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ABSTRACT

How schooling affects cognitive skills is a fundamental question for studies of human capital and labor
markets. While scores on cognitive ability tests are positively associated with schooling, it has proven
difficult to ascertain whether this relationship is causal. Moreover, the effect of schooling is difficult
to separate from the confounding factors of age at test date, relative age within a classroom, season
of birth, and cohort effects. In this paper, we exploit conditionally random variation in the assigned
test date for a battery of cognitive tests which almost all 18 year-old males were required to take in
preparation for military service in Sweden. Both age at test date and number of days spent in school
vary randomly across individuals after flexibly controlling for date of birth, parish, and expected graduation
date (the three variables the military conditioned on when assigning test date). We find an extra 10
days of school instruction raises cognitive scores on crystallized intelligence tests (synonym and technical
comprehension tests) by approximately one percent of a standard deviation, whereas extra nonschool
days have almost no effect. The benefit of additional school days is homogeneous, with similar effect
sizes based on past grades in school, parental education, and father's earnings. In contrast, test scores
on fluid intelligence tests (spatial and logic tests) do not increase with additional days of schooling,
but do increase modestly with age. These findings have important implications for questions about
the malleability of cognitive skills in young adults, schooling models of signaling versus human capital,
the interpretation of test scores in wage regressions, and policies related to the length of the school
year.

Magnus Carlsson
Centre for Labour Market 
 & Discrimination Studies
Linnaeus University
SE-391 82 Kalmar
Sweden
magnus.carlsson@lnu.se

Gordon B. Dahl
Department of Economics
University of California, San Diego
9500 Gilman Drive #0508
La Jolla, CA 92093-0508
and NBER
gdahl@ucsd.edu

Dan-Olof Rooth
Centre for Labour Market 
   & Discrimination Studies
Linnaeus University
SE-391 82 Kalmar
Sweden
dan-olof.rooth@lnu.se



1 Introduction

How schooling affects cognitive skill formation is an important question for studies
of human capital. Cognitive skills, as measured by standard intelligence tests, are
associated with sizeable returns in the labor market; a one standard deviation
increase in cognitive test scores is associated with an average 7 percent increase in
wages across 24 different studies (Bowles, Gintis, and Osborne, 2001). A sizeable
literature also suggests that cognitive ability plays a role in labor markets more
broadly, including studies of employment, discrimination, wage inequality, and
changes in the college wage premium.1

While scores on cognitive ability tests are positively associated with schooling,
it has proven difficult to ascertain whether this relationship is causal. Schooling
could affect cognitive ability, but it is equally plausible that cognitive ability affects
schooling. Moreover, the effect of schooling is difficult to separate from the con-
founding factors of age at test date, relative age within a classroom, season of birth,
and cohort effects.

A growing literature attempts to estimate the link between education and
cognitive skills using school entrance cutoff dates as an instrumental variable.2 The
idea in these studies is that cutoff dates generate arguably exogenous variation in
years of completed schooling for individuals of the same age. This approach solves
some of the problems mentioned above, but also requires additional assumptions.
Whether or not these assumptions are likely to hold has been discussed in several
recent papers.3 Another challenge for existing studies is that often age at the time of
the cognitive test, school start date (and hence cumulative schooling), and birthdate
are perfectly collinear, making it impossible to separately estimate the three effects.
Moreover, studies based on a common test-taking date are not nonparametrically
identified, but must impose some structure on how birthdate affects cognitive skills.
This turns out to be empirically important, since as we verify in our dataset, birthdate
is not randomly assigned.4

1For a sampling of papers, see Altonji and Pierret (2001), Bishop (1991), Blackburn and
Neumark (1993), Blau and Kahn (2005), Cawley, Heckman, and Vytlacil (2001), Heckman, Stixrud,
and Urzua (2006), Murnane, Willett, and Levy (1995), Neal and Johnson (1996), Taber (2001),
and Lindqvist and Vestman (2011).

2See Bedard and Dhuey (2006, 2007), Black, Devereux, and Salvanes (2011), Cascio and Lewis
(2006), Cascio and Schanzenbach (2007), Crawford, Dearden, and Meghir (2010), Datar (2006),
Fertig and Kluve (2005), Fredriksson and Ockert (2005), Leuven et al. (2004), McEwan and
Shapiro (2008), and Puhani and Weber (2005)

3See Bedard and Dhuey (2006), Cascio and Schanzenbach (2007), Dobkin and Ferreira (2007),
and Elder and Lubotsky (2009).

4Research documenting the nonrandomness of birthdate in other settings includes Buckles and
Hungerman (forthcoming), Bound and Jaeger (2000), Dobkin and Ferreira (2010), and Cascio and
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In this paper, we use a fundamentally different identification approach. We
exploit conditionally random variation in the assigned test date for a battery of
cognitive tests which almost all 18 year-old males were required to take in preparation
for military service in Sweden. Both age at test date and number of days spent in
school vary randomly across individuals after flexibly controlling for date of birth,
parish, and expected graduation date (the three variables used by the military to
assign test date). This approach gives us a quasi-experimental setting to estimate
the effect of schooling and age on cognitive test scores, without the need for either
an instrument or assumptions about birthdate.

Our approach is also different in that we look at additional days of schooling
within a grade level rather than different years of schooling across grade levels. We
study individuals currently enrolled in the 12th grade to facilitate variation in days
of schooling around an individual’s 18th birthday. This means we focus on young
men in the academic high school track, which requires 12 or 13 years of schooling,
as opposed to the vocational track, which requires only 11 years. The quasi-random
timing of enlistment generates substantial variation in both age and number of
school days as of the test date; in our data, the standard deviation in age and school
days are 108 days and 51 days, respectively. Because school days are unevenly
distributed over the year, there is separate variation in both age and school days.

As long as an individual’s test date is conditionally random, both age and number
of school days will vary randomly across individuals after conditioning on birthdate,
parish, and expected graduation. As a test of conditional randomness, we document
that both age and number of school days are unrelated to family background
characteristics and prior performance in school after flexibly controlling for the
conditioning variables. We also show why failure to control for the conditioning
variables could lead to biased estimates, as birthdate in particular is correlated with
a variety of outcomes which are predictive of cognitive test scores.

Our first finding is that cognitive skills are still malleable when individuals are
approximately 18 years old. This is true both for crystallized intelligence tests
(synonyms and technical comprehension tests) and fluid intelligence tests (spatial
and logic tests), two categories of tests commonly used by psychologists.5 This
finding is important as the cognitive tests we analyze are similar to those used
by the U.S. military, some potential employers,and college entrance exams. Our
results suggest that even as late as age 18, these types of cognitive skills are not
fully determined, and therefore cannot easily be compared across individuals who

Lewis (2006).
5The commonly used Wechsler Adult Intelligence Scale (WAIS-III) has both a fluid intelligence

portion (named performance IQ) and a crystallized intelligence portion (named verbal IQ).
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are different ages when they take the tests.
Our main set of results concerns the effect of extra days spent in school. We

find 10 more days of school instruction raises cognitive scores by 1.1 percent of a
standard deviation on the synonyms test and 0.8 percent of a standard deviation on
the technical comprehension test. Extra nonschool days have virtually no effect on
these two crystallized intelligence tests. To put the estimates in perspective, they
imply an additional year of schooling (180 days) results in crystallized test scores
which are roughly one-fifth of a standard deviation higher. In contrast, test scores
on the fluid intelligence tests (spatial and logic tests) do not increase with additional
days of schooling, but do increase modestly with age.

Our results are robust to a variety of alternative specifications, including different
functional forms for the conditioning variables. They are not, however, robust to
erroneously excluding the conditioning variables for birthdate, parish, and expected
graduation. The biggest differences show up for the crystallized intelligence tests
where the coefficient on school days falls by half for the synonyms test and to almost
zero for the technical comprehension test, two differences which are statistically
significant.

From a policy perspective, one of the more interesting questions is whether the
cognitive returns to extra schooling are heterogeneous. If either low or high ability
individuals experience larger cognitive returns to schooling, then extra resources
spent on an appropriately-targeted group of students could have a high individual
and social return. Our last result is that the benefit of additional school days
is homogeneous for a variety of pre-determined characteristics which are strongly
correlated with cognitive ability. We find similar effect sizes based on past grades in
school, parental education, and father’s earnings. This suggests that extra schooling
can benefit students from a variety of backgrounds.

Taken together, our findings have important implications for questions about the
malleability of cognitive skills, schooling models of signaling versus human capital,
the interpretation of test scores in wage regressions, and policies related to the length
of the school year.

The remainder of the paper proceeds as follows. Sections 2 and 3 discuss
previous research, the difficulties in estimating a cognitive production function, and
our identification strategy. In Section 4, we describe our setting and the Swedish
data which make this study possible. Section 5 tests for the conditional randomness
of test dates, while Section 6 presents our main results, robustness checks, and
heterogeneity results. Section 7 discusses the importance of our findings.
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2 Previous Research

2.1 Literature Review

Researchers have long been interested in understanding the relationship between
schooling, age, and cognitive ability. Ceci (1991) provides a detailed survey of 200
studies across several disciplines that investigate the relationship between schooling
and the cognitive components of general intelligence. Most of the designs he reviews
are observational in nature – for example, correlations between cognitive tests and
completed years of schooling – and therefore likely to suffer from severe selection
bias.6 The worry in these studies is that students who have more schooling might
also have higher cognitive ability for unobserved reasons.

Given the challenges inherent in observational studies, researchers have looked
for sources of exogenous variation in schooling. Research in psychology, starting
with Baltes and Reinert (1969) and continuing with Cahan and Davis (1987, 1989)
to the present, has used a “between-grade level” discontinuity design. This approach
uses the fact that admission to elementary school is determined by date of birth
relative to a cutoff date. For example, in some states in the U.S., a child is eligible
to start kindergarten in a given year as long as she is age 5 by September 1. These
cutoff dates cause some students to be older than others when they start school,
with at least some of the age gap persisting into higher grade levels. Using a
regression discontinuity (RD) design, these studies compare the cognitive test scores
of students born immediately before versus immediately after the cutoff date, since
these students will have similar ages but different amounts of schooling. One problem
with this approach is imperfect compliance, as some parents delay or accelerate
school entry in violation of the enrollment cutoffs. If noncompliance is correlated
with unobserved factors, this will bias the estimates. Most studies in psychology deal
with this issue by excluding non-compliers; however, this results in a non-random
sample which could also create a bias.

Recent work in economics recognizes the problem of noncompliance and uses
assigned school start date (rather than actual start date) as an instrument in an RD
framework. Research which takes this approach includes Bedard and Dhuey (2006,
2007), Black, Devereux, and Salvanes (2011), Cascio and Lewis (2006), Cascio and
Schanzenbach (2007), Crawford, Dearden, and Meghir (2010), Datar (2006), Fertig

6Other observational designs Ceci reviews include the effect of school absences, delayed school
entry, and dropping out of school on cognitive scores. Researchers have also examined historical
trends in the schooling-IQ link. These observational studies generally find a positive relationship
between schooling and the development of cognitive abilities. Many of the studies Ceci reviews are
based on small samples (tens or hundreds of observations).
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and Kluve (2005), Fredriksson and Ockert (2005), Leuven et al. (2004), McEwan
and Shapiro (2008), and Puhani and Weber (2005).7 These papers generally find
a sizeable link between schooling and cognitive ability. For example, Bedard and
Dhuey’s estimates for 19 different countries imply that students who are 11 months
younger, and therefore have less schooling than their peers, score 4-12 percentile
lower on standardized tests in fourth grade and 2-9 percentile lower in eighth grade.8

2.2 Challenges for Existing Studies

While the previous literature makes important contributions to our understanding of
the relationship between schooling and cognitive skills, it also faces several potential
issues. First, school entry laws may not be valid instruments for educational
attainment. As Bedard and Dhuey (2006) point out, relatively older children in
the same classroom may be treated differently (e.g., be placed in more advanced
programs) or experience fewer social problems; Cascio and Schanzenbach (2007)
provide evidence that relative age harms disadvantaged children the most. Elder
and Lubotsky (2009) document several pathways through which school entry laws
could affect outcomes other than through educational attainment. They find that
entrance start dates are correlated with school performance, grade repetition, and
diagnoses of learning disabilities. Moreover, some studies have found that students
starting school at a younger age are less likely to drop out of high school, at least in
the U.S. where there are also age-based compulsory education laws (Angrist and
Krueger 1991, Dobkin and Ferreira 2007).

Another challenge for many existing studies is that age at the time of the test,
school start date (and hence cumulative schooling), and birthdate are perfectly
collinear. The reason for this is the test date is usually the same for all individuals.
By definition age at test equals test date minus birthdate, so if test date is fixed,
independent variation in age can only be achieved through variation in birthdate.
A similar relationship exists for cumulative schooling. As we explain in the next
section, studies based on a common test-taking date are not nonparametrically
identified, but must impose some structure on how birthdate affects cognitive skills.

Most papers do not separate out age from cumulative schooling; papers that do
are required to impose at least some restrictions on how birthdate affects cognitive

7Prominent papers using school entry cutoffs in different settings include Angrist and Krueger
(1991, 1992) and McCrary and Royer (2006). Sims (2008) looks at a law change in Wisconsin
which prohibited schools from starting instruction before September 1.

8There is also a related literature which uses structural modeling to estimate the production
function for cognitive and noncognitive skills (e.g., Cunha and Heckman, 2008; Cunha, Heckman,
and Schennach, 2010; Hansen, Heckman, and Mullen, 2004).
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skill formation. Black, Devereux, and Salvanes (2011) assume birthdate is random,
at least after conditioning on family fixed effects. Cascio and Lewis (2006) and
Crawford, Dearden, and Meghir (2010) use variation in cutoff dates across U.S.
states and local areas in Britain, respectively, to separate out age from schooling.
Their implicit assumption is that schooling cohort effects (which are a function of
birthdate through cutoff dates) do not directly affect cognitive skills.9

As we empirically document later in our paper, a child’s birthdate does not
appear to be random and controlling flexibly for birthdate turns out to be important.
Indeed, previous work has found that season of birth is associated with a variety of
negative outcomes (see Buckles and Hungerman, forthcoming; Bound and Jaeger
2000; Dobkin and Ferreira 2010; and Cascio and Lewis 2006).10 While there could
be more than one reason for these associations, Buckles and Hungerman document
that mothers of winter-born children in the U.S. are more likely to be teenagers,
unmarried, and high school dropouts. A related pattern is also true for our Swedish
data; as we document later, we find that higher socioeconomic women tend to have
their children disproportionately in March and April (after the December 31 cutoff
date for school entry in Sweden).

Our approach is fundamentally different from the literature which uses variation
based on assigned school start dates. We take advantage of conditionally random
variation in test dates. This setting gives us a quasi-experimental setting to estimate
the effect of schooling and age on cognitive test scores, without the need for either
an instrument or assumptions about birthdate. Our approach is also somewhat
different since we look at additional days of schooling within a grade level rather
than different years of schooling across grade levels. We explain our methodology in
detail in the next section.

3 Identifying Schooling’s Effect on Cognitive Skills

3.1 Production Function for Cognitive Skills

Cognitive skill formation could depend on a variety of factors, including the current
amount of schooling an individual has been exposed to and age. A general model

9In theory, an RD design does not need to make restrictions on season of birth effects, but some
structure is often placed on these effects for precision, including modeling season of birth effects
with quarter of birth or month dummies as in Cascio and Lewis (2006) or linearity as in Crawford,
Dearden, and Meghir (2010). However, due to the very nature of cutoff dates, when they are used
as an instrument, restrictions must be placed on schooling cohort effects.

10For example, Buckles and Hungerman report that season of birth is associated with schizophre-
nia, autism, menopausal severity, shyness, suicide, and life expectancy. Negative effects are usually
correlated with births during the winter months.
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for the production of cognitive skill, yit, is given by:

yit = f(Sit, Ait, Xit, Bi, Pi, Gi) (1)

where for individual i taking a cognitive test on date t, Sit is days of schooling as
of the test date, Ait is age on the test date, Xit is a vector of other (potentially)
time-varying factors, Bi is birthdate, Pi is parish of residence (a small geographic
area), and Gi is expected graduation (a dummy for whether a student plans on
graduating the year they turn 18). Birthdate, parish, and expected graduation
play an important role as conditioning variables in what follows, which is why we
list them separately from other Xit’s. The formulation in equation (1) allows for
the possibility that cognitive skills develop over time. It suggests that cognition
could be malleable in response to general maturation with age as well as via formal
instruction in schooling.

To allow for empirical estimation, we consider a production function which is
additively separable in inputs and an error term eit:

yit = α + βSit + γAit + δXit + g(Bi) +
∑

j

θj(Pi = j) + πGi + eit (2)

where j indexes parishes. In the empirical work, we will consider various specifications
for the function g(·) of birthdate.

The first concern for consistent estimation of β is reverse causation, as it is likely
that completed schooling is a function of cognitive ability. This is problematic for
datasets where individuals (or their parents) can choose or influence the amount of
schooling to receive before taking the cognitive test.

The second challenge is that in many datasets schooling and age are perfectly
collinear. Age at the time of the test equals cumulative school days plus cumulative
nonschool days, so if all individuals take the test on the same date and start school
on the same date, there is no independent variation in school days and nonschool
days (and hence age) for individuals with the same birthdate. Another way of saying
this is that since age equals test date minus birthdate, if test date is fixed, variation
in age and schooling can only be achieved through variation in birthdate. This
means that studies based on a common test-taking date (and a common school start
date) are not nonparametrically identified, but must impose some structure on how
birthdate affects cognitive skills.

A related set of problems arise because school days and age are both functions of
birthdate in observational data.11 As others have pointed out, and as we verify with

11To see this, note that age = cumulative school days + cumulative nonschool days = test date -
birthdate. Many studies do not distinguish between school days and age.
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our dataset, cognitive ability varies by date of birth (both via birth day and birth
cohort effects). This means the omission of age controls will cause the estimates of
β to be biased. More generally, any omitted variables related to birthdate and test
date will also bias the coefficient on schooling.

3.2 Using Random Variation in Test Dates

The ideal experiment to estimate the effect of schooling on test scores would randomly
vary days in school. While our setting does not directly manipulate the number of
school days experimentally, it does provide (conditionally) random variation in the
date individuals are assigned to take cognitive tests. This quasi-experimental setting
allows for consistent estimation of the effect of schooling on test scores without the
need for instruments or additional assumptions.

To begin, first consider the case where individuals are randomly assigned a test
date. We will then discuss the additional issues that arise when test date is randomly
assigned conditional on covariates. Remembering that age equals test date minus
birthdate, random variation in test date provides random variation in age only after
conditioning on birthdate. Likewise, recognizing that school days plus nonschool
days equals age, school days are also only random after conditioning on birthdate.
This discussion makes clear that random assignment of test date does not imply
unconditionally random variation in either schooling or age at test date. But random
assignment of test date, t, does imply random variation in schooling and age after
conditioning on birthdate, so that schooling and age are independent of the error
term in equation 2 conditional on birthdate:

Random Assignment of t⇒ (Sit, Ait)|Bi ⊥ eit. (3)

In our setting, the assignment of test date is random only after conditioning on
covariates. As we explain in more detail in Section 4, in advance of military service,
every enlistee took a battery of cognitive skill assessments. To facilitate this testing,
the military was provided with information on an individual’s name, date of birth,
address (grouped by parish), and in some cases, expected graduation date. It used
this limited information to assign a test date close to an individual’s 18th birthday,
taking into consideration transportation and other logistical issues (there are only
6 testing centers, each with limited capacity, throughout the country). They did
not use any other information in assigning test dates besides birthdate, parish, and
expected graduation.

This assignment process creates conditionally random variation in test taking
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dates, where the conditioning variables are now birthdate, parish, and expected
graduation. Therefore, in our setting, schooling and age are independent of the error
term after conditioning on date of birth, parish, and expected graduation:

Random Assignment of t|Bi, Pi, Gi ⇒ (Sit, Ait)|Bi, Pi, Gi ⊥ eit. (4)

The assignment process provides a second reason for why birthdate must be flexibly
accounted for. It also indicates that parish of residence and expected graduation
must be conditioned on as well.

Since we have conditionally random assignment of test dates, we can separately
identify cumulative school days from cumulative nonschool days (and hence age).
This is true even for two individuals with the same birthdate, since variation in test
dates implies differing amounts school and nonschool days. We have coded up the
school year calendars in Sweden for our sample period to separate school days from
nonschool days.

As equation 4 makes clear, since test dates are conditionally random, the only
requirement for consistent estimation of equation 2 is that birthdate Bi, parish
Pi, and expected graduation Gi are adequately accounted for. In our empirical
implementation, we will control flexibility for these variables and explore robustness
using alternative specifications. Due to the conditionally random assignment of test
dates, it does not matter whether other pre-determined covariates Xit are included
in the regression, an implication we test empirically. The reason to include other
control variables is solely for efficiency gains in estimation.

While identification does not require any further assumptions, our formulation of
the production function assumes the marginal effect of an additional day of school
is the same, regardless of when a school day occurs during the year. The model
also assumes the marginal effect of an additional nonschool day has a homogeneous
effect. The first assumption means, for example, that a school day in September has
the same effect as a school day in April. The second assumption means, for example,
that a day of summer vacation has the same effect as a day during Christmas break.12

4 Background and Data

Our empirical analysis is based on administrative register data obtained from the
Swedish National Service Administration. These data contain information on every

12When we test these assumptions empirically, we do not reject our specification, although it
should be noted the tests have low power. With more data and identifying variation, each of these
assumptions could be relaxed.
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individual who enlisted in the military between 1980 and 1994. The reason for
choosing this sample is the cognitive assessments administered by the military (our
dependent variables) were based on the same battery of four tests during this time
period. Our independent variables of interest, the number of school days and the
number of nonschool days, are calculated from school calendars.

We have also merged in data from administrative records maintained by Statistics
Sweden in order to obtain more detailed demographic and background information
on the enlistees. In particular, we have administrative records on completed years
of schooling as of 2003, parental education as of 1999, father’s earnings in 1980,
and for a subset of cohorts, information on exit exam grades in math and Swedish
when graduating from 9th grade. These variables will be utilized to test for random
assignment and to explore whether there are heterogeneous returns to schooling on
cognitive ability.

4.1 Logistics of the Enlistment Procedure

All males in Sweden, with a few exceptions, were required to show up at a military
enlistment center on an assigned date around their 18th birthday during our sample
period.13 The enlistment process took one day, and involved filling out paperwork,
a basic health screening, and a series of physical and cognitive tests. The tests were
used to help assign individuals to various tasks upon entry into military service.
Enlisted males generally began their military service, which lasted 11 months on
average, after finishing any formal secondary school education.

Our approach exploits random variation in the timing of enlistment, and hence
when individuals take the cognitive tests. The way the enlistment process works
generates conditionally random variation in the number of days between an indi-
vidual’s 18th birthdate and the date of enlistment. This exogeneity is due to the
fact that enlistees do not choose their date of enlistment; rather the military assigns
enlistment dates which are conditionally random. Enlistees had strong incentives to
comply with the assigned date of enlistment, with failure to show up resulting in
fines and eventual imprisonment.14

The military was provided with two pieces of information about individuals –
13Exceptions included individuals who have severe handicaps, are currently in prison, are

institutionalized due to mental disorders, are non-citizens, or who live abroad (and can therefore
postpone their enlistment date until they return to Sweden). This last group is primarily comprised
of individuals who study abroad during secondary school, and therefore enlist the year they return
to Sweden at age 19. Sweden ended compulsory military service in 2010.

14Assigned enlistment dates were strictly enforced. For example, if an enlistee was sick on their
assigned day, they still had to show up to the enlistment office unless they had a signed excuse
note from a doctor.
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their birthdates and their parish of residence – which they used to assign enlistment
dates.15 Some enlistment offices also used information on expected graduation date.
The variation in enlistment dates around an individual’s 18th birthday is a result
of logistical constraints faced by the military. The goal was to have all individuals
enlist close to their 18th birthday, but there were transportation issues and capacity
constraints at the local enlistment centers. The military arranged for transportation
as needed, purchasing blocks of train tickets for enlistees or chartering buses in more
rural areas. The enlistment offices are closed over Christmas break and for 2 months
during the summer. The military had six regional offices, each with responsibility
for a defined geographical area of Sweden. When planning the enlistment dates
for the coming year, each office was given a list of all males turning 18 during the
upcoming year. In addition to information on birthdate, the military was also given
the enlistees address by the local parish. Based on these two pieces of information,
the regional offices tried to assign enlistment dates close to individual’s 18th birthday,
but in a way which also satisfied the logistical constraints involved with travel, being
able to process a limited number of individuals each day, and enlistment office
closure periods.

Most enlistment offices did not use any information other than birthdate and
parish to assign enlistment dates (and hence test-taking dates). However, some
enlistment offices additionally used information on expected graduation date in some
years. The apparent reason is that enlistment offices wanted to process enlistees far
enough in advance of their commencement of military service. In Sweden during
our time period, individuals in the academic track in upper secondary school (the
group we focus on) took either three or four years to finish. Individuals in four year
programs had an additional year of schooling to complete before they would begin
serving in the military, so there was less time pressure to process them quickly. For
enlistment offices with enough capacity, they processed virtually the entire list of
candidates they received from the tax authorities in the same calendar year.

However, for enlistment offices with more severe capacity constraints, they
prioritized individuals who were in their last year of school. Since the tax authorities
only provided information on birthdate and parish, these more heavily constrained
enlistment offices sent out preliminary letters asking individuals whether they

15The enlistment procedure was established in a law passed in 1969. The legal statute tasked
the county tax authorities to gather information on all Swedish males turning 17 each year and
forward it to the military enlistment office by August 1 (Statute 1991:726, paragraph 6). The tax
authorities in turn collected the required information from each parish, which keeps up to date
records on the local population. The parish provided information on the name, birthdate, and
address for all eligible males in their jurisdiction. Enlistment orders with an assigned date were
sent out to each individual as a certified letter which had to be picked up from the local post office.
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expected to graduate at the end of the current academic year. They then sent out
formal enlistment orders with an assigned date to all individuals, where the assigned
date was based on birthdate, parish, and expected graduation.

The enlistment offices using expected graduation dates did not save this informa-
tion. However, we do observe a strong predictor of expected graduation, namely, the
student’s upper secondary school program. Most fields of study took three years to
complete, but the technical studies program could take four years to complete. We
therefore use the individual’s self-reported school program at the time of enlistment
as our measure of expected graduation.16 Since there is no record of which offices
used expected graduation to assign test dates or how the information was used from
year to year, we fully interact the enlistment office, enlistment year, and school
program indicator variables. We examine this proxy for expected graduation in
more detail in what follows.

Figure 1 plots the distribution of the total number of days between an individual’s
enlistment date and birthdate. In the figure, we normalize the distribution of age
at test date to be relative to age 18 (i.e., we subtract off 18 years). While most
individuals enlist within six months of their birthdate, there is substantial variation
within this time frame. The standard deviation of the difference in enlistment date
and birthdate is 108 days. The positive skew in the distribution is a consequence of
the military trying to process the list of individuals turning 18 within the calendar
year combined with enlistment centers closing in the summers.

For our approach to work, it is important that we condition our estimates on
the same set of variables as the enlistment offices. Doing so insures that we have
a quasi-experimental design with conditionally random variation in the number of
school and nonschool days, as discussed in section 3.2. We verified with several
current and former administrators and psychologists at the Swedish Defense Agency
that the only three variables provided to the military were name, date of birth, and
address (and hence parish code, the only geographic information used to assign
dates), and that some enlistment offices sent out a preliminary letter requesting
information about expected graduation date.17 In the next section we provide

16There are five academic school programs: business, humanities, social sciences, natural sciences,
and technical studies. The technical studies program is the most popular, with 41% of our sample
choosing it as their field of study. Individuals could also expect to graduate a year later if they
had previously studied abroad or repeated a grade, but these cases are relatively rare.

17We verified this information with Berit Carlstedt, formerly employed at the National Defense
College (on February 14, 2012), Bengt Forssten at the Swedish Defense Recruitment Agency (on
October 11, 2011), Ingvar Ahlstrand at the Swedish Defense Recruitment Agency (on October 11,
2011), and Rose-Marie Lindgren, chief psychologist at the Swedish Defense Recruitment Agency
(on March 16, 2012). Information about the preliminary letter requesting expected graduation date
was obtained from Ove Selberg at the Swedish Defense Recruitment Agency (on June 20, 2012).
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empirical evidence that assignment date appears to be random after conditioning
on birthdate, parish, and expected graduation. As we show later, the birthdate and
parish conditioning variables matter empirically, as individuals born at different
times of the year or living in different parishes score differently on cognitive tests.
In contrast, the expected graduation conditioning variables make little difference to
our estimates once the parish and birthdate controls are conditioned on.

4.2 Cognitive Tests

Cognitive skills are measured during the enlistment procedure using what is called
the “Enlistment Battery 80.” The tests are similar in style to the Armed Services
Vocational Aptitude Battery (ASVAB) in the U.S. There are separate paper and
pencil tests for synonyms, technical comprehension, spatial ability, and logic. Each
of these four tests consists of 40 items presented in increasing order of difficulty and
is slightly speeded (see Carlstedt and Mårdberg 1993).

In the synonyms test, a target word is presented and the correct synonym needs
to be chosen among four alternatives. This test is similar to the word knowledge
component of the ASVAB and is meant to measure verbal ability. The technical
comprehension test is comprised of illustrated and written technical problems,
with a choice of three alternative answers. It has similarities with the mechanical
comprehension portion of the ASVAB. The test which measures spatial ability is
referred to as the metal folding test. The goal is to correctly identify the three-
dimensional object that corresponds to a two-dimensional drawing of an unfolded
piece of metal. In the logic test, a set of statements, conditions, and instructions are
presented and a related question must be answered using deductive logic. Example
test questions can be found in Appendix Figure A1.

The four tests are meant to capture two different types of intelligence. The
synonyms and technical comprehension tests are examples of crystallized intelligence
tests, while the spatial and logic tests are examples of fluid intelligence tests. The
distinction will be important when we discuss our findings, so we provide a brief
explanation of these two types of intelligence.

Cattell (1971, 1987) originally developed the concepts of crystallized and fluid
intelligence as discrete factors of general intelligence. Crystallized intelligence is
supposed to measure the ability to utilize acquired knowledge and skills, and therefore
is closely tied to intellectual achievement. Fluid intelligence, on the other hand,
is meant to capture the ability to reason and solve logical problems in unfamiliar
situations, and should therefore be independent of accumulated knowledge. Fluid
intelligence is often measured by tests which assess pattern recognition, the ability to
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solve puzzles, and abstract reasoning. Crystallized intelligence tests are much more
focused on verbal ability and acquired knowledge. Different tests have been designed
by psychologists to capture each type of intelligence. For example, the commonly
used Wechsler Adult Intelligence Scale (WAIS-III) has both a fluid intelligence
portion (named performance IQ) and a crystallized intelligence portion (named
verbal IQ).

4.3 School Days and Nonschool Days

The Swedish school system consists of compulsory primary school (from the ages
of seven to 16) as well as an optional secondary school (from age 16 up to age 19).
Generally, everyone born in the same calendar year starts primary school together
in August the year they turn seven, so that those born in January will be the oldest
within each schooling cohort.18 Secondary school splits into two tracks: a two-year
program consisting of vocational training and a three- or four-year academic program
which prepares students for university studies. Since enlistment usually occurs in
the months around an individual’s 18th birthday, to facilitate variation in school
days, we limit our sample to young men enrolled in the 12th grade (i.e., those in
academic programs).19 While focusing on this sample may limit the external validity
of our findings, it does not affect internal validity.

In total, there are around 180 school days and 185 nonschool days over the year
in Sweden, which corresponds closely to the number of school days in the US and
many other EU countries (OECD 2011). Separating the effect of school days on
cognitive ability from the effect of nonschool days relies on the fact that the two are
not perfectly correlated across individuals. Based on school calendars for the period
1979-1994 we are able to calculate the exact number of school days and nonschool
days between the day of enlistment and the 18th birthday for each individual in the
data. The two longest periods of consecutive nonschool days are summer vacation
(10 weeks) and Christmas break (2.5 weeks). There are also two other week-long
school breaks during the spring semester, one in February (winter break) and one
in the spring (Easter break), as well as ordinary weekends and other miscellaneous

18There are also a small number of individuals who start school earlier and those that are held
back a year. According to Fredriksson and Öckert (2005) three percent of all children born from
1975 to 1983 started school earlier or later than intended. Unfortunately, we cannot distinguish
these individuals in our sample, and hence, a small number of individuals will be included in the
analysis that have already left school by age 18.

19In our data, 16% of young men drop out of school after finishing compulsory primary school,
50% study in a two-year vocational program, and 34% study in a three- or four-year academic
program. While it is possible in theory to get variation in school days for individuals in vocational
programs who enlist before June of their 11th grade year (their last year), there are not enough of
these observations.
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nonschool days. The timing of the February break varies geographically and the
timing of the Easter break varies geographically and chronologically, facts we take
into account when calculating school and nonschool days.

As Figure 2 shows, the quasi-random assignment of test dates generates substan-
tial variation in the number of school days in our sample. As we did for Figure 1,
the number of school days is normalized to be relative to one’s 18th birthday. The
standard deviation for school days in our sample is 51 days. A sizeable amount
of variation exists even after accounting for the conditioning variables used by the
military to assign enlistment dates. Controlling for birthdate (birth week fixed
effects), cohort (yearly fixed effects), parish (parish fixed effects), and expected
graduation (enlistment office × enlistment year × school program fixed effects) in a
linear regression, residual days of schooling has a standard deviation of 39 days.

4.4 Sample Restrictions

We make a few additional sample restrictions to be able to cleanly estimate the effect
of schooling on cognitive skills. While the restrictions may limit the generalizability
of our findings, they should not affect the internal validity of our estimates, since
the restrictions are based on variables observed before enlistment dates are known.

First, we exclude non-native Swedes, defined as those who were born abroad or
who have at least one parent born abroad. These cases constitute 15 percent of the
population.20 In our framework, separating school days from nonschool days requires
that individuals be enrolled in school the year they are tested. We therefore restrict
our estimation sample to all men who were enrolled in a three or four year academic
program in high school. This means we will not study the effect of extra school
days for those individuals who drop out of secondary school or enroll in two-year
vocational training, since many of these individuals will already have completed
school prior to enlistment.21 We further restrict the sample to individuals turning
18 during the year they enlist. This restriction largely excludes students studying
abroad when they are 18.22 We further exclude the 1966 and 1967 birth cohorts

20Non-natives have a much lower enlistment rate since less than fifty percent are Swedish citizens,
and only citizens were required to enlist.

21Categorization into academic tracks is based on two sources of information: self-reports at
the time of enlistment and registrar information on completed level of education as of 2003. After
limiting the sample to those enrolled in a three or four year program based on self reports, we
then discard individuals with less than 12 years of completed education in 2003. The second step
eliminates an additional 2% of observations.

22It is not uncommon for Swedes to study abroad for a year during secondary school. Roughly
16% of the population do not enlist until they are 19; this is largely due to study-abroad students
returning to Sweden at age 19 and students in four-year programs whose enlistment processing
was delayed as described in Section 4.1.
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since information on an enlistee’s scores for the four cognitive tests is missing for
two-thirds of observations in the administrative dataset. We also exclude individuals
affected by the teacher strike in 1989, when school was canceled for most of November
and December. Finally, we drop enlistees near the end of 1994 who take a new and
different battery of cognitive tests.

After these restrictions, we are left with a sample of 128,617 native males who
were attending secondary school at the time of enlistment and for whom there is
full information for our key variables.

5 Conditional Randomness of Test Dates

As described in section 3.2, causal identification relies on test dates being condition-
ally random. As long as an individual’s test date is conditionally random, both age
at test date and number of days spent in school will vary randomly across individuals.
As discussed in 4.1, date of birth, parish, and for some enlistment offices, expected
graduation date, are the only variables used by the military to assign enlistment
dates (and hence test dates). In this section, we provide empirical support that
this is the case. We also show why failure to control for both birthdate, parish,
and expected graduation date could lead to biased estimates, as these variables are
correlated with a variety of outcomes which are predictive of cognitive test scores.

5.1 Tests for Conditional Randomness

If age at test date and number of school days are conditionally random, they
should both be unrelated to background characteristics after flexibly accounting for
the conditioning variables. It is particularly important that age and school days
are not correlated with variables that predict cognitive skills, since these types of
correlations can create a bias. In our dataset, we have several variables which are
highly predictive of cognitive test scores: math and Swedish grades in 9th grade,
mother’s and father’s education, and father’s income.23 The relationship between
these variables and cognitive scores is presented in Table 1.24 The differences in

23Grades in math and Swedish each range from 1 to 5. Grades follow roughly a normal
distribution; for example, in Swedish 3% score a 1, 29% score a 2, 45% score a 3, 21% score a 4,
and 3% score a 5 in the entire population. The fact that we have relatively more individuals in the
high grade category reflects the fact that our sample is restricted to students who went on to a
three year academic program.

24Each of the cognitive tests is normalized to be mean 0 and standard deviation 1 based on the
entire population of test takers, and not just those in our sample. Since our sample is comprised of
individuals enrolled in 12th grade (many individuals stop schooling before 12th grade), and this
group has higher average cognitive test scores, this explains why the means reported in Table 1 are
greater than zero for every subcategory.
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cognitive test scores by background characteristics are large. For example, students
with low math grades in our sample score almost half a standard deviation lower on
the technical comprehension test compared to students with higher math grades (.51
- .03 = .48). Similarly, individuals whose fathers have less than 12 years of schooling
score 0.15 standard deviation lower on the technical comprehension test. Large gaps
by background characteristics are found for the other tests as well, regardless of
whether the test is measuring crystallized or fluid intelligence. All of the differences
by background characteristics in Table 1 are statistically different from each other
at the 1% level.

Since each of the background variables are observed before enlistment, they
should be uncorrelated with test date conditional on birthdate, parish, and expected
graduation. To empirically test this, we regress age at test date and number of
school days on each background characteristic, including the variables the military
used to assign test dates as additional controls. For birthdate, we include 52 birth
week dummies (one for each week of the year) and 13 birth cohort dummies. We
also include roughly 2,500 parish dummies, which is the level of geographic detail
the military uses to organize enlistment dates.25 As explained previously, we do not
directly observe expected graduation or which enlistment offices used this variable
over time. Therefore, we use school program (i.e., field of study) as a proxy for
expected graduation in four versus three years, and interact this with enlistment
office and year. The estimates which control for the entire set of conditioning
variables appear in column 5 of Tables 2 and 3. Table 2 reports results for age at test
date, while Table 3 reports results for number of school days. As expected, whether
one uses age or school days as the dependent variable, the estimated coefficients
using this specification are small and statistically insignificant. The estimates are
also not jointly significant in either table. These regressions provide strong empirical
support for the claim that both age and school days are conditionally random.

In the other columns of Tables 2 and 3, we run a series of similar regressions as we
did for column 5, except that we selectively exclude or include controls for birthdate,
parish, and expected graduation. The purpose of these columns is to show that age
and school days are not unconditionally random. The first specification (column
1) includes no birthdate, parish, or expected graduation controls. The resulting
coefficients are generally larger in magnitude compared to column 5 for both tables,
and statistically significant in many cases. For example, students who earn high
grades in Swedish in 9th grade are 4.8 days older and have 4.8 more days of school

25Parish boundaries change over time, so that there are closer to 1,500 parishes at any one time;
we assign a unique dummy each time a parish’s boundary changes.
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when they take the cognitive tests. Across the two tables, significant associations
are found for math grades, mother’s education, father’s education, father’s earnings,
and whether background variables are missing in the dataset as well. The joint
significance of these background variables is captured by the sizeable and significant
F-statistics appearing in the tables.

The next set of regressions (column 2) adds in dummies for each parish. These
controls change many of the coefficients, but six out of nine estimates are large and
statistically significant in both the age and school days regressions. Column 3 adds
in controls for birth cohort and age (but not parish dummies). As in column 2,
these controls alter many of the coefficients, but many of the coefficients remain
statistically different from zero. Column 4 adds in expected graduation controls.
The F-test continues to reject the null that these background characteristics are
unrelated to age at test date and school days. Interestingly, the separate additions
of parish, birthdate, and expected graduation controls suggest different types of
correlations for these three sets of controls. Only when all three sets of controls are
included simultaneously are the estimated coefficients close to zero and statistically
insignificant, as shown in column 5 in both tables.

5.2 Non-Randomness of the Conditioning Variables

We have documented that age at test date and school days appear to be random
only after conditioning on birthdate, parish, and expected graduation. To better
understand why failure to control for these conditioning variables could cause a bias,
in Figures 3 and 4 we show how background characteristics vary by season of birth.
In these figures we use the universe of all enlistees, as opposed to our estimation
sample which only includes individuals who were attending school at the time of
enlistment. Figure 3 plots the average years of education for mothers and fathers,
as well as father’s earnings, by enlistee’s month of birth. If births are distributed
randomly throughout the year, there should be no variation in these variables
through the year. Instead, the graphs reveal statistically significant differences by
season of birth. Births in March and April have more educated and higher wage
parents, especially compared to births in November and December. The pattern
is not linear, with a slight uptick in September as well. The fact that parents of
higher socioeconomic status avoid having their children near the end of the year
is particularly interesting when one recognizes the cutoff date for school entry in
Sweden is January 1. This cutoff date means that students born at the end of the
year will be the youngest children in their class, which some researchers have argued
hurts a child’s academic and social development.
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Figure 4 provides compelling evidence that academic performance is correlated
with an individual’s season of birth. Average grades in both Swedish and math
are highest for individuals born near the beginning of the year and decline almost
monotonically throughout the year. This pattern reveals that children who are the
oldest in their class do substantially better than those who are the youngest, earning
grades which are up to 5 percent higher on average. The patterns are striking,
although we cannot say whether they are due to relative age within a classroom or
differences in parental characteristics by season of birth.

The findings discussed in this section are important for more than just the
present study. Our results indicate that birthdate is not randomly assigned, and
that the way in which birthdate systematically varies is correlated with both age
at test date, school days, and cognitive achievement. As other researchers have
argued in different contexts (see footnote 4) this section provides a cautionary tale
for research which uses season of birth variables as instruments.

For the current paper, the key result is that after conditioning on birthdate,
parish, and expected graduation flexibly, both age at test date and number of school
days appear to be randomly distributed. This provides confirmatory evidence that
the military only uses these variables to assign enlistment dates and that we have a
conditionally random experiment.

6 Results

This section describes our empirical specification, presents the main results, and
conducts some robustness checks. It also explores whether there are heterogeneous
returns to school days and age.

6.1 Are Cognitive Skills Malleable?

A first-order question is whether cognitive skills, as measured by the four tests, are
fixed by age 18 or can develop further over time. We therefore begin our analysis by
presenting results of the effect of age on test scores. If older test-takers are observed
to have higher cognitive test scores, this provides strong evidence that cognitive
skills are malleable. Recognizing that age at test date equals the cumulative number
of school days plus nonschool days, in the next section we will separate out the
marginal effect of extra school days on cognitive development.

Our dependent variables are the test scores of the four cognitive ability tests.
The raw test scores range from 1 to 40, corresponding to the number of correct
answers on an exam. We standardize the scores to have a mean of zero and a
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standard deviation equal to one in the entire population of test takers (not just
those in our sample) in order to facilitate comparisons across the four tests as well
as with other studies. Our independent variable is age at test which by construction
equals enlistment date minus birthdate. We divide the age variable by 100 in the
regressions for ease of presentation.

Age at test date is exogenous only after conditioning on birthdate, parish of
residence, and expected graduation year. Therefore, we include flexible controls for
these variables in the analysis, using the same set of conditioning variables as in
column 5 of Tables 2 and 3. We also include several pre-determined variables in
the regressions, including controls for family size, parental education, parental age,
father’s earnings, grades in math and Swedish in 9th grade, and field of study in
high school. As we show in a robustness table, these additional variables do not
appreciably change the estimates, although they do decrease the standard errors by
around 10 percent.

Figure 5 graphically depicts the coefficient estimates for age from each of the four
cognitive test regressions. In each case, the aging effect is sizeable and statistically
significant. This provides strong evidence that both crystallized and fluid cognitive
skills change over time, with older individuals doing substantially better on the tests.
Individuals who are ten days older score approximately 0.4 percent of a standard
deviation better on the synonym, technical comprehension, and logic tests. The
estimate is half as large for spatial ability, which is a fluid intelligence test.

Other countries use similar tests for military enlistees as well, such as the Armed
Service Vocational Aptitude Battery (ASVAB) in the U.S. Cognitive tests are also
used for some job applications and for college entrance exams (including the SAT
and the GRE in the U.S.). Many academic researchers use these types of tests as
measures of cognitive ability in their research. Given the importance of these tests in
so many different areas, it is important to recognize that they are not fixed IQ tests.
Our results suggest that even as late as age 18, these types of skills are not fully
determined, but rather continue to improve over time. This is especially true for
the crystallized intelligence tests, but more surprisingly, it is also true for the fluid
intelligence tests which researchers used to think was fixed by early adolescence.

6.2 Main Results

The main focus of this paper is the effect of extra school days on cognitive devel-
opment. Since age at test date equals the cumulative number of school days plus
nonschool days, the previous section estimated the combined effect of the two types
of days. In this section, we separate out the effect of an extra school day above and

20



beyond a general aging effect.
Table 4 presents our baseline results. We use the same empirical specification as

we did in the previous section, but add an additional independent variable which
measures the number of school days. Remember that the age variable equals school
days plus nonschool days. Therefore, the coefficient on the age variable represents
the effect of aging by one day (regardless of type of day), while the coefficient on
the school days variable captures the extra effect when one more of these days is
spent in school.

For the crystallized intelligence tests, we find an extra 10 days of school instruction
raises cognitive scores for synonym and technical comprehension tests by 1.1 percent
and 0.8 percent of a standard deviation, respectively. To put these estimates in
perspective, they imply an additional year of schooling (180 days in Sweden) results
in test scores which are 21 percent of a standard deviation higher for synonyms and
14 percent for technical comprehension. This is the effect above and beyond any
general aging effect, which is small and statistically insignificant for both of these
tests.

The two tests which measure fluid intelligence show a different pattern. Both
the spatial ability and logic tests show a statistically significant, but modest aging
effect: individuals who are 10 days older perform between 0.3 and 0.5 percent of a
standard deviation better. In contrast to the first two tests, the extra impact of an
additional day of schooling is actually negative, although not statistically different
from zero. Note that these negative coefficients do not mean that school days lower
cognitive skills, since the total effect of a school day is the sum of the age coefficient
and the school days coefficient. Rather the negative coefficients imply that school
days improve performance on these two cognitive tests at a somewhat reduced rate
relative to a nonschool day. While the standard errors are large enough to prevent
precise conclusions, we interpret these results as evidence that schooling does not
significantly contribute to the development of fluid intelligence, at least as measured
by spatial or logical ability tests.

The contrast between the first two tests (synonym and technical comprehension)
and the second two tests (spatial ability and logic) are particularly interesting
when one remembers the distinction between crystallized and fluid intelligence. As
discussed in Section 4.2, fluid refers to intelligence which can be applied to a variety
of problems, while crystallized refers to intelligence which is more context specific.
Fluid intelligence has been linked to the prefrontal cortex and regions of the brain
responsible for attention and short-term memory. In contrast, crystallized intelligence
is related to areas of the brain associated with long-term memory. Crystallized
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intelligence is thought to be more malleable over time as individuals acquire more
knowledge and experience. But the relationship between each of these types of
intelligence and schooling is not well-understood.

With the distinction between the two types of intelligence in mind, we return
to the interpretation of Table 4. The synonym and technical comprehension tests,
which capture crystallized intelligence in a manner similar to the Wechsler Adult
Intelligence Scale, are strongly influenced by how much schooling an individual is
exposed to. Our estimates suggest that schooling is an effective means to add to an
individual’s cognitive skills in this dimension, as might be expected. In contrast,
it is interesting that the experiences gained on nonschool days seem to have very
little effect on these measures of crystallized intelligence, even though nonschool
experiences could in theory also be beneficial. In contrast, the spatial and logic
tests we study capture fluid intelligence. Our results suggest that fluid intelligence
is unaffected by additional amounts of schooling, even though it is modestly affected
by general aging.

These are important findings in the literature, as the prior research in psychology
which attempts to separate out schooling from aging on crystallized versus fluid
intelligence has estimated correlations rather than causal effects (Cahan and Cohen
1989, Cliffordson and Gustafsson 2008, Stelzl et al. 1995). The key advantage of
our design is that we use conditionally random variation, which allows for estimates
based on quasi-experimental variation as discussed in 3.2. Our findings also suggest
the common practice of averaging over both crystallized and fluid intelligence tests
may be inappropriate for some applications, as the two types of tests are differentially
affected by schooling and aging.

To illustrate the importance of flexibly controlling for birthdate and parish, in
Table 5 we report results which do not include these conditioning variables. Except
for the exclusion of the birthdate, parish, and expected graduation conditioning
variables, the analysis in Table 5 mirrors that of Table 4. The difference in estimates
are substantively important and point towards nontrivial omitted variable bias, as
reported in panel B. The biggest differences show up for the crystallized intelligence
tests. When the conditioning variables are erroneously excluded, the coefficient
on school days falls by roughly half for the synonyms test, from 0.112 to 0 .059.
For the technical comprehension test, the school days coefficient loses significance,
dropping to almost zero (from 0.078 to 0.015). Using a Hausman specification
test, these two differences are both statistically significant. While the estimated
coefficients for the fluid intelligence tests change somewhat, the differences are not
statistically significant. These findings demonstrate how failure to condition on
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birthdate, parish, and expected graduation variables change the estimates in ways
that lead to incorrect conclusions about the effect of schooling on cognitive skills.

6.3 Robustness

Table 6 provides a variety of robustness checks. For simplicity, we average the two
crystallized intelligence tests (synonyms and technical comprehension) and the two
fluid intelligence tests (spatial and logic). As before, we normalize the averaged
test scores to be mean zero and standard deviation one for the entire sample of test
takers. The first panel in the table presents results similar to Table 4, using the
two averaged test scores as the dependent variables instead of the four individual
test scores. For crystallized intelligence, the coefficient is a large and statistically
significant 0.111 for school days and close to zero for age, as expected given the
more disaggregated results in Table 4. For fluid intelligence, the coefficient on school
days is slighly negative and insignificant, while age has a modest but statistically
significant coefficient of 0.040.

If test dates are conditionally random, it should not matter whether other
pre-determined covariates (besides the conditioning variables of birthdate, parish,
and expected graduation) are included in the regression. In panel B, we test
this prediction empirically by excluding the control variables for father’s earnings,
parent’s age and education, family size, and math and Swedish grades. As expected,
the coefficients for both crystallized and fluid intelligence are very similar to those in
panel A. This finding is not because the control variables do not predict test scores.
The addition of these background controls increases the R-squared from 0.203 to
0.262 for crystallized intelligence and from 0.184 to 0.237 for fluid intelligence.

Panel C includes 365 birth day dummies as conditioning variables instead of
52 birth week dummies. The resulting estimates are similar to baseline. While
not shown in the table, it is important to recognize that less flexible functions of
birthdate can change the estimates. For example, including quarter of birth dummies
instead of 52 birth week dummies drops the coefficient on school days in column 1
from 0.111 to 0.070; similarly, including age linearly drops the coefficient from 0.111
to 0.051.

Panel D uses a more parsimonious set of controls for an individual’s residence.
Instead of using approximately 2,500 parish dummies as conditioning variables,
this panel uses 287 municipality dummies (parishes are embedded within the larger
geographical unit of a municipality). This change results in only modestly different
estimates.

In the next two panels, we explore our set of proxy variables for expected
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graduation. As a reminder, some enlistment offices conditioned on whether an
individual stated that they were planning on graduating this year or next year.
However, the military did not keep a record of this variable or which enlistment
offices used it. Since different school programs (i.e., fields of study) could take three
versus four years, we used this as our proxy for expected graduation, interacting it
with enlistment office and enlistment year. In panel E, we see what happens when
we completely omit these expected graduation conditioning variables. The estimates
in both columns change little when omitting these proxy conditioning variables. As
we demonstrated in Table 5, failure to jointly condition on birthdate, parish, and
expected graduation changed many of the estimates; panel E indicates that it is not
the expected graduation variables which drive the difference.

In panel F we use a different approach to assess the expected graduation condi-
tioning variables. Two of the six enlistment offices were very efficient at processing
enlistees. These two offices processed over 95% of enlistees during their 18th year.
These enlistment offices did not appear to be capacity constrained, and were therefore
unlikely to have sent out a letter asking about expected graduation date. Panel F
estimates the baseline model with the expected graduation variables for these two
offices.The estimates in panel F are similar to baseline, although the standard errors
double since this is a smaller sample.

In the last panel, we limit the sample to enlistees processed within 6 months of
their birthday to make sure that individuals who were processed very early or very
late are not driving the results. While this restriction reduces the sample by about
12%, it does not appreciably change our estimates.

6.4 Heterogeneity

From a policy perspective, one of the more interesting questions is whether the return
to schooling on cognitive ability is heterogeneous. In particular, do individuals with
lower initial cognitive ability gain more from additional days of schooling or is the
reverse true? If low ability individuals experience high cognitive returns to schooling,
then extra schooling resources spent on this group could have a high individual and
social return.

A priori, there is no clear answer to this question. Higher ability individuals may
absorb new information and new ways of thinking relatively better in the school
setting. Alternatively, if individuals have low initial cognitive ability due to a less
enriching home environment (e.g., due to lower family income or lower parental
education), then gains in cognitive ability could increase more rapidly in a structured
learning environment.
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While we do not observe baseline levels of cognitive ability in our dataset, we
do observe a variety of pre-determined characteristics which are correlated with
cognitive ability. Table 1 documents the raw differences in cognitive ability based
on grades in 9th grade, parental education, and father’s earnings. The gaps in
cognitive ability are all statistically significant and relatively large. For example,
individuals who earn high grades in school score approximately one-third to one-half
of a standard deviation higher on the cognitive tests. Individuals whose parents
are more educated and have high earnings also do better on cognitive tests. In
Table 7, we analyze whether there are heterogeneous returns to schooling based on
these pre-determined characteristics which are predictive of cognitive ability. As we
did for the robustness table, we continue to focus on the average of the test scores
measuring either crystallized or fluid intelligence.

Table 7 reports results which mirror the baseline specification in panel A of Table
6, but which allow for separate coefficients on the schooling and age variables by
background characteristic. We begin our discussion of this table by focusing on the
findings for crystallized intelligence.

The first panel interacts the school days and age variables with indicators for
whether the student had low or high math grades. The coefficient on schooling is
similar for crystallized intelligence tests whether or not the student received low
or high grades in math (.197 versus .190), even though the mean scores are very
different based on math grades (see Table 1). The coefficients for age based on math
grades are also not markedly different from each other. A very similar pattern holds
when one allows for separate coefficients based on Swedish grades. One thing to
remember for the results based on grades is that we only have information on grades
for birth cohorts from 1972 to 1976; this different sample explains why the coefficient
estimates are somewhat different in magnitude compared to the baseline results. We
also find that mother’s education does not markedly affect the coefficients on school
days or age. Children of fathers who are highly educated have a somewhat larger
coefficient for extra school days, but this difference is not statistically significant.
Finally, looking at family income (as measured by father’s earnings), we again find
very little evidence for heterogeneous impacts for either school days or age.

Turning to the results for fluid intelligence in column 2, we again find little
evidence for differential returns based on background characteristics. None of the
pairwise comparisons are statistically different from each other at the 10% level.
The coefficients jump around somewhat for math and Swedish grades, but this is
not unexpected given the smaller sample size (and larger standard errors) for these
two panels. The effects based on parental education and father’s earnings appear to
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be fairly homogenous for both the schooling and age coefficients.
These results are interesting since they indicate that both high and low ability

students benefit from additional schooling. While we do not have enough precision
to rule out small differences by background characteristics, our interpretation of the
results is the marginal return to extra school days is remarkably homogeneous, even
for groups with very different abilities. From a policy perspective, our findings are
suggestive that providing additional school resources or encouraging further study
will aid a variety of students.

7 Conclusion

While scores on cognitive ability tests are positively associated with schooling,
estimating the causal effect has proven difficult due to reverse causality and the
difficulty in separating out confounding factors such as age at test date, relative age
in the classroom, and season of birth. The best studies to date link schooling to
cognitive skills using school cutoff dates as an instrumental variable, which solves
some problems but also requires additional assumptions. In this paper, we use a
fundamentally different identification approach which exploits conditionally random
variation in assigned test date. We take advantage of this quasi-experimental setting
to estimate the effect of schooling and age on cognitive test scores, without the need
for either an instrument or assumptions about birthdate.

Our key result is that additional schooling causally increases performance on
crystallized intelligence tests. We find that 10 more days of school instruction
raises cognitive scores on synonyms and technical comprehension tests (crystallized
intelligence tests) by approximately one percent of a standard deviation. Extra
nonschool days have no effect on crystallized intelligence. In contrast, test scores
measuring fluid intelligence (spatial and logic tests) do not increase with extra
schooling, but do increase modestly with age. These findings point out that cognitive
test scores are malleable into young adulthood and may therefore not be comparable
across individuals who had different levels of education or were of different ages
when they took the test.

Taken together, our findings have several important implications for labor markets.
Focusing on the crystallized intelligence tests since they had a non-zero effect
on schooling, we can perform several simple calculations. While each of these
calculations is based on several assumptions and extrapolations, their purpose is to
help quantify the important role schooling plays in the production of cognitive skills.

First, not all of the observed labor market returns to schooling can be attributed
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to signaling, as our findings suggest an important learning component. Extrapolating
our estimate, an additional year of schooling (180 days) raises crystallized test scores
by about one-fifth of a standard deviation. While one may be tempted to attribute
cognitive skill gaps across education categories to self selection, our results indicate
a sizeable portion of the gap is likely due to schooling increasing cognitive skills.

Second, our findings provide insight into the interpretation of schooling coefficients
in standard wage regressions. A simple calculation reveals that approximately 18%
of the return to an extra year of schooling in wage regressions (which do not control
for cognitive skill) can be attributed to the increase in cognitive ability resulting
from an extra year of schooling.26

Finally, our results suggest that increasing the length of the school year could
improve cognitive ability and benefit students from a variety of backgrounds. Pro-
posals to extend the school year in the U.S. typically suggest an extra 20 days be
added to the school year, often with the explicit goal of helping students be more
globally competitive.27 Among OECD countries in 2009, the U.S. placed 14th out
of 33 in a reading test administered by the OECD. If the school year was extended
by 20 days starting in kindergarten and if our results can be applied cumulatively
to other grade levels and be compared to the OECD test, the U.S. would improve
its standing from 14th to 4th place in the rankings.28

26This calculation uses estimates from the literature that the return to an extra year of schooling
is 8% and the return to a one standard deviation increase in cognitive ability is 7%, and combines
these values with our estimate that an extra year of schooling raises crystallized test scores by
one-fifth of a standard deviation.

27President Obama and Education Secretary Arne Duncan have both advocated for lengthening
the school year to help American students compete globally. While the school year is currently
about 180 days in both Sweden and the U.S., in many countries it is 200 days or more.

28The OECD administered the Programme for International Student Assessment (PISA) by
giving standardized reading, math, and science tests to 9th graders. Twenty extra school days
from kindergarten up to 9th grade results in an increase of approximately 200 school days, which
implies 22% of a standard deviation increase on the synonyms test based on Table 4. Twenty-two
percent of a standard deviation translates into an additional 22 points on the PISA, which would
increase the U.S. ranking from 14th to 4th.
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Figure 1. Distribution of age at test date.

Notes: Age as of the test date is normalized to be relative to age 18.

0
.0

02
.0

04
.0

06
.0

08
.0

1
D

en
si

ty

−200 −100 0 100 200
Number of school days

Figure 2. Distribution of number of school days.

Notes: Number of school days as of the test date is normalized to be on the same scale as
age at test date, i.e., relative to age 18.
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Figure 3. Socioeconomic background and month of birth.

Notes: Sample includes the universe of all enlistees. N=964,471 in the top graph,
N=827,550 in the middle graph, and N=1,018,724 in the bottom graph.
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Notes: Regression coefficients from separate regressions of cognitive test scores on age
at test date, with ninety-five percent confidence intervals. Regressions do not include
a variable for the number of school days, but do include the conditioning variables of
birthdate, parish of residence, and expected graduation as well as controls for father’s
log earnings, mother’s and father’s age and age squared, and dummies for family size,
mother’s and father’s years of education, and math and Swedish grades. When a covariate
has a missing value for an observation (or is zero for earnings), we assign the mean value
to the covariate and assign the value of one to a dummy variable which indicates whether
the covariate is missing.
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Table 1. Mean cognitive test scores by background characteristics.

Crystallized Intelligence Fluid Intelligence
Technical

Synonyms comp. Spatial Logic N
(1) (2) (3) (4) (5)

A. Math grades
Low (1-3) 0.54 0.03 0.56 0.53 21,222
High (4-5) 0.86 0.51 1.05 1.09 27,447

B. Swedish grades
Low (1-3) 0.43 0.14 0.68 0.55 21,581
High (4-5) 0.96 0.42 0.97 1.08 27,088

C. Mother’s education
< 12 years 0.74 0.22 0.76 0.80 63,912
≥ 12 years 0.91 0.40 0.94 0.94 57,761

D. Father’s education
< 12 years 0.72 0.22 0.76 0.80 45,776
≥ 12 years 0.88 0.37 0.91 0.91 67,376

E. Father’s earnings
Below the median 0.77 0.27 0.81 0.83 64,200
Above the median 0.89 0.35 0.89 0.90 64,417

Notes: Each of the cognitive tests is normalized to be mean 0 and standard deviation 1 for the
entire population of test takers; our sample is comprised of 18 year old students enrolled in the
academic high school track, a group with higher average test scores. Math and Swedish grades are
from the 9th grade, with values ranging from 1 to 5, and are only available for the birth cohorts
1972-1976. Father’s earnings come from the year 1980, when most fathers were between the ages of
27 and 60. All pairwise comparisons are statistically significant at the 1% level.
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Table 4. The effect of age and schooling on cognitive skills.

Crystallized Intelligence Fluid Intelligence
Technical

Synonyms comprehension Spatial Logic
(1) (2) (3) (4)

School days / 100 0.112** 0.078** -0.011 -0.022
(0.023) (0.025) (0.029) (0.024)

Age in days / 100 -0.011 0.008 0.025* 0.048**
(0.011) (0.012) (0.014) (0.011)

Notes: N=128,617 in all columns. Age is measured as of the test date and is calculated by summing
up t he number of school days and nonschool days. All specifications include conditioning variables
for birthdate, parish, and expected graduation as described in the text, as well as controls for father’s
log earnings, mother’s and father’s age and age squared, and dummies for family size, mother’s
and father’s years of education, and math and Swedish grades. When a covariate has a missing
value for an observation (or is zero for earnings), we assign the mean value to the covariate and
assign the value of one to a dummy variable which indicates whether the covariate is missing.
**p-value<0.05, *p-value<0.10.

Table 5. The consequences of erroneously failing to condition on parish, birthdate,
and expected graduation variables.

Crystallized Intelligence Fluid Intelligence
Technical

Synonyms comprehension Spatial Logic
(1) (2) (3) (4)

A. Excluding all conditioning variables
School days / 100 0.059** 0.015 -0.033 -0.028*

(0.016) (0.019) (0.012) (0.017)
Age in days / 100 0.003 0.027** 0.034** 0.029**

(0.008) (0.009) (0.010) (0.008)

B. Difference compared to Table 4 using a Hausman test
School days / 100 0.053* 0.063** 0.022 0.006

(0.028) (0.031) (.031) (.029)
Age in days / 100 0.014 0.019 0.009 -0.019

(0.014) (0.015) (0.017) (0.014)
Notes: N=128,617 in all columns. The regressions in panel A use the same specification as Table
4 except they exclude the parish, birthdate, and expected graduation variables. In panel B, standard
errors based on Hausman (1978) are reported under the null hypothesis that both estimators are
consistent, but the estimator excluding the conditioning variables is more efficient; under the
alternative, the estimator excluding the conditioning variables is inconsistent. **p-value<0.05,
*p-value<0.10.
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Table 6. Robustness checks.

Crystallized Intelligence Fluid Intelligence
(synonyms + tech. comp.) (spatial + logic)

(1) (2)
A. Baseline

School days / 100 0.111** -0.019
(0.023) (0.025)

Age in days / 100 -0.002 0.040**
(0.011) (0.012)

B. No control variables (besides conditioning variables)
School days / 100 0.110** -0.020

(0.023) (0.026)
Age in days / 100 -0.002 0.040**

(0.011) (0.012)

C. Condition on 365 birth day dummies
School days / 100 0.117** -0.017

(0.023) (0.025)
Age in days / 100 -0.004 0.039**

(0.011) (0.012)

D. Condition on municipality dummies
School days / 100 0.097** -0.026

(0.022) (0.025)
Age in days / 100 0.004 0.043**

(0.010) (0.012)

E. Omit expected graduation conditioning variables
School days / 100 0.103** -0.010

(0.024) (0.027)
Age in days / 100 0.003 0.039**

(0.011) (0.012)

F. Limit sample to two enlistment offices with high efficiency
School days / 100 0.128** -0.036

(0.049) (0.055)
Age in days / 100 -0.001 0.063**

(0.023) (0.025)

G. Limit sample to enlistees processed within 6 months of birthday
School days / 100 0.115** -0.033

(0.024) (0.027)
Age in days / 100 -0.001 0.050**

(0.011) (0.013)
Notes: N=128,617 in panels A-E, 36,587 in panel F, and 113,621 in panel G. In panel F, high
efficiency defined as an office which processes over 95% of enlistees during their 18th year. See
notes to Table 4. **p-value<0.05, *p-value<0.10.
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Table 7. Heterogeneity by background characteristics.

Crystallized Intelligence Fluid Intelligence
(synonyms + tech. comp.) (spatial + logic)

(1) (2)

coeff. s.e. coeff. s.e.
A. Math grades
Low grades× school days 0.197** (0.050) -0.001 (0.056)
High grades× school days 0.190** (0.046) -.074 (0.052)
Low grades× age -0.047** (0.023) 0.036 (0.026)
High grades× age -0.036* (0.022) 0.071** (0.024)
N 48,669 48,669

B. Swedish grades
Low grades * school days 0.199** (0.050) 0.004 (0.056)
High grades× school days 0.188** (0.046) -0.078 (0.052)
Low grades× age -0.034 (0.023) 0.039 (0.026)
High grades× age -0.045 (0.021) 0.069** (0.024)
N 48,669 48,669

C. Mother’s education
Low education× school days 0.119** (0.028) 0.008 (0.031)
High education× school days 0.116** (0.029) -0.040 (0.032)
Low education× age -0.003 (0.013) 0.029** (0.015)
High education× age -0.007 (0.013) 0.049** (0.015)
N 121,673 121,673

D. Father’s education
Low education × school days 0.086** (0.032) 0.008 (0.035)
High education × school days 0.130** (0.028) -0.001 (0.031)
Low education × age 0.014 (0.015) 0.033** (0.017)
High education × age -0.015 (0.013) 0.030** (0.015)
N 113,152 113,152

E. Father’s earnings
Low earnings× school days 0.103** (0.028) -0.014 (0.031)
High earnings× school days 0.120** (0.027) -0.023 (0.031)
Low earnings× age 0.002 (0.013) 0.040** (0.015)
High earnings× age -0.006 (0.013) 0.040** (0.014)
N 128,617 128,617
Notes: See notes to Table 4. Grades are only available for the birth cohorts 1972-1976. **p-
value<0.05, *p-value<0.10.
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A.  Synonyms 

 
HOPFOGNING SKRÄP VÅGKAM GRENUTTAG 

    

Ett av de ord som står här ovanför betyder ungefär samma sak som BRÅTE. Klicka i rutan vid det ordet. 

Translation:  One of the words above is a synonym for BRÅTE.  Select the circle below that word. 

  

B.  Technical Comprehension 

 

 

 
 A 

 B  C 
 

    

På vilket stätt är det lättast att köra stenblocket I skottkärran, A eller B? Om det är lika lätt, sätt ett streck under C. 

Translation: Which position for the stone block makes it easiest to push the wheelbarrow, A or B? If equally easy, 

select C. 

  

C.  Spatial 

 
 

  
   

 

 
 

 

    
Här ser du en utvikt papperfigur. Den streckade linjen visar hur den ska vikas. Din uppgift är att tänka ut vilken av de fyra bilderna 
här ovan som är en bild av samma pappersfigur, fast hopvikt. Klicka i rutan under den bild som visar pappersfiguren hopvikt. 

Translation:  On top is an unfolded paper figure.  The dashed lines show how it should be folded.  Your task is to 

figure out which of the four pictures is a picture of the same paper figure on top, but folded.  Choose the box under 

the picture that shows the correct folded figure. 

  

D.  Logic 
 

Om summan av antalet ord i denna mening är större än antalet bokstäver i det fjärde ordet i meningen, markera då rutan 
med nej. Markera i annat fall tredje rutan. 

blå nej röd ja 

    

Translation: If the sum of the number of words in this sentence is greater than the number of letters in the fourth 

word in the sentence, select the circle which says no (“nej”).  Otherwise, select the third circle. 

Figure A1. Sample test questions.

Note: Taken from http://rekryteringsmyndigheten.se/trmPublic/IProvet/inskrivningsprovet.htm.
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