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ABSTRACT 
The adequacy and accuracy of the constant Schmidt 

number assumption in predicting turbulent scalar fields in jet-
in-crossfiows are assessed in the present work. A round jet 
injected into a confined crossflow in a rectangular tunnel has 
been simulated using the Reynolds-Averaged Navier-Stokes 

equations coupled with the standard k -e turbulence model. A 

semi-analytical qualitative analysis was made to guide the 
selection of Schmidt number values. A series of parametric 
studies were performed, and Schmidt numbers ranging from 0.2 
to 1.5 and jet-to-crossflow momentum flux ratios from 8 to 72 

were tested. The principal observation is that the Schmidt 
number does not have an appreciable effect on the species 
penetration, but it does have a significant effect on species 
spreading rate in jet-in-crossflows, especially for the cases 

where the jet-to-crossflow momentum flux ratios are relatively 
small. A Schmidt number of 0.2 is recommended for best 

agreement with data. The limitations of the standard k - E 

turbulence model and the constant Schmidt number assumption 
are discussed. 

NOMENCLATURE 
A; 	= Jet exit area 

= Jet diameter 

D, 	= Turbulent diffusion coefficient 

= Tunnel height 
= Jet-to-crossflow momentum flux ratio 
= Turbulence kinetic energy 

Pe 	= Peclet number 
Sc 	= Turbulent Schmidt number 

= Temperature 
U, V, W 
	

= Mean velocity components in Cartesian 
coordinates 

X, Y, Z 
	

= Cartesian coordinates 

= Dissipation rate of the turbulence kinetic energy 

= General dependent variable 
V 
	

= Molecular viscosity 
V 	 = Effective and eddy viscosity, respectively 
9 
	

= Non-dimensional temperature 

13 
	

= Density 

1. INTRODUCTION 
Jet-in-crossflows are extensively used in gas turbine 

combustors, where jets are arranged around the circumference 
of combustion chambers to enhance combustion performance 
in the primary zone and to dilute the hot combustion product 

exiting the combustor. For modern low-emission gas turbine 
combustors, the distributions of temperature and species 
concentration at the combustor exit are important design 
parameters. Therefore, quantitative predictions of both species 
and temperature distributions downstream of the jet are 
required for advanced combustor design. 

The flow configurations of jet-in-crossflow problems 
generally include single and multiple jets in a crossflow. A 

large body of experimental and computational results of 
multiple jets a crossflow has been obtained by Holdeman et al. 
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(1993 and 1997) and Liscinsky et al. (1993-1996). In the 
current literature review, we limit the scope on the flow 
configuration of a single round jet normally into a confined 
rectangular duct. 

Many researchers have experimentally studied a single 
round jet normally into a confined rectangular crossflow. The 
majority of past experimental work concentrate on trying to 
understand the flow structures and velocity field of jet-in-
crossflows (see, e.g., Crabb, et al. 1981, Andreopoulos & Rodi, 
1984, Fric & Roshko, 1994, Kelso et. al., 1996). Compared to 
velocity measurements and flow structure studies, the 
experimental work on scalar diffusion in jet-in-crossflows are 
relatively few. Kamotani and Greber (1972 and 1974) studied 
the scalar diffusion problem using a heated air jet injected into 
crossflow, where temperature distribution downstream of the 
jet was measured using hot wire. Sherif and Pletcher (1989) 
measured the temperature field of a heated water jet normally 
injected into a water tunnel. Vranos and Liscinsky (1988) used 
marker nephelometry to measure the mean concentration in the 
center plane of a single jet in crossflow; the results were in 
good agreement with the single-point measurements of 
ICamotani and Greber (1972). More recently, laser induced 
fluorescence has been used to measure the whole flowfield 
using dye as a scalar tracer. Smith and Mungal (1998) used 
acetone vapor seeded into the jet to acquire quantitative two-
dimensional images of the scalar concentration field for a wide 
range of velocity ratios. 

Numerical simulations of the jet-in-crossflow problem 
include mainly two groups of approaches: the first employs 
Direct Numerical Simulation (DNS) or Large-Eddy Simulation 
(LES), and the second uses the Reynolds averaged approach. 
Hahn and Choi (1997) used DNS to study the flow structure 
and velocity field of the jet-in-crossflow at very low Reynolds 
numbers and low jet-to-crossflow momentum flux ratios. Yuan 
(1997) used LES method to simulate both the velocity field and 
scalar transport of the Sherif and Pletcher (1989) case at 
reduced Reynolds numbers. Although DNS and LES has shown 
promising results, they are not at this point employed by the 
aircraft engine industry in their routine design simulations 
because of the relatively large computer memory and CPU 
requirement. 

In current design practices, Reynolds-Averaged Navier-
Stokes (RANS) computations are most often used for 
investigation of the velocity and combustion field of gas 
turbine combustors. Therefore, there is a need for accurate 
RANS simulations of the jet-in-crossflow problem; both the 
prediction of velocity field and the scalar field are desired. 
RANS simulation of the velocity field has been performed by 
many researchers in the past (see, e.g., Patankar et al. 1977, 
Claus & Vanka, 1992, Kim & Benson 1992). By contrast 
numerical simulations of scalar diffusion in jet-in-crossflows  

are relatively few, and no systematic study of the Schmidt 
number effects is available. Chao and Ho (1990) used RANS 
and the standard k- e model to calculate the temperature field 
that was experimentally measured by Kamotani and Greber 
(1974), and found no significant changes in the temperature 
contour patterns when Schmidt numbers ranging from 0.5 to 
0.9 were used. Catalano et al. (1989) predicted the scalar field 
of a flow where the jet impinged on the ceiling wall but did not 
mention the value or the effect of the Schmidt number. More 
recently, Gulati et al. (1994) found that a Schmidt number of 
0.25 is an appropriate value used in practice to match the 
pattern factor at the combustor exit. 

The present work focuses on the numerical simulation of 
turbulent scalar transport in jet-in-crossflows. The objective is 
to evaluate the accuracy and limitations of the constant Schmidt 
number assumption, and to give recommendations on the 
Schmidt number values most suitable for jet-in-crossflow 
simulations. A semi-empirical analysis on the Schmidt number 
is first carried out to provide guidance for later numerical 
studies. A series of RANS simulations, using Schmidt numbers 
ranging from 0.2 to 1.5, of a confined jet-in-crossflow is 
performed, wherein turbulence closure is provided by a 
standard k- £ model. The flow configuration studied in the 
present work is a round turbulent jet discharging normally into 
a uniform crossflow in a rectangular tunnel, which was 
experimentally investigated by Crabb et al. (1981) and 
Kamotani & Greber (1974). The experimental data from these 
two groups are used to calibrate the Schmidt number selections. 

2. COMPUTATIONAL APPROACH 
2.1 Goveminq Equations 

For a variable density incompressible steady flow with 
constant viscosity, the Reynolds-averaged governing equations 
for mass, momentum, turbulent kinetic energy and its 
dissipation rate (the standard k- e n-cdel, Launder & Spalding, 
1974), and species concentration, can be written in the 
following general form: 

—a  (pu 0)=2-foria  1+ So 	(1) 

where 

D — Sc. 	 (2) 

is the diffusion coefficient; 4'  is the dependent variable, such as 
velocity, turbulent kinetic energy, dissipation rate, and species 
concentration; Sco  represents the turbulent Prandtl or Schmidt 
number; ve  is the effective viscosity that is equal to the sum of 
turbulent viscosity v, and molecular viscosity v; and S o  is the 
source term. 

Since the governing equation for species concentration is 
identical to the equation for enthalpy if there are no chemical 
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Ow — Oivw 
= Ow + Yap 	) 	 (3) 

— 014rvi 

(4) 

where 

r.= 
0 	otherwise 

I 	- 0.5le 0.5 

reactions and no external heat source in the physical domain 
considered, the equation for enthalpy was used throughout the 
present study, and Schmidt number and Prandtl number were 
not distinguished. 

2.2 Numerical Schemes 
A hybrid differencing scheme and a second-order upwind 

differencing scheme (Zhu, 1991) are used in the discretization 
of the above differential equations. The computational node 
locations are shown in Fig. 1. The governing equations are 
discretized using the finite volume scheme on a given cell, P. In 
evaluating the fluxes on the cell surfaces, the primitive variable 

• at a surface (e.g., west surface) of a control volume is 
calculated using the following scheme. 

and 

(5) 

Because the above second-order differencing scheme 
requires two upstream nodes for each cell-face, which will 
involve a value outside the solution domain for a near-
boundary control volume, the following Hybrid scheme was 
used for all the control volumes adjacent to boundaries. 

{0.5(9p + 0w) if Pe S2 
= 

Av 	otherwise 

where Pe is the Peclet number, defined as 

Pe =IC1 D1 

with C. representing the mass flux across the west surface and 
D„, representing the conductance coefficient at the west surface. 

The Semi-Implicit Method for Pressure-Linked Equations 
(SIMPLE) (Patankar & Spalding, 1972) algorithm was used to 
handle the pressure-velocity coupling. In order to stabilize the 
solution, under-relaxation factors were used for primitive 
variables. 

2.3 Boundary Conditions 
A uniform velocity profile at the crossflow inlet was 

assumed. The velocity profile of a fully developed turbulent 
pipe flow was used at the jet inlet boundary. No-slip condition 
was imposed on the walls, and the standard wall function 
(Launder & Spalding, 1974) was used with the standard k - e  

model. At the inlets of the jet and the crossflow, the turbulence 
kinetic energy k and its dissipation rate c are calculated as 

- 	 (9) 
bp 

where a is a constant, b is the ratio of pap. In our 

calculations, a=0.005 and 6=100. A zero gradient condition on 
all flow variables was imposed at the outflow boundary. 

2.4 Flow Configuration and Grid  
As mentioned in the introduction, the flow configuration 

used in this work is that of a round turbulent jet normally 
discharging into a uniform crossflow. In the case of Crabb et 
al., a turbulent jet was injected normally into a uniform 
mainstream in a rectangular wind tunnel from a 25.4mm inside 
diameter and 0.75m long pipe. The jet-to-crossflow velocity 
ratio is 2.3, the crossflow velocity is 12.0 m/s. The jet and the 
crossflow have the same temperature. A laser Doppler 
anemometer (LDA) was used to measure the velocity field. 

In the case of Kamotani & Greber, a heated round jet was 
issued normally into a uniform crossflow in a rectangular 
tunnel. The temperature difference between the jet and the 
crossflow is I67 ° K, with the jet temperature at 465°K. Iron-
constantan thermocouples were used to measure the 
temperature distribution. The distance from the jet exit to the 
ceiling wall is H=12D for momentum flux ratios of J=8 and 32, 
and H=24D for J=72. The jet-to-crossflow momentum flux 
ratio is defined as: 

p J V j2dA 

J - 	 
; p0UA1  

(1 0) 

where U. is crossflow velocity, V i  is jet velocity, A; is the jet 
area, p is density, subscripts o and j denote crossflow and jet, 
respectively. 

(8) 

Based on the symmetry about the jet center plane, the 
computational domain was established on half the flowfield. 
The flow geometry and the coordinate system are described in 
the Fig. 2. The jet center is located at 6D downstream of the 
crossflow inlet, which guarantees that the inlet boundary of the 
crossflow has little effect on the computed flowfield. In order 
to eliminate any unwanted feedback from the downstream 
boundary, the tunnel exit is put at 290 downstream of the jet. 
The domain size in the spanwise and the vertical direction are 
80 and I2D, respectively. In this computation domain, a 
nonorthogonal boundary-fitted grid of 90x45x40 was generated 
in the streamwise, vertical, and spanwise direction, 
respectively. This selection is the result of a grid dependency 

(6)  

(7)  

k = a(U 2  +V 2  +W 2 ) 

Ck 2 
op 
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study, where grid sizes of 50x40x30, 70x45x40, 90x45x40, and 
90x.50x40 have been tested, together with various stretching 
factors. As shown in Fig. 3, stretched grids were used along the 
streamwise and spanwise direction, while uniform grids were 
used along the vertical direction. 10 uniform grids were 
selected inside the jet in the streamwise direction as a result of 
grid independence study. 

3. QUALITATIVE ANALYSES FOR SELECTION OF 
SCHMIDT NUMBER 
In order to provide some theoretical guidance in the 

selection of Schmidt numbers, the following analysis is done 
based on empirical correlations given by ICamotani & Greber 
(1972). 

Kamotani and Greber established correlations of the 
velocity and temperature trajectories based on their 
experimental data 

(12) 

where y, and y.r  denote vertical coordinates of velocity 
trajectory and temperature trajectory, respectively; a y , by. b-r are 
functions of the jet-to-crossflow momentum flux ratio and a T  
depends mainly upon the momentum flux ratio and weakly 
upon the density ratio. With the momentum flux ratio in the 
range of 15 to 60, and the temperature difference in the range of 
0°K to 177 °K, the above two formulas become 

0.36 
Yv = 0.89 j  0.47 

n  
YT = 0 33.10.52(n 

po  

X 

x 
( 	129 

D 

(13)  

(14)  

where J is the jet-to-crossflow momentum flux ratio, p i  and pc, 
are densities of the jet and the crossflow. One may assume a 
relation between the turbulent Schmidt number and the 
trajectories of the velocity and the temperature by using Eqs. 
(13) and (14). 

( "0.07 

cc YT  = 1-182rm Pi 	x  
Yv 	 D 

The above empirical relationship indicates that the 
turbulent Schmidt number increases slightly with increasing 
momentum flux ratio and density ratio, and decreases with 
increasing x/D. This argument gives a qualitative guide for 
selection of Schmidt number in the following jet-in-crossflows 
simulations. 

4. COMPUTATIONAL RESULTS AND DISCUSSION 
In this section, we present the computed results of mean 

velocity, turbulence intensity, jet trajectories, and temperature 
contours. These calculated results are compared with 
experimental measurements of Crabb et al. (1981) and 
Kamotani & Greber (1974). The limitations of the constant 
Schmidt assumption and k- model in scalar predictions are 
discussed. 

In all the computations reported in the following, a grid of 
90x45x40 was used and a grid dependence study found that 
further refinement of the grid did not affect the solution. 
Convergence was determined by monitoring the L2-norm of the 
flux residuals. To get converged solutions, the residuals 
dropped at least 3 orders of magnitude for velocity components 
and at least 2 orders for scalar variables. Figure 4 shows a 
typical convergence history. 350 iterations were generally 
required for the cases where Schmidt numbers are relatively 
high (greater than 0.5), and 450 or more iterations were 
required for the low Schmidt number cases (Sc=0.2 and 0.3). A 
converged solution required approximately 
220p.s/iteration/grid-point CPU time on an 501-OCTANE 
workstation, and required approximately 350 us/iteration/grid-
point CPU time on an SGI-INDY workstation. 

4.1 Mean Velocity and Turbulence Intensity  
Calculations. 

Comparisons of the calculated velocities with experimental 
data of both Crabb at al. and Kamotani & Greber are shown in 
Fig. 5. Figure 5 (a) presents the streamwise velocity 
distribution at the jet center plane and y=1.35D, and Figure 5(b) 
presents the comparison at the jet center plane and x=813 for the 
case of Crabb et al. Figure 5 (c) shows the predicted 
streamwise velocity at the jet center plane and x=12D for the 
case of J=32, compared to the measured velocity by Kamotani 
& Greber (1974). Figure 6 compares the computed turbulence 
intensity with experimental data at the jet center plane and 
y=1.35D for the case of Crabb et al. The calculated results of 
Claus & Vanka (1992) using 2.4 million computational nodes, 
are also presented in the same figure. 

Figures 5 and 6 show that although the velocity fields were 
reasonably well predicted, but the turbulence intensity was 
somewhat under-predicted. The discrepancies between 
numerical predictions and experimental data are believed to be 
caused by the deficiencies of the standard k- c =del. The 
standard k- model is strictly based on a gradient hypothesis 
for the turbulent fluxes. Andreopoulos and Rodi (1984) had 
shown experimentally that there is a significant counter 

(15)  
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substantially with the Schmidt number. In fact, when the 
Schmidt number is greater than 0.3, the agreement between 
predicted and measured temperature fields become poor. 

gradient transport in the jet-in-crossflow configuration, which 
points to the inadequacy of the standard k- e nrdel in jet-in-
crossflow simulations. 

4.2 Jet Temperature Trajectories.  
Jet trajectory is one of the most important characteristics of 

jet-in-crossflow problems. The jet temperature trajectory is 
defined as the locus of the local maximum temperature. The 
numerically predicted jet trajectories are compared with 
experimental data of Kamotani & Greber (1974) in Figs. 7 and 
8. Figure 7 presents the solutions obtained using various 
Schmidt numbers compared with experimental data for the case 
of 1=32. The trajectories obtained using Schmidt numbers 
ranging from 0.2 to 1.5 all have fairly, good agreement with 
experimental data, which indicates that Schmidt number has 
very little effect on the prediction of the jet trajectory. Figure 8 
shows the predicted jet trajectories using a Schmidt number of 
0.5 for the cases of 1=8, 32 and 72 compared with the 
experimental results. General agreement is observed. 

4.3 Non-Dimensional Temperature Contours. 
The temperature was non-dimensionalized by 

T—T 0= 	0 

Ti  —T 

where Tj  is temperature of the jet and T. is temperature of the 
crossflow. 

The temperature contours at the jet center plane for various 
momentum flux ratios are compared with experimental data in 
Figs. 9, 10, and 11. 

Momentum flux ratio ,J=8.  
Schmidt numbers 0.2, 0.3, 0.5, 0.8, and 1.2 were tested to 

study the effects of Schmidt number on the jet mixing in the 
crossflow for the case of 1=8. 

Figure 9 shows a quantitative comparison of the 
numerically predicted temperature contours with experimental 
results. Figure 9(a) presents the experimental measurements of 
the temperature distribution in the jet center plane, and Figures 
9(b) through 10(f) are numerical results from various Schmidt 
numbers. These results show that the temperature profiles 
become slenderer with increasing Schmidt number. For 
example, the contour line of 0=0.1 was predicted to be x=10D 
downstream of the jet exit when a Schmidt number of 0.2 was 
used (Fig. 9(b)), while as shown in Fig. 9(d), the location of the 
contour line of 0=0.1 extended to x=20D when a Schmidt 
number of 0.5 was used. The jet mixing rate was found to be 
quite sensitive to the change in Schmidt number for this low 
momentum flux ratio; the predicted temperature field changes 

It should be noted that although the best agreement with 
experimental data is obtained with Sc=0.2, the agreement with 
experimental data is far from perfect. For instance, the lower 
part of the contour line of 0=0.025, observed in the 
experimental data as shown in Fig. 9(a), was not resolved in the 
prediction using Sc=0.2 (Fig. 9(b)). An increase or decrease in 
the Schmidt number from the 0.2 value will improve the 
temperature prediction in some regions but worsen it in others. 
This indicates that, for low jet-to-crossflow momentum flux 
ratios, the assumption of a constant Schmidt number may not 
be the best choice for the jet-in-crossflow problem, and more 
sophisticated approaches may be required. 

Momentum flux ratio J=32.  
Schmidt numbers tested for the case of 1=32 were Sc=0.2, 

0.3, 0.5, and 0.7. Figure I0(a) presents the experimental 
measurements, and Figures I0(b) through I0(e) show 
numerical results from various Schmidt numbers. In this case, 
the jet impinged upon the ceiling wall at the downstream of the 
jet. Generally, a Schmidt number of 0.2 still gives the best 
agreement with experimental data. The jet scalar diffusion is 
under-predicted with Schmidt numbers greater than 0.3, but the 
change is less significant than in the case of 3=8. Compared to 
the case of 1=8, the present results show much better agreement 
with experimental data. • 

Momentum flux ratio J=72.  
Schmidt numbers 0.2, 0.3, 0.5 and 0.8 were used in the 

case of 1=72. Results are presented in Fig. 11. It can be seen 
that the temperature field is quite accurately predicted at 
Sc=0.3. A close examination of Fig. 11 shows that the 
numerical results from Sc=0.2 also compare favorably with the 
experimental data of the temperature field, although scalar 
diffusion is slightly over-predicted. 

A comparison of Figs. 9, 10, and I I shows that the change 
in temperature distribution for 3=72 with different Schmidt 
numbers is far less drastic compared to the cases of 1=8 and 32. 
For the relatively high momentum flux ratio of 1z--72, the 
predicted temperature contours compare much better with 
experimental data than the two previous cases. One may 
conclude from this observation that the higher the jet-to-
crossflow momentum flux ratio, the less sensitive is the 
solution to Schmidt number. One may also conclude that the 
constant Schmidt number assumption is a reasonable one for 
jet-in-crossflows of high jet-to-crossflow momentum flux 
ratios, but less so for those of low momentum flux ratios. 

(16) 
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S. CONCLUDING REMARKS 
RANS simulations of the turbulent scalar diffusion process 

in jet-in-crossflows were performed to evaluate the accuracy of 
constant Schmidt number assumption and the effect of Schmidt 
number on the mixing of jet species with the crossflow within 
the context of the standard k- e m:del. Good prediction of the 
jet trajectories and reasonable prediction of the velocity field 
were obtained. Calculations showed under-predicted turbulence 
intensity, which indicates that the standard k- e nrclel does not 
capture all the important flow physics in jet-in-crossflows. 

The Schmidt number does not have any appreciable effect 
on the jet trajectories but has significant effect on the rate of 
scalar mixing in the jet-in-crossflow, especially for cases where 
the jet-to-crossflow momentum flux ratios are relatively small. 
The most suitable Schmidt numbers for cases of J=8, 32, and 
72 were found to be Sc=0.2, 0.2, and 0.3, which are 
considerably smaller than the values that are conventionally 
used in turbulent combustion simulations. A Schmidt number 
of 0.2 is recommended for jet-in-crossflow simulations 
because, under the constant Schmidt assumption, it gives the 
most satisfactory solutions for a wide range of jet-to-crossflow 
momentum flux ratios. 

The constant Schmidt number assumption provides fairly 
accurate solutions of turbulent scalar mixing for jet-in-
crossflow cases where the jet-to-crossflow momentum flux 
ratios are relatively high, while for low momentum flux ratio 
jet-in-crossflows a constant Schmidt number may not 
necessarily be the best choice. Our semi-empirical analysis 
based on the experimental observations of Kamotani & Greber, 
shows that the Schmidt number is dependent on the jet-to-
crossflow momentum flux ratio, density ratio, and geometric 
location. From these observations one may conclude that a 
variable Schmidt number is needed for low momentum flux 
ratio jet-in-crossflows. 
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Fig. 6 Turbulence intensity at y/D=1.35 and Z/D=0, 
compared to the data of Crabb et al. (1981). 

• 	Fig. 7 Effect of Schmidt number on the jet 
temperature trajectory. 
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Fig. 5 Comparisons of predicted velocities with 
experimental data at the jet center plane. 

Fig. 8 Comparison of jet temperature trajectories 
between measurements and calculations. 
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the symmetric plane (J=8, H/D=12). 

Y1) 

10(a) Experimental data 

12 

4 

-5 	0 	5 	10 15 20 25 X/D 

9(c) Sc=0.3 

9(d) Sc=0.5 

9(e) Sc=0.8 

0 	5 	10 15 20 25 
X/D 

10(b) Sc=0.2 

Y/D 

0 	5 10 15 20 25 MD 

10(c) S0.3 

0.025 

0.05 
0.1 

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/G

T/proceedings-pdf/G
T1999/78590/V002T02A029/4218152/v002t02a029-99-gt-137.pdf by guest on 20 August 2022



•  10 

0.1 

0.025 

25 X/D 

4 

0 
-5 	0 	5 	10 	15 20 

10(e) Sc=0.7 

Fig. 10 Non-dimensional temperature distribution in 
the symmetric plane (J=32, H/D=12). 
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Fig. 11 Non-dimensional temperature distribution in 
the symmetric plane (J=72, H/D=24). 
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