and requiring that the transformation (2.9), (3.17) be regular at x = 0. In terms of u, = xhg(x):

Hu,= 9(x) 0<x<R

u A}bounded as x—0 (3.25)
du -x d
x 0y l—1u=———[x— x)+(A+2 x}asx*R—
(A=1u, M) dxfea( )+ (A+2) falx)
where
d* |8mpex’ 2| d (A—1)A+2)
=—s+ e Bt e— .
= [ Ma, x| @ o (3.26)
4x’ d AMA+1)x 1 d| ,d
G=—— -— + - — — s 2
Gng,Oo [fm dx(xf”)] GMq, for GMq, dx X dx(xffu) (3.27)
qo(x)=M_lJ 47oo(x)x* dx. (3.28)
0

This determines u; and hence hz,. The choice pg; = 0 implies

_ox |, _d
pBA_GMqO fa dx(xfm) > (3.29)

and the perturbation to the sound speed is

dlny O
=1 — ~7BA
Cpa zco[(aln /0),, 1} o (3.30)

where y is the adiabatic exponent (91n p/d1In p), the partial derivative being taken at constant specific entropy s. The
perturbation £, to £ is then given by equation (3.24) in terms of s, 05, and cg;. Then

Lp=2Lp, Pp=20pP;. (3.31)

The component of the distortion resulting from the centrifugal force is calculated in an analogous manner.
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Note that the transformation r—x affects the calculation only of the distortion terms. Therefore, in the other terms we
continue to work in untransformed space if confusion is unlikely. In addition, we shall often use r instead of x to denote a radial
dummy variable of integration even in the distortion terms.

3.2 Perturbation to the eigenfunction

The first-order perturbation &, to the eigenfunction £ due to rotation has previously been calculated for g-modes and toroidal
modes in the special case of uniform rotation (Berthomieu et al. 1978; Provost, Berthomieu & Rocca 1981). Indeed, these
authors have taken the expansion to an even higher order than we require. However, here we allow Q to vary with depth. The
equation (2.31) for &, is

L&+ powiE = —200wwa1 &0t wo (3.32)

with the boundary conditions that &, be regular at r=0 and the condition (2.32) at r=R. To the solution &, may be added any
multiple of &,. (This merely affects the amplitude of the solution and, of course, leaves the frequency perturbation unchanged.)
‘We normalize our solution by imposing the conditionr-§, =0 at r=R.

For any &, r-V x £, & =0. Further, since &, is a non-trivial (i.e. spheroidal) mode of a spherically symmetric star, r-V X &§,=0.
Thus equation (3.32) implies

Po@or-V X & =worV X (M,E,). (3.33)
Hence, as has been pointed out by Simon (1969) and others, §; must in general have a toroidal part:
& =&+&r (3.34)

where &1 is toroidal and & is sphéroidal (see, for example, Cox 1980). For simplicity we consider only latitudinally independent
rotation. From equations (3.32) and (2.3)

&= 2 &)

A=It1

1 oYy oy}
O’ . b - 9’ .
( sin 6 g ao) (3.35)

where 6 =0 is now taken to be the rotation axis, and

-1

_2iQ[ (14 myr=m) ]
[(21+1)(21—1)] [&+(1+ 1))

-2iQ {(l+m+1)(1_m+1) 2
(Do | (@irn)2i+3) | 70

lw,
(3.36)

Cia=

Had Q been considered to vary with latitude, say

Qk(r) cos*6,

1

Q=

TM=

then the same procedure would in general have produced for each knon-zero {, for A=1—k—1,1-k+1,1-k+3, ..., [+k+1
(with the indices 4 bounded below so that A>|m]), by repeated use of standard identities for cos @ P} (cos 6) and
sin 6 d[P*(cos 6)]/d0 (see Abramowitz & Stegun 1964).

The spheroidal part &g may be found to be of the form

- Y, ns 9Y7
= Y —_— — .
&s [gs(r) 7 ms(r) 90 ’sin 6 Y > (3.37)
where &g and 7 satisfy the differential equations
dé&g 2 dnp ) Y 2mQ rw} 2[mQ —(wq, + mQ,)] rod
=+|U+=+ o =-S—"=(E+n)+ — .
dr ( rar s roc ) s L*w, ¢ (&+) Wy c? g ' (3:38)
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+ U—lr——;)(§+ n)] (3.39)

ldlnp dlnp

3.4
y dr dr (3.40)

Again, had Q been considered to take the form =Q,(r) cos*6, then each k-component would in general have given rise to extra
terms in &g, of the form (3.37) but with /replaced by A=1~k, I - k+2, ..., [ +k.
The contributions from &, to equation (2.34) are

<p0§’:,m'51>=L polrNEsE+Linsn)r’ dr (341)

and (using the fact that the velocity v is parallel to e)
<§:lm'~//{051>=<§f'~//(0§nlm>*=2’",[(9 =Q)po(EsE+ Lzﬂsﬂ)rz dr—2m[Qpo(Esn+ns&+ ’7577)"2 dr

4% | (1+1)U+2) | om® | o HI-1)
+J @y [(21+1)(21+3)[1 (1+1)2}(5 A i)

m

7)[§+(l+ 1)17]2} r* dr. (3.42)

1-

Note that since wg, is proportional to m, so are &g and #s. Thus, apart from an m-independent contribution to equation
(3.42) from & in the third integral on the right-hand side, the direct (i.e. excluding distortional terms) second-order rotational
contribution to equation (2.34) is proportional to m2. Thus when expressed in terms of the coefficients Q;,,,, which are of order
unity even for large values of /, the direct second-order contribution to the coefficients I, typically tends to become more
important as / increases.

Note also that &, is independent of Q, as it should be. Also, although equation (3.42) has an explicit dependence on Q , it can
be shown that the total direct second-order rotational contribution to the frequency does not depend on @, nor does the
distortional term. Indeed, this must be so, because the frequency depends on €, only through the first-order kinematic
contribution —mQ,.

4 SHORT-WAVELENGTH ASYMPTOTICS

Before presenting numerical results, we discuss how to obtain asymptotic estimates of the frequency splitting due to the
distortion of the equilibrium state, to advection by rotation and to the perturbed Lorentz force. Our treatment generalizes that of
Gough & Taylor (1984), who presented asymptotic formulae appropriate only to low-degree modes. Our results reduce to theirs
if one formally sets L/w to zero. Throughout this section, the zero subscripts on quantities relating to the non-rotating, non-
magnetic state are dropped. ’

It is useful to record the asymptotic formula for the high-frequency p modes of a non-magnetic non-rotating star:

R 2.2\1/2
n(n+a)=J 9(1—%) dr (4.1)

W C wr

where r, is the lower turning point, at which (1 — L?c?/w?r?) vanishes. The quantity « is a weak function of w, and to a first
approximation can be regarded as being constant. This formula can be derived either by applying the Liouville-Green (JWKB)
method to equation (2.15) and its boundary conditions (e.g. Deubner & Gough 1984; Gough 1989), or by regarding the mode as
a constructive interference pattern of resonant propagating waves (e.g. Christensen-Dalsgaard et al. 1985; Gough 1986b). In the
discussion that follows we adopt the latter view. Thus we consider the mode to be a superposition of locally plane waves which,
in the spherically symmetric hydrostatic case, have wavenumber

2 2\1/2 2 2 1/2
0’ L L m m
=k k. k)= &= =5 2
k=(k,, k,, k) [(Cz r2) , (r2 rZSin20) ’ rsin 0:| 2
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and satisfy the ordinary acoustic dispersion relation
w?=kc?, (4.3)

where k=|k| and now L =/+3. (This k is distinct from the integer k used to define the magnetic geometry elsewhere in the
paper.)

4.1 Perturbation theory

The phase integral (4.1) is simply the integral of k= wc™! along a ray, and satisfies a variational principle, related to Fermat’s
principle, which under small variations of the equilibrium state permits the integral to be evaluated correct to first order without
perturbing the expressions for k, and k in equation (4.2), provided that the perturbation to the frequency resulting from the
perturbation to the dispersion relation (4.3) is taken into account in the evaluation of k, This is analogous to the use of zero-
order eigenfunctions in Section 2 to calculate first-order perturbations. The result is that any perturbation dc to ¢ modifies the
phase integral by an amount proportional to the magnitude of the perturbation weighted by the time the (unperturbed) wave
spends in the corresponding part of the star (Gough 1989). Thus, for example, in the case of a spherically symmetric
perturbation dc to the sound speed, the fractional frequency change is given by

dw_dw_1 J’* dc kdr_ljké_c(l_chz)_l/zg

—=—=_] === , 44
o o S, ckc S) c o’r c (44)
where

R L2C2 -1/2 dr
S(w/L)=J (1— exe] (4.5)

and we have used equations (4.2) and (4.3) for the unperturbed rays.

This simple result can evidently also be obtained by formally perturbing equation (4.1) to first order (c¢f. Christensen-
Dalsgaard 1986; Christensen-Dalsgaard, Gough & Perez Hernandez 1988). However, when the perturbation is not spherically
symmetric, the ray theory must be considered in somewhat more detail. Rays of the unperturbed star that constitute a mode of
degree /and azimuthal order  all lie in planes through the centre of the star the normals of which are at an angle 6 =sin~'(m/L )
out of the equatorial plane of the spherical polar coordinates (e.g. Keller & Rubinow 1960; see also Gough 1986b). For
perturbations dc that are axisymmetric with respect to the coordinate axis, all such planes are equivalent. In such a plane define
polar coordinates (r, §). Then cos §=cos © cos ¢, with a suitable choice of the origin of ¢. The effect of a perturbation
Oc(r, cos 0) on the eigenfrequency is then given by equation (4.4) but with dc/creplaced by its average over ¢:

172 * (4.6)

—wse € (cos’® —cos®6)

oc 1 r” oc . 1 r’se oc dcos 6
T = dé== g
c 2n), ¢ 4

Note that in the limit of large /, the weight function

[P(cos 0)] / J [P/ ()] du

-1

[for example in the definition (3.6) of Q;,,] reduces to the weight function 7 ~!(cos?® — cos? 8)~ '/ in equation (4.6). This is one
way of approaching the result (3.12).

For non-axisymmetric perturbations, dc/c must also be appropriately averaged over ¢.

Equations (4.4)-(4.6) are valid for a genuine scalar perturbation dc that is not associated with a distortion of the surface of the
star. If the star is distorted, as is generally the case when rotation or a magnetic field is present, due account must also be taken of
the change in the time it takes the wave to travel over the modified distance. Thus, if x =r{1+ A(r)] is a modified radial
coordinate chosen (as in Section 3) to be constant on surfaces of constant pressure, and dc is the perturbed sound speed at fixed
x, then in addition to the perturbation (4.4) there is a contribution

S 1% L’*\d, .. I} . L\ """ ar
L=EJ' |:(1"_ E(rh)+ sah||1-——=53 - (4.7)

2.2
w n wr wr w'r C

to dw/w. (Here r rather than x has been used as the dummy integration variable.) This formula can be derived by formally
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perturbing equation (4.1) at constant ¢(x). Once again, the overbar denotes an average over the rays, of the form of equation (4.6)
[with A replacing (dc/c)].

4.2 First-order rotational splitting

In a frame rotating rigidly with the angular velocity Q(r, 8) (for some r and ), locally the acoustic waves still satisfy
asymptotically the local dispersion relation (equation 4.3); the waves are simply advected by the rotational flow. Thus, on
transforming back to an inertial frame, the dispersion relation becomes

(w—mQ P =k2c?, (4.8)

which, to first order in Q/w, is mathematically equivalent to a relative perturbation dc/c to the sound speed of magnitude mQ/w.
Substituting into equation (4.4), this yields for the first-order rotational frequency perturbation

R _ 2 2\-1)2
agw=%J 9(1—“) dr. (4.9)

2.2
w'r c

rl

where, once again, the overbar denotes the average (4.6) over co-latitude (c¢f. Christensen-Dalsgaard 1988). This formula
generalizes the result obtained by Gough (1984 ) for sectoral modes.

4.3 Lorentz splitting

A weak slowly varying magnetic field B modifies the dispersion relation (equation 4.3), which becomes
0=k} +vi)) (4.10)

where v, =v5 sin’y, v, =(u,0)” 1/2Bis the Alfvén speed, u, being the magnetic permeability of the vacuum, and 1 is the angle
between the magnetic field and the direction of propagation of the wave. As with advection by rotation, the influence of the field
can be represented as a sound-speed perturbation, except that now the magnitude of the perturbation depends on the direction
of propagation of the wave. The perturbation to the frequency arising directly from the influence of the Lorentz force on the
wave is once again given by equation (4.4), which becomes

R7p - \2 2 2\-1/2
MJJ (Bsin y) (1_Lc) dr (4.11)

o S), 2uopc’ w’r’ c

It is straightforward to show that for a toroidal field (0, 0, By), equation (4.6) becomes

cos © 2.2
—_— dcos 6
Bsin y)=— B2 |1-—5E ; 412
(Bsin y) nJ_Cose ¢[ 0’r}(1-cos°0) | (cos’® — cos )" (412)

and for a poloidal field (B,, B,, 0)

cos © 2.2 2 2 20y 2 '
(B sin w)z=1J [L2c233+(1-—L2c2COS® cos 0) Bi} dcos 6 (4.13)
r

0’r’ 1-cos’0 (cos’® —cos’9)'*

T ) -cos®
(Gough 1989). Thus, in particular, the direct contributions I3 to the integrals I can be approximated by
R 2 2.2 2 2\-1/2
. L d
Er=l 4 g1+ ES R |1-ES) 4 v (4.14)
28}, mopc 'r w’r c

for the toroidal field (3.1), where the coefficients Fy(k, A) and F,(k, A) come from evaluating the angular integrals in equation
(4.11) in the limit of large /. In this case, for example, they may thus be found by equating coefficients of m/L and of Lc/wr in the
identity

L (- 1A 1[°° [d : (m*|L}) ¢’ dcos 0
+ F 1 =_ — 1- . 415
2 ky {1 d wzrz} 2HA[2)12 Pim/L) n OPk(COS 6) sin’f ’r* | (cos’® —cos)'* ( )

Aeven —cos ©
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Similarly, for the poloidal field (3.2),

Igi,zgr {(b’/r)2 ( r’c ) L Kk+)p/rF L2¢? FZ] (I_L%Z)-“z dr

Fyl1+ F —
28 popc’ 0 o' popc’ 0’r ’r c

, (4.16)

n

where the prime denotes differentiation with respect to the argument r. A few values of F,, F; and F,, which come from
evaluating the angular integrals in equation (4.11) in the limit of large /, are given in Tables 1 and 2.

5 ROTATIONAL SPLITTING: NUMERICAL RESULTS

The main focus of this paper is the effect on oscillations of magnetic fields. However, as has been shown, to decipher any
magnetic effect from the even component of the observed splitting it is necessary to be able to calculate the second-order effect
of rotation. Accordingly, we have calculated the effect of rotation for a few latitudinally independent angular velocity profiles.
The equilibrium solar model we have used for the computations in this and the following section is Model A of Christensen-
Dalsgaard, Gough & Morgan (1979).

The magnitudes of the individual second-order rotational splitting terms in equation (2.34), apart from the distortional term,
depend on the angular velocity of the reference frame &% and on the normalization of §. However, writing their sum as
o+ 020, such that 09 and w() are independent of m, the coefficients w(y) and w5, are also independent of frame
and normalization. The distortional splitting is w{"Q,,. Tables 3-5 give the rotational splitting coefficients for three
examples of Q(r). The first is an angular velocity (Fig. 1) which is qualitatively similar to the equatorial rotation rate inferred
from the splitting of sectoral-mode frequencies by Duvall et al. (1984). The second is uniform rotation at the observed surface
equatorial rotation rate Qg inferred by Howard & Harvey (1970). The third is

_|Qs(R/? r>r.=07R

U= auRirf  rer,

(5.1)

as considered by Gough & Taylor (1984). Although it is almost certainly inappropriate for the Sun, it is included here as an
example of a rotation somewhat different from the first two, being faster throughout the radiative interior.

The effect of centrifugal distortion, wg”, is found to vary little with degree and is approximated well by the asymptotic
estimate. The small variations from one mode to the next are due primarily to the differences in w,, for w§"/w, varies quite
smoothly. Because the star is oblate, the traveltime along the ray path is greater for a sectoral mode, which is confined near the
equatorial plane, than it is for a mode that propagates in other latitudes. Hence the frequency of a sectoral mode is lower than
those of other modes of the same order and degree. As Q,,, is least for |m|= 1/, we therefore expect wg" to be positive. This
might not be the case if the internal distortion was a more complicated function of depth, as is evident from the discussion
pertaining to magnetic distortion in Section 6.

Gough & Taylor (1984) argued that for low-degree modes w, is generally of order Q and w§” is of order (Q*R?/GM)w,,

while the other second-order terms, arising from first-order terms in the equation of motion, are of order Q2/w, and are

Table 1. Coefficients F, and F; required for equation (4.14), for a T T T T
toroidal field of the form (3.1) with k=1 or k=2.

E =1 k=2
A=0 A=2 A=0 XA=2 X=¢4
Fo 2/3  -2/3  6/5 6/7  -72/35
F, -1/2 -2 -1/2 1 —4/3

Table 2. Coefficients F,, F, and F, required for equation (4.16), for

a poloidal field of the form (3.2) with k=1 or k=2. %0 02 04 = 06 08 10
r
k=1 k = 2 . . .
Figure 1. Rotation rate Q(r) (expressed as a cyclic frequency
A=0 A=2 X=0 \X=2 A= 04 measured in #Hz) used to compute the results in Table 3, plotted as
a function of the fractional radius. The rotation law is qualitatively
Fo 2/ 3 ‘2/ 3 6/ 5 6/ 7 "72/ 35 similar to that inferred from frequency splitting by Duvall et al
F, -1/2 1 -1/2 -2 1/3 (1984). For comparison, the dashed horizontal line is at the value of
F, 1/3 2/3 1/5 2/7 18/35 v,, the observed surface equatorial rotation rate.
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Table 3. Rotational splitting coefficients computed for the rotation depicted in Fig. 1. All columns except the
first two are in nanohertz.

I yy(mHz) (mlwg+Q.)/27  wd/2nr  Asympt. wd*/2r  wif/2r  wi/2x

2 3.57 442. 43.6 43.6 0.061 -0.032
3 3.49 437. 429 428 0.025 0.095
4 3.54 430. 43.6 43.7 0.003 0.187
6 3.50 415. 43.5 43.5 -0.014 0.244
8 3.59 407. 4.7 4.7 -0.016 0.242
10 3.54 407. 4.2 4.2 -0.034 0.315
15 3.59 411. 45.1 45.0 -0.095 0.559
20 3.49 418. 4.1 43.7 -0.182 0.917
25 3.52 424. 4.7 4.2 -0.276 1.29
30 3.53 431. 45.2 44.6 -0.361 1.64
40 3.51 443. 45.8 49 -0.456 2.02
50 3.59 450. 48.8 47.8 -0.485 2.05
85 3.53 455. 50.1 48.8 -0.520 2.28
80 3.58 456. 51.6 49.8 -0.631 2.72

Table 4. Rotational splitting coefficients computed for uniform rotation at a rate of 442.5 nHz. All columns
except the first two are in nanohertz.

Il vy(mHz) (m7lwg+0.)/2r wd/2nr  Asympt. wd/2r  wi/2r  wid/2n
2 3.57 441. 47.6 47.2 0.055 <0.010
4 3.54 441. 47.5 47.2 0.037 0.066
6 3.50 441. 474 47.0 0.020 0.141
8 3.59 441. 48.8 484 0.002 0.208
10 3.54 442, 48.3 47.8 -0.016 0.283
15 3.59 442. 49.3 48.8 -0.059 0.453
20 3.49 442. 48.4 47.6 -0.105 0.644
25 3.52 442. 49.3 48.3 -0.148 0.815
30 3.53 442, 50.0 49.0 -0.191 0.986
40 3.51 442, 51.2 49.8 -0.278 1.34
50 3.59 442, 54.7 53.2 -0.355 1.64
65 3.53 442. 56.4 54.4 -0.485 2.16
80 3.58 442, 58.0 55.4 -0.598 2.61

Table 5. Rotational splitting coefficients computed for the rotation given by equation (5.1). All columns except
the first two are in nanohertz.

I yy(mHz) (m7'wg+Q.)/2r  wf*/2r  Asympt. wd/2r  wid/2r  wid/on
2 3.57 668. 48.2 48.8 0.254 -0.583
4 3.54 686. 48.0 48.8 0.208 -0.455
6 3.50 684. 48.1 48.5 0.158 -0.273
8 3.59 684. 49.5 49.9 0.139 -0.205
10 3.54 682. 48.8 49.3 0.098 -0.043
15 3.59 680. 49.6 50.1 0.025 0.244
20 3.49 874. 49.1 49.0 -0.202 1.14
25 3.52 668. 49.8 49.5 -0.427 2.03
30 3.53 661. 50.2 50.2 -0.789 3.47
40 3.51 651. 52.1 52.5 -2.51 103
50 3.59 602. 62.4 85.2 -10.0 40.2
85 3.53 548. 59.9 61.3 -7.00 28.2
80 3.58 524. 59.9 61.5 -6.20 249
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therefore negligible for flve-mmute modes. Our results bear this out for low-degree modes, for the angular velocities we have
considered. Indeed, w2} is much smaller than 0o for all values of / considered for the first two examples. For the third, w+
reaches a magnitude comparable with that of wg™ for /=50 before decreasing with higher /. One should note, however, that
although the term w@) is typically small, the individual contributions to it are not necessarily so; indeed they are frame-
dependent [though w3} is not]. The above argument might suggest that for five-minute modes the second-order advection terms
should always be small compared with the distortion term. However, while the distortional effect is proportional to Q,,, (for
latitudinally independent rotation), which is of order unity, the other second-order rotation terms include a natural m?
dependence which causes w{3} and w{)} to be greater, at higher degree, than the above argument might suggest.

Note that if the rotation is uniform (Table 4), then the second-order distortional frequency perturbation can be greater than
the linear rotational perturbation in frame %. In this case, the distortional contribution should be included in matrix A (equation
2.27) because this contribution will have as important an effect as the linear rotation terms on the mode structure as determined
by equation (2.26) for the rotating, magnetic star.

6 MAGNETIC SPLITTING: NUMERICAL RESULTS
Distributed core field

We have applied the method described in Sections 2 and 3 above to calculate the effects of fields of the form (3.1) and (3.2).
Gough & Taylor (1984) considered fields of the form (3.1) in which

a(r)=(1+0)1+ 07 1)°By(r/ro {1 = (r/roP)”  (r<rp), (6.1)

with 0=107,+1, and a=0 elsewhere. The function a(r) has a maximum at r =r,,=(1+ 0)~!/*r,. This field approximates that
invoked by Dicke (1982b) to explain the Princeton solar oblateness measurements (Dicke 1976, 1979, 1982b; see also Dicke,
Kuhn & Libbrecht 1985, 1987; Kuhn, Libbrecht & Dicke 1985). Fig. 2 shows quantities which the asymptotics suggest are
important. [Except for an angle-dependent factor, p,, is the magnetic pressure. More precisely, p,,=a2/(2u,).] These are
displayed for k=2, r,=0.7R and B,=10" G. For this field, Figs 3-5 show I;"*/w,, I}*/w, (Figs 4 and 5) and the separate
contributions to 13"/ w, from the direct effect, the A-distortion and the other distortion terms (Fig. 3). Asymptotic estimates are
also shown. The results are plotted against the position of the lower turning point, as the divergence at r=r, of the geometric
factor (1—L%c?/w?r?)~!/2 in the integrands of the asymptotic estimates implies that the splitting coefficients are particularly
sensitive to conditions near r =r,. Because of the simple form of p,,/p,, it is easy to see the similarity between this and the direct
contribution to 1;°*/w,. The latter does not, of course, drop off at small values of r, as much as (p,/p,)r) does, because the
modes are also sensitive to conditions above the lower turning point. As one expects, the asymptotic analysis provides a better
estimate for higher frequency modes, which have shorter local wavelengths. Further results for fields of this form but with
different values of r, are presented in Table 6.

Figs 6 and 7 show the splitting coefficients for a dipole (k= 1) poloidal field of the form (equation 3.2). The flux function b(r)
was rather arbitrarily chosen such that k(k+1)b(r)/r is equal to the function a(r) given by equation (6.1) with ,=0.7R and
By=107 G (and b(r)=0 for r> r). Once again the asymptotic estimates approximate the numerical results quite well. These two
examples are sufficient to show that a magnetic field can produce frequency splitting which varies with /in a rather complicated
way. Moreover, different fields can produce quite varied behaviour of the splitting coefficients. It seems likely, however, that the
effect of the distortion above the magnetic region is small, so that the presence of a buried magnetic field will affect appreciably
only those modes whose lower turning points are located at least as deeply as the field.

Fields concentrated near the base of the convection zone

The fields considered so far vary on sufficiently large length scales for the asymptotic estimates to work well for five-minute
modes. We have also considered some rather narrowly confined toroidal fields at the base of the convection zone, given by
equation (3.1) with

a(r)=B[1 —(r—rol*/d*] [r—ro|<d (6.2)

and a(r) zero elsewhere, for example with k=2, r,=0.7R, d=0.05R and B,=10" G. The width of the layer is similar to the
local wavelength of a five-minute p mode at the base of the convection zone. For such a field, or one even more tightly confined,
the frequency perturbation depends on the spatial phase of the oscillation (Vorontsov 1988; Gough & Thompson 1988a). For
low-degree five-minute modes whose lower turning points lie well beneath the base of the convection zone r =r,, the oscillation
phase at r=r, is insensitive to the value of / and depends primarily on w. The displacement eigenfunction of the wave is
essentially vertical and proportional to r~!(oc)™'/?sin(wt+ @ ), where ® (which is distinct from the @ in Section 3) is a phase
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Figure 2. The functions d(xh,)/dx, cy/c, for A=2, 4 and p,,/p,,

for a toroidal field given by equations (3.1) and (6.1), as described in

the text, with B=107 G, k=2 and r,=0.7R.

R 0 degree |

T

100
T

2x|6‘5 r

-2x165 r .

0 02 04 06 08 10
n/R

Figure 3. For the same field as in Fig. 2: contributions to the co-
efficients 15°%/w, from the direct effect (A ), the distortion terms
involving A, (0) and the remaining distortion terms (O), for modes
with frequencies closest to 4 mHz. Asymptotic estimates of these
quantities are shown with solid lines. The results are plotted against
lower turning point r, and against degree /.
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Figure 4. For the same field as in Fig, 2: coefficients 15/ w, for
modes with frequencies closest to 2 mHz (+) and 4 mHz (0).
Asymptotic estimates are shown with a solid line.
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Figure 5. For the same field as in Fig. 2: coefficients 15°%/w, for
modes with frequencies closest to 2 mHz (+) and 4 mHz (0).
Asymptotic estimates are shown with a solid line.
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Figure 6. For a poloidal field given by equations (3.2) and (6.1), as
described in the text, with B;=107 G, k=2 and r,=0.7R: co-
efficients 178/ w, for modes with frequencies closest to 3.5 mHz.
Asymptotic estimates are shown with a solid line.

§x10-5

LB L B
RN ET RS

T
L1

-5x1073

T 7

0.8

o

l'l/R

Figure 7. For the same field as in Fig. 6: contributions to the co-
efficients I3 from the direct effect ( A), the distortion terms involv-
ing h, (O) and the remaining distortion terms (O), for modes with
frequencies closest to 3.5 mHz. Asymptotic estimates of these
quantities are shown with solid lines.
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Table 6. Computed values of 4,(R) and coefficients I3 for various /=2 modes. The fields are given by equations (3.1)
and (6.1), as described in the text, with B,=107 G, k=2 and the values of ry indicated. The fields have maximum
strength 7 =7,,. The values of the coefficients I5/2 are quoted in nanohertz. Because the effect of the spherically
symmetric distortion has not been calculated for this field (for reasons discussed in the text), only the direct magnetic
contribution is included for the case 1 =0. We have designated this contribution to the splitting coefficient 75"

n vy (mHz) 10%787 fwy, 1012 jw, 10°ID% Jwo 107h,  107h,

fm =0.134 16 2.47 0.826 1.94 0.88 -7.19  -0.082
(ro=03) 18 2.74 1.06 1.43 0.22

20 3.01 1.27 1.20 -0.42

22 3.29 1.42 1.39 -0.87

24 3.56 1.48 1.66 -1.13
fm = 0.189 16 2.47 5.60 5.09 -2.98 291  -0.774
(ro=05) 18 2.74 5.61 5.15 -3.58

20 3.01 5.61 5.13 -4.02

22 3.29 5.65 5.08 -4.36

24 3.56 5.69 5.02 -4.64
rm = 0233 16 2.47 18.4 8.16 -13.0 757 -345
(ro=107) 18 2.74 185 8.02 -13.7

20 3.01 18.5 7.88 -14.2

22 3.29 18.7 7.73 -14.7

24 3.56 18.8 7.58 -15.1

determined by conditions near the surface of the star and 7 is acoustic depth:

r(r)=JR ¢ ar (6.3)

r

Thus the phase at the base of the convection zone, and hence the frequency splitting coefficients, are oscillatory functions of w.
This is clearly seen in Figs 8-10. As the mode frequency increases, the vertical wavenumber increases, so that greater
cancellation takes place in the averaging over the magnetic region. Hence the frequency perturbation is less sensitive to the phase
of the mode; the amplitude of the oscillation visible in the figures diminishes with increasing frequency (see also Gough &
Thompson 1988a). The dominant term in the direct effect is proportional to sin%wz+ ® ), appropriately averaged over the
magnetic layer (Vorontsov 1988). The dominant distortion term comes from (&*- 0sw4E) and at least in the 1=2 case,
considered here, this dominates the direct effect, being greater by a factor of order wyc/g where gis the magnitude of the gravita-

T T T T T T '
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26 2.8 30 32 34
Vo (mH2)

Figure 8. For a toroidal field given by equations (3.1) and (6.2), as described in the text, with B,=107 G, 7=0.7R and d=0.05R and k=2:
coefficients I3" plotted against cyclic frequency for /=2 (®),3 (A ),4(0),5(m)and 6 (+).
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Figure 10. As for Fig. 8, but showing the coefficients /.

tional acceleration, evaluated in the thin layer. This distortional term is proportional to sin(w7 + @ ) cos(wz + ® ), averaged over
the layer, the cosine arising because 0y contains a derivative of a(r): to obtain an estimate of the splitting coefficients for a con-
fined field it is convenient to transfer this derivative to &, by integration by parts (see the discussion below of kernels). This term
averages to zero in the limit @~ % (when any continuous field becomes slowly varying) and so it contributes nothing to the
short-wavelength asymptotic estimates of Section 4. It may now be seen that the cycle length of the oscillation in Figs 8§-10
should be [27(r,)] ", taking @ to be constant. Thus, the cycle length gives the acoustic depth (and hence by comparison with
solar models the actual depth) at which the perturbing magnetic layer is situated. Actually, @ varies a little with o, so the cycle
length is modified, but this can in principle be taken into account. Of course, any highly localized perturbation will have a similar
oscillatory signature.

Figs 11 and 12 show I3 and I} together with their (phase-independent) asymptotic estimates, for /=30 and /=40. Of
course, the asymptotic formulae approximate the splitting coefficients more poorly than was the case for less localized fields,
because the basic assumption of a slowly varying perturbation is not valid in the present case. Nevertheless, it is instructive to
consider why the asymptotic estimates deviate from the numerical results. When the lower turning point lies beneath the
magnetic layer, the numerical results oscillate about the estimates because of the spatial phase dependence, as discussed above.
When the turning point is in the vicinity of the magnetic layer, the deviation between the asymptotic estimates and the numerical
results is even more pronounced. This is because of the nature of the sensitivity of a mode near its lower turning point. While the
integrands in the asymptotic formulae (4.7) and (4.14) are infinite (albeit integrable) at r =r,, the actual eigenfunctions are finite
there. When the field is slowly varying, the two methods give similar results. However, if the magnetic field and its derivatives
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Figure 11. For the same field as in Fig. 8: coefficients 1;°* (joined by dashed straight lines) and /3" (continuous lines) for modes with degree
[=30. The dashed and continuous curves represent phase-independent asymptotic estimates for /3% and I, respectively.
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Figure 12. Asfor Fig. 11, but for modes with degree /= 40.

vary sufficiently rapidly, the asymptotic estimates for modes with lower turning point in the vicinity of the field also vary rapidly,
while the numerical results in this case tend to average out the extreme variations of the asymptotic estimates. This is clearly
visible in Figs 11 and 12 for modes with lower turning point around r=0.7R. Note also that the peak in the numerical results is
to the right of the peak in the asymptotic estimates. This is because the modes are actually most sensitive not at the radius where
L?c*/w?r*=1 but at a point slightly above it. Near the turning point the radial displacement may be represented by an Airy
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function (e.g. Olver 1974; Unno et al. 1979) and this has its first maximum not at zero but at a point inside the oscillatory
domain. Similarly, the direct perturbation (Fig. 3) peaks to the left of the maximum of p,/p,. Finally, we remark that even when
r, is above the magnetic region, there is some frequency perturbation. This arises in part from the distortion of the outer layers,
but this effect is negligible compared with the perturbation when the turning point is lower. As is evident in Fig. 12, as r,
approaches the magnetic region from above, the numerical results show the effect of the magnetic field before the asymptotics
do. This is because the modes actually have small but non-zero amplitude in the evanescent domain beneath the lower turning
point, and hence some sensitivity to conditions in this region, whereas the simple asymptotics give the region no weight at all.

It should be mentioned that, provided the field vanishes at the surface of the star, the direct magnetic contribution to the
splitting may be written

[M;B,B; v, (6.4)

where M;;is a symmetric kernel which is a function of the equilibrium state and the oscillation eigenfunction, and the integration
is over the volume of the star (Dziembowski & Goode 1984). In the case of a toroidal field of the form (3.1), each whole

magnetic splitting coefficient 15" may similarly be written in terms of a kernel:
gn p g y y

Imag

R R
—‘—=J K r\palpo)e™" dr / J ' dr. (6.5)
(00 0 0

The kernels K*" depend also, of course, on k. The factor ¢! in the numerator is written explicitly because the acoustic radius
is the natural independent variables with which to describe acoustic modes. The denominator is present to make K 0
dimensionless. Some kernels are shown in Fig. 13, with r, indicated by an arrow. They differ from the corresponding smoothed
kernels published by Dziembowski & Goode (1988) because they contain the oscillatory structure of the eigenfunction.
Throughout most of the propagating region, their envelope shapes are determined largely by the factor wc/g in the dominant
distortional term, as discussed above. For large values of /! this term is approximately

—(A+ ﬂr [ (%)2+ k(k+ 1)Pi] P, sin 0d6- f"fg—c (1 - ff:z)” sin2(wor+® ). (6.6)
0
soo*,.., . A
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Figure 13. Dimensionless kernels K3 =(GM/R’)"'" w, KY"" for I5*, as defined by equation (6.5), for a toroidal field of the form (3.1) with
k=2. The examples shown are for: (a) /=2, n=24, v=3.57 mHz; (b) /=20, n=18, v=3.49 mHz; (c) /=30, n=16, v=3.53 mHz; (d) /=50,
n=13, v=3.59 mHz. The position of the lower turning point r, is indicated by an arrow.
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The leading direct contribution to the kernel comes from the two r-derivatives of £ in the term (—1/u)(VXB')XB in #§
(equation 2.5) and can easily be shown to be

E 2 2 2\-1/2

1 L

().""%)J (%) P/l sin Gd()Z/ (l_wsz) sinz(wot+<l) ) (67)
0

It is clear from Fig. 13 that the magnitude of the kernels is much greater than their mean value. This is evident also from the
kernels published recently by Dziembowski (1988). Thus a smoothly varying field tends to produce a much smaller
frequency perturbation than a tightly confined field does, as in the former case the oscillations in the kernel are averaged out to a
great extent whereas in the latter case they are not. This is the reason that our frequency perturbations for a tightly confined field
(Figs 9-12) greatly exceed those obtained for smoother field configurations (Fig. 3-7; see also Dziembowski & Goode 1988).

7 OVERALL FREQUENCY SHIFT DUE TO A MAGNETIC FIELD

So far we have considered only the splitting of (degenerate) frequency multiplets of modes of like order and degree. In general,
rotation and a magnetic field also shift the average frequency of each multiplet. Provided the weighting given to each mode is
independent of m, the shift of the multiplet average frequency is just /,, because

iQmO (A#0). (7.1)

m=-1

The evaluation of the absolute frequency of any particular mode requires a knowledge of the coefficients I, for all 4, including
A=0.

The contributions to I, as to any I;, may be considered to derive from one of two origins: the distortion of the equilibrium
state and the perturbed Lorentz force (or centrifugal force in the case of rotation). The latter, direct contributions arise in a
straightforward manner from the terms involving ./, and %, in equation (2.34), and the magnetic term is explicitly included in
the asymptotic discussion of Section 4. In the case of a toroidal field, a low-degree asymptotic estimate of the direct effect was
given by Gough & Taylor (1984), and equation (4.14) reduces to their value if L/ is formally set to zero. A similar low-degree
estimate was obtained by Roberts & Campbell (1986).

Some care is required in specifying what is meant by the distortional contribution to I, because in general the inclusion of
rotation or a magnetic field will change a model’s radius and luminosity. We shall insist here that the model is calibrated to have
the same radius and luminosity as the non-rotating, non-magnetic model. The effect on the frequencies of any variation in the
radius and luminosity is therefore to be considered as distinct from 1.

7.1 Calculating the spherically symmetric component of the distortion

As discussed above, the spherically symmetric component of a perturbing force in general changes the radius and luminosity of
the star. For a standard non-rotating, non-magnetic solar model, the observed radius R and luminosity L, are reproduced by
adjusting the model parameters, in particular the mixing-length parameter a [which is unrelated to the constant « in equation
(4.1)] and the initial hydrogen abundance X,. Our approach has been to compute the spherically symmetric distortion to a
calibrated model of the present Sun, by adjusting a and scaling the present hydrogen abundance X(r) by a constant factor to
obtain the correct radius and luminosity. A force in the energy-generating core will generally change the present hydrogen
abundance there in a complicated position-dependent way. To calculate this would require assumptions about the magnetic field
or rotation at all previous ages [cf. Chitre, Ezer & Stothers (1973) concerning a magnetic perturbation, and Demarque, Mengel
& Sweigart (1973) on a rotational perturbation to the solar structure]. For this reason we restrict attention in Section 7.2 to a
magnetic field at the base of the convection zone, for which our treatment of the perturbed hydrogen profile is probably
adequate.

To compute the perturbation we regarded the Sun as being divided into two zones, an inner (radiative) region r < r, including
the energy generating core, and an outer region r> ry including the convection zone. In the inner region we perturbed the
equations of stellar structure in the presence of a small spherically symmetric force F(r)e, to obtain equations for the relative
Lagrangian perturbations

or o ot oL,
r’p’ T L,

to radius, pressure, temperature and luminosity respectively, together with equations for the perturbations to density p, opacity
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« and energy generation rate &:

T
L2l
e |
Lafe)-ofes)

where the independent variable g is defined as in equation (3.28), with the subscripts omitted, and three equations of the form

g_(g:(alno 6_p+(6ln0 6_T+(alne 5X 16)
6 \dlnp/xrp \0InT/,x T \0lnX|;, X’ '
where 6 is each of p, % and £. The constant (0.X/X) is an eigenvalue.

At m=0, regularity conditions
é oL
or_ 0, =0 (7.7)
r L

r

were imposed. At the matching point r=ry, (6L,/L,) was set to zero, and three other conditions were applied by demanding
continuity of p, Tand m with the solution in the outer region r> ry. The solution in the outer region was obtained by integrating
the equations of stellar structure inwards from the surface, using g=1, L,=Ly and r=R as photospheric conditions, the
atmosphere above the photosphere being assumed to be in hydrostatic equilibrium with its temperature being related to optical
depth according to the Harvard-Smithsonian Reference Atmosphere (Gingerich et al. 1971). Once again, a perturbing force
F(r)e, was added to the hydrostatic equation beneath the photosphere. The matching between the inner and outer regions, and
the determination of the eigenvalues (6X/X) and a, were achieved by Newton—-Raphson iteration.

7.2 Numerical results

We have considered the specific example of a force F derived from the quadrupole toroidal field (3.1) with a(r) given
by equation (6.2) and with k=2, By=10"G, r,=0.7R, d=0.05R. The equilibrium model for r<r, was Model A of
Christensen-Dalsgaard et al. (1979). Approximate partial derivatives of £ were obtained from the simple formula
E§=E,pX?T 23 exp| —(T,/ T )] with T,=3.86 x 10'° K for the p-p reaction (e.g. Clayton 1968). The radius of the boundary
between the inner and outer regions was chosen to be r4=0.6R; thus F differed from zero only in the outer region. Partial
derivatives at constant ry were obtained by varying @ and X by % 1 per cent. The values thus obtained were

dlnp odlnT dlnm

=1.14 =0.192 —=—0.0927,
Oohna On a ? dna 0.09
dlnp olnT dlnm

=-2. =-0. =0.222
dln X 87 dln X 0.543 dln X ’

and the changes to In p, In T and In m at r =r,, when the field was inserted at standard X, o were
Alnp=293x1073, AlnT=479x10"% Alnm=-1.04x10"*

The values of dX/X and da/a required to obtain a perturbed solar model calibrated to the correct mass, luminosity and radius
were

oX b )
0% _120x107* 2%=—182x107%
X a
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Fig. 14 shows the distortional and direct contributions to I5* for (a) /=2 modes with 2.5 mHz < » < 3.6 mHz and (b) modes of
varying degree with frequencies near 3.5 mHz. It is readily apparent that the distortional effect is negligible compared with the
direct effect on the modes, in contrast with the non-spherically symmetric perturbation (Figs 8-10) where the distortional
contribution dominates the direct effect. It is interesting to note also that in the matrix element B,,,,,, which is a sum of 130,

T L T T I T T T L o I
o
8 (Cl) o o n
o
as o —
6 B
o
o
ma
15 § %
(uHZ)
0.15+ _
+
+
+ +
010 |- s + . —
+
0.05— -
0 1 1 1 1 L | . J I 1 1 I
2.5 3.0 35
Vg (mH2z)
T I T ] L —' T T T
o
12k (b) 4
o
10 o 1
o ©O
8 ©ogp 00 ° .
6 - . T
13%°
> <
(uHz)
+
015 v ot + -
+ + + 4 + +
010 4
+ +
005 |- _
L | 1 [ n | " L "
0 0.2 0.4 06 0.8 1.0
I’t/R

Figure 14. For a toroidal field given by equations (3.1) and (6.2), as described in Section 6, with By=10"G, r,=0.7R and d=0.05R and k=2:
mag

(a) Direct (0) and distortional (+ ) contributions to I for various /=2 modes, (b) Direct (O) and distortional (+) contributions to I3 for
various modes with frequencies closest to 3.5 mHz.
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over all 4, the non-spherically symmetric distortion has an effect of greater magnitude than the spherically symmetric distortion.
This is largely because the effect of the latter is diminished by the recalibration of the star.

An alternative method of calculation confirms the magnitude of the effect of the spherically symmetric distortion. In principle
it is a less reliable method because it involves finding the relatively small difference between two quantities, namely the
frequencies of two models. A term F(r)e, was added to the equation of hydrostatic support in Christensen-Dalsgaard’s (1982)
stellar structure programme, and a ‘magnetic model’ of the present Sun was then computed (as a static calculation at the present
solar age), by adjusting the standard hydrogen profile (by a uniform scaling 6X/X) and the mixing length parameter a to
reproduce the observed solar radius and luminosity. The required values of 6.X/X and da/a were

oX

_4 Oa
—=125x10"*
X 5

—=-1.85%10"7,
a

in good agreement with the previous method. Frequencies for the magnetic model and for a standard model were computed and
their difference taken. A typical value of dw/w for 3-mHz modes was thus found to be 3 X 1073, in reasonable accord with the
results due to distortion shown in Fig. 14(a).

It may be noticed that the results for deeply penetrating modes in Fig. 14(b) appear to be irregular. With better sampling of
points these results would exhibit an oscillatory behaviour, as in the non-spherically symmetric case. In particular, the direct
perturbation would be seen to be given approximately by equation (6.7) in conjunction with equation (6.5).

8 DISCUSSION

Observed frequency splittings have been quoted in terms of coefficients a;:
Vaim™ Vo= L2, a(n, )P(—m/[L), (8.1)

where v=w/2x is the cyclic frequency. [The precise definition of the coefficients differs from one author to another; the
representation (8.1) is typical.] Except for small values of /, we see from equation (3.12) that the even coefficients a,, are related
approximately to our coefficients I; by

(—1)%2k)

Lazk=W

L. (8.2)

Of course, equation (8.1) is not the only possible representation of the data. For the component of the splitting that is even in m,
it would be more natural not to take out a factor L. In addition, because the odd component comes from the linear effects of
rotation (assuming effects smaller than second order to be negligible) it can be seen from the asymptotic equation (4.9) that it
would be more natural to take a factor m, not L, out of this component. Then, in particular, if the rotation rate is expressed as

Q=Q(r)+Q,(r)P,(cos )+ Q,(r)P4(cos 0)+... (8.3)

and the splitting that is an odd function of m is represented as

m Z Ck(n9 I)Pk(m/L)’ (84)

keven

an application of equation (3.12) gives that each coefficient ¢, depends principally only on Q, (Durney, Hill & Goode 1988).

How does the presence of more than one asymmetry affect the interpretation of the splitting coefficients? The interpretation
is in principle a relatively simple matter when slow rotation (about a unique axis) is the only symmetry-breaking agent. As
already discussed, the odd coefficients a; then arise from linear effects, and the even coefficients come from second-order terms
(principally centrifugal distortion for moderate values of /, according to the results of Section 5). When a second symmetry-
breaking perturbation is introduced, such as a magnetic field or a latitudinally dependent component to the structure, this
picture is not greatly changed provided the star still has an axis of symmetry and its structure is independent of time. A co-
rotating frame &% may be introduced, as in Section 2, but this is not necessary because even in an inertial frame the star’s
structure is independent of time. The new perturbation contributes only to the even coefficients and the frequency perturbations
arising from the two symmetry-breaking agents are additive. In both these cases the azimuthal order m is still a well-defined
quantum number.

However, even if the second perturbation is axisymmetric, if its axis does not coincide with the axis of rotation the
interpretation of the coefficients a; is more difficult. This is because m is no longer a well-defined quantum number. It is a
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Figure 15. Schematic diagram showing (for the case /=1) how the m-degeneracy in the non-rotating, non-magnetic star (left of diagram) is
raised by rotation and a magnetic field so that in the corotating frame & there are (2/+ 1) distinct eigenfrequencies (centre of diagram). In the
general case (a) an observer in an inertial frame sees (2/+ 1)? frequencies (right of diagram). However, when rotational effects dominate other
asymmetries in frame &, as in case (b), 2/(2/+ 1) of the modes have very small amplitudes (shown faint), so the observer is likely to see only
(21+ 1) frequencies (provided, of course, the observing technique can detect modes of any geometry).

necessary condition for the existence of normal modes of oscillation that a frame & exists in which the structure of the star is
stationary. It is in this frame that one must solve the matrix eigenvalue problem (2.26). In general there is no longer an axis
orientation in which each eigenfunction corresponds to a single value of m. In particular, referred to a polar axis aligned with the
rotation axis each zero-order eigenfunction &, is a linear combination of the (2/+ 1) functions §,,,,(m= —1, ..., I). Viewed from
an inertial frame each &, has its frequency incremented by mQ,. Thus there appear to be (2/+1)? eigenfrequencies
corresponding to given » and / when viewed from an inertial frame. This is illustrated for /=1 in Fig. 15(a). Now the observer
sees in his power spectrum not one /=1, m=1 mode (at fixed n) but three. The relative amplitudes of the peaks in each triplet
will differ, of course, since the amplitudes of the different  ,,, forming any one & o will not in general be equal, and their relative
magnitudes will vary from one &, to another. This is exemplified in the case when rotation dominates other non-spherically
symmetric effects (as calculated in frame &). Then each &, is well approximated by a single &,,,,. This case is illustrated in Fig.
15(b). In a sense, each m value still has a triplet of frequencies, but the peaks in the power spectrum which correspond to two of
the frequencies have negligible amplitudes. This case corresponds to equation (2.30), and then the quantum number m is
practically well defined. The interpretation of the coefficients g; is as for the axisymmetric case, except that the non-rotational
contributions to the even coefficients are weighted by P;(cos ), in accordance with equation (3.11).

It has been implicitly assumed in the analyses of Brown (1985, 1986), Brown & Morrow (1987), Libbrecht (1986) and Duvall
et al. (1986) that the appropriate picture of the fine splitting of the solar p-mode spectrum is Fig. 15(b), but it should always be
borne in mind that for some modes Fig. 15(a) may be more appropriate. This will be the case if the matrix elements B,,, (cf.
equation 2.27) are roughly speaking at least as big as some of the elements A ,,,,,.. Taking the second perturbation to be a magnetic
field, this gives the rough criterion for Fig. 15(b) to be inapplicable:

o v NZ@QN-QIm  (m#0). (8.5)

Here «...» denotes an appropriate mode-dependent integral over the star, as, for example, in equation (2.35), and v, is the
Alfvén speed. If the rotation were uniform, «Q»/Q would differ from unity by an amount C, as a result of the Coriolis force (e.g.
Ledoux 1951). For solar five-minute modes of low and intermediate degree, C'is typically of the order 10~ 2. Thus the Coriolis
contribution is much smaller than the contribution from differential rotation. Taking 40 nHz as a conservative estimate of
«Q»—Q_ (cf Fig. 1), we obtain about (40m) nHz for the right-hand side of inequality (8.5) (expressed in terms of cyclic
frequency). For a core magnetic field of magnitude 107 G, as is considered in Section 6, the left-hand side could be as large as 50
nHz for a deeply penetrating mode. Thus it is feasible for a magnetic field to influence significantly the structure of low-degree
solar p modes. Current observations would be inadequate to resolve multiplets of like m, such as those illustrated in Fig. 15(a), if
the spread were only 50 nHz. However, the long data sets envisaged in the near future will change that state of affairs for
sufficiently long-lived modes. The fact that each multiplet has identical frequency spacing would aid their detection.

Of course, a magnetic field is not the only asymmetry that might be present in addition to rotation. Other asymmetries will
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have very similar effects. Latitudinal variations in the solar structure may have measurable effects (Gough & Thompson 1988b;
Kuhn 1988a,b). Such effects have also been considered in the case of Ap stars (Dolez, Gough & Vauclair 1988). Whether one
can distinguish seismologically between a latitudinally dependent structure and an internal magnetic field is an important
question. Perhaps the anisotropic nature of the direct magnetic perturbation will indeed make such a distinction possible, though
it seems likely that given a finite set of data with observational errors one could always contrive some non-magnetic internal
structure to explain it. Thus one may have to decide which is the most reasonable explanation of the data on physical grounds.

Even without detailed calculation, our interpretation of the splitting coefficients is guided by simple principles. The n and /
dependence of the data is determined by the variation with depth of the underlying cause; the m/L dependence by its variation
with latitude. Asymptotically one expects each splitting coefficient to vary like

S~ Hw/LY filw/L)+ fo(w)} (8.6)

(¢f. Gough 1986a; Christensen-Dalsgaard ez al. 1988), where the function f,(w/L ) arises from the variation of the asymmetry
with depth and f,(w) comes from the asymmetry near the surface. This is essentially equation (4.4), with the additional possibility
of splitting arising from causes near the surface - for example the latitudinal distribution of magnetic fibrils (Bogdan & Zweibel
1985; Zweibel & Bogdan 1986; Gough & Thompson 1988b). Thus from such a decomposition as (8.6) one may hope to
separate the effects of asymmetries confined to the surface regions from those at greater depths. With the present averaged data,
in which the n dependence of the coefficients a; is suppressed by averaging over frequency, this decomposition is not possible.
However, it is still possible to say something useful about the depth dependence. If the asymmetry were confined to great depths,
it would be possible to perceive a decrease in La; with increasing degree /. If, on the other hand, the perturbation were confined
to a layer much more shallow than the penetration depth R —r, of the modes, the values of La; would tend to increase
proportionally to L, because of the factor S(w/L ) which scales with the depth of penetration. A relative sound-speed difference
dc/c varying as (1 — r/R)™“(a <3) beneath the upper turning point of the modes would cause the frequency perturbation to vary
as L% (Gough & Thompson 1988b).

The even component of the splitting reported by Duvall ez al. (1986) does indeed show some evidence of an increase with L.
By performing a logarithmic regression of the values of the reported splittings between sectoral and zonal modes, Gough &
Thompson found a best fit of L%2 for the L dependence of the data. Moreover, the m/L dependence suggested that the cause was
somewhat concentrated in equatorial regions. One can perform a similar analysis on the data of Brown & Morrow (1987). In this
case, La, looks rather flat, suggesting a cause less concentrated towards the surface. Generally speaking, the values of La,
reported by Brown & Morrow are only a third those of Duvall ez al.

In addition to the asymptotic variation (equation 8.6) with frequency of the splitting coefficients, it will be interesting to
examine unaveraged data for the cyclic variation with frequency associated with a thin perturbing layer. Such behaviour may be
detectable if there is a thin but sufficiently strong layer of magnetic field at the base of the convection zone, forming the seat of
the solar cycle (e.g. Speigel & Weiss 1980).

Barring fortuitous cancellations, one can use the magnitude of the observed coefficients to put an upper bound on the strength
of any large-scale magnetic field in the outer radiative zone. The values of the La, determined by Brown & Morrow (1987) are
nowhere greater than about 300 nHz. If one postulates a magnetic origin for the even component of the splitting one expects

La, /v~ «vijc’». (8.7)

From this or from the numerical results of Section 6, one infers that the present data put an upper bound of about 10’ G on any
large-scale field except perhaps in the core, for which we do not yet have sufficient data. Certainly we may expect to put more
stringent detailed constraints on the internal field using data to be gathered in the not too distant future by networks of ground-
based observing stations and by spacecraft.

Meanwhile, how do uncertainties in our knowledge of the internal rotation and magnetic field affect the accuracy of inversions
to obtain the spherically symmetric component of the Sun’s structure? In this regard it is not just the coefficient I, which is equal
to the mean frequency shift of the multiplet, which is important. The frequency of a mode of given azimuthal order m depends in
general on all the coefficients I, as generally all the functions Q,,,, will be non-zero. At present, however, this is not a problem
(except perhaps for the core), as the uncertainty in the absolute frequencies is of the order of a few hundred nanohertz, as are the
typical values of the La,, (for k# 0); and the results of this study suggest that the values of I, should be no bigger than this. The
uncertainty in the absolute frequencies is inherently much larger than that in the frequency splittings, so even when the
observational accuracy is great enough for rotational and magnetic effects to have to be taken into account in spherically
symmetric inversions, we may hope in turn to know their effect sufficiently accurately to make due allowance.

Finally, it is tempting to speculate how the differences in the reported values of the splitting coefficients reflect temporal
changes of solar origin (cf. Gough 1988; Kuhn 1988a,b). We can certainly expect in the future to be able to measure the splitting
sufficiently accurately to monitor changes over the solar cycle. It would be of great interest if one were able to detect cycle
variations in the internal flow, for example. Changes in the m dependence would also be very interesting and might enable us to
say whether, for example, the observed drift of sunspots towards the equator during the cycle reflects the migration of a deep-
seated field or whether it is a phenomenon that occurs only in the upper convection zone.
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APPENDIX

In this appendix, an outer boundary condition to be used when solving the adiabatic oscillation equation in a slowly rotating star
is derived. The boundary condition is also applicable if the star has a buried magnetic field provided that the magnetic effects are
negligible compared with the first-order effects of rotation.

The boundary condition, which is of the form d&/dr — x& = 0, where & is the radial component of the displacement vector &, is
derived by requiring the interior solution to match on to the causal solution in a plane-parallel atmosphere above the outer
boundary. The radius at which the boundary condition is applied will be denoted as r=R: this point may be higher in the
atmosphere than the photosphere.

In the rotating frame &, the adiabatic oscillation equation is

LE+wpE= —2icwp(R X E+v-VE), (A1)

where the notation is the same as in Section 2 of the main text.

The zero-order, non-rotating case (in which the right-hand side of the above equation is zero) has spheroidal-mode solutions
of the form

E=E,- [e(,(r) 7, motr) L 2] Y;"] =0, (A2)

Then equation (A1) yields two scalar first-order differential equations for & and y, where V- & = y,(r) Y/"

d k* k*c?
— =55 g, (1 =5 x0=0, ' (A3a)
r w w

0

2
w, rwg Cc (/2

d ; Kk’ 2 k
ﬂ+ﬂ(1_g 4 +_§) £m (zsz__zg) 4o=0 (A3b)

[where k2= [(I+1)/r?].

The first-order effect of rotation on the eigenfunction is to perturb it to &,+ ¢&,; the eigenfrequency becomes w,+ ew,. As
discussed in Section 3, & =&+ &, where ; is spheroidal and & is toroidal. The latter has zero radial component and
divergence, so that £& =0 (to this order). Thus equation (A1) yields

LEs+ wipks=— 2iw0p(R. X g+ v VE)) = 2w,0,0&,~ w}p&r. (A4)

For rotation that is a function only of radius, &g has the form &g=[&4(r)Y)", 5s(r) 0Y,"/ 36, imn(r)Y,"[sin 6]. As shown in
Section 3, &; can be determined algebraically by evaluating the vertical component of the curl of equation (A4). Then (cf.
equations 3.38, 3.39) from equation (A4) one obtains two scalar equations for &g and y (in an obvious notation):

1 d k* k2c2 mQ
( k- g_gs"(l Xs=‘2k2”70___(§o+770) s (A5a)
w() (U 0 0
d w? % 2 K -2 rw rod mQ
%ﬁ‘—’(l g +;‘2) é—(y—f——‘f)xs— g[(k“ +~°&o) [50 (1+—° No| ot - (ASb)
r ¢ wy  ro; ¢ w, rc g g W,
Here
&= w; +m[Q.—Q(R)] (A6)

where Q is the total angular velocity in the inertial frame which we have approximated with a constant: Q(R); also ew, is the
frequency perturbation in frame ¥ and is given by the right-hand side of equation (2.35). Hence in the notation of that equation
@;=m[«Q» —Q(R)].
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Specializing now to an isothermal plane-parallel atmosphere with constant y, gand c, the zero-order equations (A3) become

d K k*c?

Ezgo_i)_z 0_(1_—(02 20=0, (A7a)
0 0

d »? 22 K2

EZXO‘FC—ZO(I—gw—g §o— g_;gg 20=0, (A7b)

where z=r — Ris the height above r = R. These have solutions &, y, proportional to exp(xz), where %, is given by

Ko— gk’lw) k*c*lwi-1
‘ =0; A8
det(w%/cz—gzkz/cmz)c2 Ko~ yg/c’ + k’glwg (A8)
that is,
1 1 o . o |
=—4|-——Z +k(1-N
Ko 2H [4H e kX [o7)| ,

where H= c?/ygis the (density) scale height and N=(y — 1)/2g/c is the Brunt-Viisala frequency.

For five-minute solar p modes «, is real so the modes are evanescent in the atmosphere. For a physically acceptable solution
with energy density declining with height, 0&2? must decrease as z—~ ©: because in the isothermal atmosphere the density is
proportional to exp( — z/H), this requires that

1 1 o N
Ko=——— ——7+k(1—N/w) ) (A9)

The vertical displacement and Lagrangian pressure perturbation must be continuous at r = R. On the assumption that y, gand ¢
are also continuous, y and [from equation (A3)] d&/dr are continuous also. Thus at r = R— a zero-order boundary condition on
the interior solution is

dr

The first-order correction to this boundary condition can similarly be found from equations (A5), provided r and Q are
treated as constant in »> R. Then in the atmosphere

d k* Kc? .

Zzés_ng Es_(l" w2 xs=Fe™, (Alla)
0 0

d oy, gk vg_k’g

=yt =21~ —5-"2xs= Ge™

des Cz( o &s e ol xs=Ge™, (A11b)

where Fand G are constants which depend on the zero-order eigensolution and w; the latter is found in the manner described
in Section 2. Hence for a physical solution, and normalizing so that £5=0 at r =R,

&s= Az exp(x2) ]

Al12
xs= Bz exp(xz)+ Cexp(x,z) ( )

where A and B are related as &, and y,:
(0= gk*/ i) A= (1= k’c*[wi) B=0; (A13)
and, from equations (A11),

A—(1—- 22 2 -
(1-k"c /wZO)C F (A14)
k
B+xoc—(1§———f)c= G.
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Eliminating B and Cbetween equations (A13)and (A14) gives

-1 2 2.2

k k

A=(2x0——"§') [(Ko—l"—f+—§p+(1———§)6]. (A15)
c c” wg 7

From equation (A7a) and the definition of y, one obtains

_CZ g kzcz -1
(Ol Ll | Ly BT (A16)
so that
@, | ke’ K\ ! g 2mal 2 g PEFCIRY
F=2— - -5 +2 222 2 k=2 1= _
2(00[(0g (1 p: Ko~ 3 &o(R) R o, |RaZ ¥ & 1 P 1|&o(R), (A17)
o, |K’g(, K\ g| g 2 mQ g g e\ g
=2 =21~ -2)-=2 += = |1+ -&1{1- -5 : Al
G=2 o [wg ( ol Ko Pc) R &o(R) R w, 1 Ro? Ko pe w? pe Eo(R) (A18)
Hence
A [ _w\ kAT gl _(r=1)g|_ws(, KV
E(R) \"° 2c w; oy \'" ST & ¢’ 02 ]| w,
2 22
c g (y=1g| (y—2)g[., k|| mQ
+ =21 %0 - 1- =—=1.
[szg (Ko cz) [“0 o :l RC? w(z) @y (A19)

As before, one thus obtains a boundary condition of the form d&/dr—x&=0 at r=R—. Because, at r=R, £=£, and
d&[dr=1x,&,+ €A one thus has

dag

——(xo+ex,)E=0, : (A20)
dar

where x, = A/£(R)is given by equation (A19).
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