
fncel-16-836931 March 2, 2022 Time: 15:29 # 1

REVIEW
published: 08 March 2022

doi: 10.3389/fncel.2022.836931

Edited by:
Zhaowei Zhu,

The First Affiliated Hospital of Sun
Yat-sen University, China

Reviewed by:
Nicolas Guérout,

Université de Rouen, France
Yong Ho Kim,

Gachon University, South Korea
Yunxiang Luo,

The First Affiliated Hospital of Sun
Yat-sen University, China

*Correspondence:
Gang Chen

chengang6626@ntu.edu.cn
Zhong-Ya Wei

weizhongya08yan@126.com

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Non-Neuronal Cells,
a section of the journal

Frontiers in Cellular Neuroscience

Received: 16 December 2021
Accepted: 02 February 2022

Published: 08 March 2022

Citation:
Wang Q, Chen F-Y, Ling Z-M,

Su W-F, Zhao Y-Y, Chen G and
Wei Z-Y (2022) The Effect of Schwann
Cells/Schwann Cell-Like Cells on Cell

Therapy for Peripheral Neuropathy.
Front. Cell. Neurosci. 16:836931.
doi: 10.3389/fncel.2022.836931

The Effect of Schwann
Cells/Schwann Cell-Like Cells on
Cell Therapy for Peripheral
Neuropathy
Qian Wang1†, Fang-Yu Chen1†, Zhuo-Min Ling2, Wen-Feng Su1, Ya-Yu Zhao1,
Gang Chen1,2,3* and Zhong-Ya Wei1*

1 Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Clinical Medicine Center of Tissue
Engineering and Nerve Injury Repair, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China,
2 Medical School of Nantong University, Nantong, China, 3 Department of Anesthesiology, Affiliated Hospital of Nantong
University, Nantong, China

Peripheral neuropathy is a common neurological issue that leads to sensory and motor
disorders. Over time, the treatment for peripheral neuropathy has primarily focused
on medications for specific symptoms and surgical techniques. Despite the different
advantages of these treatments, functional recovery remains less than ideal. Schwann
cells, as the primary glial cells in the peripheral nervous system, play crucial roles in
physiological and pathological conditions by maintaining nerve structure and functions
and secreting various signaling molecules and neurotrophic factors to support both
axonal growth and myelination. In addition, stem cells, including mesenchymal stromal
cells, skin precursor cells and neural stem cells, have the potential to differentiate
into Schwann-like cells to perform similar functions as Schwann cells. Therefore,
accumulating evidence indicates that Schwann cell transplantation plays a crucial role
in the resolution of peripheral neuropathy. In this review, we summarize the literature
regarding the use of Schwann cell/Schwann cell-like cell transplantation for different
peripheral neuropathies and the potential role of promoting nerve repair and functional
recovery. Finally, we discuss the limitations and challenges of Schwann cell/Schwann
cell-like cell transplantation in future clinical applications. Together, these studies provide
insights into the effect of Schwann cells/Schwann cell-like cells on cell therapy and
uncover prospective therapeutic strategies for peripheral neuropathy.

Keywords: Schwann cells, Schwann cell-like cells, myelination, regeneration, peripheral neuropathy

INTRODUCTION

Peripheral neuropathies are commonly encountered disorders that result from a great number of
etiologies, including trauma and side effects of diseases and treatments (Hughes, 2002). Although
there is no standard method to diagnose peripheral neuropathy, the development of imaging and
laboratory tests has aided in primary diagnosis, and electromyography and nerve conduction tests
are especially beneficial for allowing doctors to narrow down the category and the management of
peripheral neuropathies (Barrell and Smith, 2019). The categories used to be mononeuropathies,
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multifocal neuropathies and polyneuropathies. However,
these categories are frequently further divided into axonal,
demyelinating, or mixed according to a systematic approach,
which is vital for treatment (Hanewinckel et al., 2016). The
symptoms often include sensory and motor dysfunctions,
including numbness, pain, weakness and paresthesia due to
damage to sensory, motor and autonomic fibers. Treatments for
peripheral neuropathy are primarily dependent on the subtype
and cause of underlying disease, such as grafts for traumatic
nerve injury (Baradaran et al., 2021) and metabolic control
for diabetic neuropathy (Cernea and Raz, 2021; Holmes and
Hastings, 2021). Recently, with insights into cell-based therapy
for diseases, emerging evidence has revealed the benefits of cell
transplantation in peripheral neuropathic conditions (Hopf et al.,
2020; Monje, 2020).

Peripheral neuropathies are affected by disorders of peripheral
nerve fibers and cells (Hughes, 2002; Hanewinckel et al., 2016;
Barrell and Smith, 2019; Hammi and Yeung, 2021). Schwann
cells, which are the primary glial cells in the peripheral nervous
system, are predominantly subdivided into myelinating and
non-myelinating Schwann cells, both of which are associated
with axons through physical support and the release of a
variety of neurotrophins and many other signaling molecules
during development (Kidd et al., 2013). Relatively large-diameter
axons from most motor axons, some sensory axons and are
enwrapped by Schwann cells, resulting in the establishment of
compact myelin at a ratio of 1:1, which is needed for fast
nerve conduction. Other small-diameter axons from autonomous
and many sensory neurons, which are known as Remak
bundles, are wrapped only by Schwann cells and are not
myelinated (Griffin and Thompson, 2008). Schwann cells are
recognized as flexible cells due to their capability for rapid
transformation after injury (Jessen and Mirsky, 2016). In the
injured microenvironment, myelinating Schwann cells and non-
myelinating Remak Schwann cells coordinate to repair Schwann
cells, resembling the developmental stage through the self-
renewal and release of a variety of neurotrophic factors and
signaling molecules involved in motor and sensory functional
recovery (Stassart and Woodhoo, 2021). Therefore, the role of
Schwann cells is pivotal for axonal functions both in physiological
and pathological conditions, which leads to increasing attempts
to prevent malfunction in Schwann cells or the supply Schwann
cells/Schwann cell-like cells for the treatment of peripheral
neuropathies (Brewer et al., 2016; Sayad Fathi and Zaminy,
2017; Wing et al., 2017; Al-Massri et al., 2020; Hopf et al.,
2020; Monje, 2020). Schwann cells are known to originate from
neural crest cells, which can be found in other tissues, such
as the epidermis and hair follicle, and have great potential to
generate Schwann cell-like cells (McKenzie et al., 2006; Lin
et al., 2011). Moreover, with technical innovations in related
stem cells, many types of stem cells can differentiate into
Schwann cell-like cells or target the regulation of Schwann
cells for motor and sensory functional recovery (Caddick et al.,
2006; Park et al., 2010; Ma et al., 2015; Cai et al., 2017;
Hopf et al., 2020). Thus, in this review, we will primarily
discuss the potential applications of Schwann cells/Schwann
cell-like cells in peripheral neuropathies induced by common

disorders, including peripheral nerve injury, diabetes and
chemotherapy, and the challenges for future clinical treatments
(Figure 1).

PERIPHERAL NERVE INJURY-INDUCED
NEUROPATHY

Peripheral nerve injury is a common disease that results from
trauma or disease and leads to damage to motor and sensor
functions. Although the peripheral nervous system has the
potential to self-repair nerve injury, peripheral nerve injury-
induced neuropathy and lifelong disabilities for patients are
common (Menorca et al., 2013). Insights into cellular and
molecular mechanisms have revealed that modulating axons
and Schwann cells are effective strategies for peripheral nerve
injury-induced neuropathy. After injury, injured axons break
and form debris in the distal stump, which is called Wallerian
degeneration. This debris is segmented and incorporated by
Schwann cells, and then phagocytized with the aid with the
recruited macrophages (Nazareth et al., 2021). Once this debris is
cleaned, the proximal stump will begin to outgrow. During this
process, Schwann cells play an important role in the repair of
peripheral nerve injury-induced neuropathy. Once axonal injury
occurs, activated Schwann cells transform into a dedifferentiated
state by expressing developmental genes, releasing various
neurotrophic factors to create a reparative environment, and
forming Büngner bands, which are a longitudinal column
for guiding axonal regrowth through proliferation in the
distal stump (Stassart and Woodhoo, 2021). However, this
self-repair method is unable to guide axonal outgrowth and
target innerved muscles due to a lack of an advantageous
environment, which includes the dysfunction of Schwann cells
(Lehmann and Hoke, 2016). Therefore, emerging evidence is
focused on cell transplantation to supply Schwann cells or
repair Schwann cells to promote axonal growth and motor
and sensory restoration (Lehmann and Hoke, 2016; Hopf
et al., 2020). Among these strategies, cell transplantation in
combination with nerve scaffolds is a promising treatment
for peripheral nerve injury-induced neuropathy (Rodriguez
et al., 2000; Kornfeld et al., 2019). In the case of peripheral
nerve injury, the gold standard treatment is end-to-end
suturing of the proximal and distal parts by neurosurgical
methods. However, this method is only useful for short gaps
(<3 mm), and for longer gaps, a nerve or conduit graft
is required to bridge the gap (Hopf et al., 2020). Thus,
autologous Schwann cell transplantation is the best choice for
treatment. However, these cells must be collected from healthy
peripheral nerves and harvested in a time-consuming manner,
and all of these limitations constrain their wide applications
(Sullivan et al., 2016; Baradaran et al., 2021). Therefore,
attention has moved toward the use of allogeneic Schwann
cells and Schwann cell-like cells from stem cells to promote
axonal regeneration and repair peripheral nerve injury-induced
neuropathy (Sayad Fathi and Zaminy, 2017; Hopf et al., 2020;
Kubiak et al., 2020). Here, we review current developments
in Schwann cell or Schwann cell-like cell transplantations
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FIGURE 1 | The effect of Schwann cells and Schwann cell-like cells on cell therapy for peripheral neuropathy. Note that peripheral neuropathies induced by
peripheral nerve injury, diabetes and chemotherapy-induced peripheral neuropathy (CIPN) often leads to the malfunctional change in Schwann cells. Transplantation
with Schwann cells or Schwann cell-like cells (from different sources) attempts to promote nerve repair and functional recovery through the effect of Schwann cells
for the treatment of peripheral neuropathies.

for the repair of peripheral nerve injury-induced neuropathy
(Tables 1, 2).

Schwann Cell Transplantation in
Peripheral Nerve Injury-Induced
Neuropathy
In 1992, a study of the transplantation of autologous Schwann
cells derived from adult nerves in permselective guidance
channels to repair 8 mm nerve gaps in transected rat sciatic
nerves indicated that this combination supported extensive
regeneration and myelination. In contrast, a strong immune
reaction occurred when heterologous Schwann cells were seeded,
resulting in the prevention of nerve regeneration (Guenard et al.,
1992). To avoid immune reactions, an immune-deficient rat
was used, and the functional capacity of human Schwann cells
in an 8 mm gap of transected sciatic nerves was evaluated.
The outcomes showed that human Schwann cells could survive
and effectively promote axonal regrowth and myelination but
were less successful than allogeneic Schwann cells (Levi et al.,
1994). A study aimed to evaluate the effect of allogeneic
Schwann cell transplantation following rat sciatic nerve injury
with a 10 mm gap and showed that compared with syngenetic
Schwann cells, allogeneic Schwann cells also promoted axonal
regeneration and myelination, but the effect was less than
that of syngenetic Schwann cells, and an immune response
occurred at 6 weeks post-transplantation when there was no
use of immunosuppressive therapy (Mosahebi et al., 2002).
In addition, a decellularizing approach has been developed to
prevent rejection when allogeneic nerve grafts are applied to
injured nerve repair (Hudson et al., 2004). However, due to the
loss of Schwann cells, this method is less effective for nerve repair
than contact nerves (Hoben et al., 2015). Of note, decellularized
nerve conduits combined with Schwann cells to repair peripheral
nerve injury obtained good results in non-human primate 6 cm

ulnar nerve defects (Hess et al., 2007) and rat sciatic nerve
defects (Aszmann et al., 2008; Sun et al., 2009; Hoben et al.,
2015) and were demonstrated to be a better therapy than
the addition of vascular endothelial growth factor to improve
axonal regrowth (Hoben et al., 2015). In human studies (Levi
et al., 2016; Gersey et al., 2017), Schwann cells were isolated
from sural nerve biopsies and traumatized sciatic nerve stumps.
After purification and proliferation, the cells were combined
with sural nerve grafts to repair two cases of a 7.5 cm defect
(case 1 with complete transection of sciatic nerves by a boat
propeller injury) and a 5 cm defect (case two with partial
damage of the tibial division of sciatic nerves by a gun wound
of the leg). Follow-up was 36 months for the patient in case 1,
and the patient regained proximal sensory recovery, including
neuropathic pain, and motor function recovery in the common
peroneal and tibial distribution (Levi et al., 2016). Twelve
months post-operation, the patient in case 2 exhibited recovery
of complete motor function and partial sensation in the tibial
distribution (Gersey et al., 2017). Despite the fact that after injury,
neurotrophic factor release from activated Schwann cells is
beneficial for nerve regeneration and functional recovery, a study
of allogeneic nerve grafts with Schwann cells overexpressing
glial cell line-derived neurotrophic factors resulted in limited
axonal regeneration and poor functional recovery (Santosa et al.,
2013). Indeed, the timing, volume and distribution of these
neurotrophic factors associated with postinjury Schwann cell
behavior are critical for the rate of axonal regrowth and functional
recovery (Kidd et al., 2013; Jessen and Mirsky, 2016). Due to the
difficulty of harvesting human nerve-derived Schwann cells, skin-
derived Schwann cells from patients were collected, and gene
expression was characterized in human nerve-derived Schwann
cells, and the feasibility of transplantation into injured mouse
sciatic nerves was evaluated. The results demonstrated that
adult human skin-derived Schwann cells were similar to human
nerve-derived Schwann cells genetically and phenotypically,
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TABLE 1 | The effect of Schwann cell therapy on peripheral nerve injury-induced neuropathy.

Model Schwann cell source Outcomes Notes

Rat sciatic nerve defect with an
8 mm gap

Autologous Extensive peripheral nerve regeneration
and myelination

• A strong immune reaction occurred when seeding with
heterologous Schwann cells;

• Seeding density of Schwann cells should be
considered (Guenard et al., 1992)

Sciatic nerve defect with a
5 mm gap in immune-deficient
rats

Allogeneic, from human
nerves

Promotion of axonal regeneration and
myelination

Repair outcomes were better than the channels with
Matrigel solution alone (Levi et al., 1994)

Human sciatic nerve defect
with a 7.5 cm gap

Autologous Proximal sensory recovery, including
neuropathic pain, and motor function
recovery in the common peroneal and
tibial distribution

The patient suffered complete transection of sciatic
nerves by a boat propeller injury (Levi et al., 2016)

Human sciatic nerve defect
with a 5 cm gap

Autologous Recovery of complete motor function
and partial sensation in the tibial
distribution

The patient suffered partial damage of the tibial division
of sciatic nerves by a gun wound to the leg (Gersey
et al., 2017)

Mouse sciatic nerve crush Allogeneic, from human
skin

Promotion of axonal regrowth and
myelination

• Adult human skin-derived Schwann cells were similar
to human nerve-derived Schwann cells in genetical and
phenotypical characterization;

• Highly accessible source of autologous skin-derived
Schwann cells was a substitute for nerve-derived
Schwann cells for injured nerve repair (Stratton et al.,
2017)

Rat sciatic nerve defect with a
10 mm gap

Allogeneic, from neonatal
rat sciatic nerves

Improvement in axonal regeneration • The quantity of regenerated axons was less than that
induced by treatment with syngeneic Schwann cells;

• Immune response occurred at 6 weeks
post-transplantation in the absence of
immunosuppressive therapy (Mosahebi et al., 2002)

Rat sciatic nerve defect with a
20 mm gap (Hoben et al.,
2015), 10 mm gap (Sun et al.,
2009) and 14 mm gap (Santosa
et al., 2013)

Allogeneic, from neonatal
(Sun et al., 2009; Hoben
et al., 2015)/adult (Santosa
et al., 2013) rat sciatic
nerves

Improvement in axonal regeneration
(Sun et al., 2009; Santosa et al., 2013;
Hoben et al., 2015) and myelination
(Sun et al., 2009)

• Acellular nerve allografts combined with allogeneic
Schwann cells obtained the same outcomes as the
isograft group (Hoben et al., 2015);

• Adding vascular endothelial growth factor alone
(Hoben et al., 2015) or Schwann cells overexpressing
glial cell-derived neurotrophic factor (Santosa et al.,
2013) in acellular nerve allografts had reduced effects
on improving axonal regeneration

Rat sciatic nerve injury with a
3 cm gap

Autologous, from the
proximal stump neuroma

Regenerative fibers crossing the entire
distance but no motor and poor
sensory function recovery

It is challenging to regenerate axons with a 3 cm gap
defect with only grafts (Aszmann et al., 2008)

Primate ulnar nerve defect with
a 6 cm gap

Autologous, from the sural
nerve fascicles

Low immune response and significant
regeneration

Cold-preserved allografts combined with autologous
Schwann cells was a potentially safe and effective
alternative to autografts (Hess et al., 2007)

Rabbit peroneal nerve defect
with a 6 cm gap

Autologous, from the
contralateral peroneal nerve

Excellent growth of axons targeting the
distal end

Autologous Schwann cells break the limit of nerve
regeneration by an empty autogenous venous nerve
conduit (Strauch et al., 2001)

Rat sciatic nerve defect with a
10 mm gap (Mosahebi et al.,
2002) and 1 cm gap (Bryan
et al., 2000; Tohill et al., 2004;
di Summa et al., 2011)

Allogeneic, from rat sciatic
nerves

Improvements in axonal regrowth and
fiber myelination

Combination with allogeneic Schwann cells obtained
better outcomes in synthetic grafts, such as
polyhydroxybutyrate conduits (Mosahebi et al., 2002;
Tohill et al., 2004), fibrin conduits (di Summa et al.,
2011) and poly (lactic-co-glycolic) acid conduits (Bryan
et al., 2000)

which indicates that a highly accessible source of autologous
skin-derived Schwann cells may be a substitute for nerve-derived
Schwann cells for injured nerve repair (Stratton et al., 2017).
Both autogenous and allogenous nerve transplantation require
nerve supply from the donor, which leads to donor-site morbidity
resulting from the loss of nerves (Kim et al., 2020). A variety
of conduits have been developed, including veins and synthetic
grafts. Several studies (Chiu et al., 1982; Strauch et al., 1996) have
used autogenous venous nerve conduits to successfully support
axonal regeneration for short distances (less than a 3 cm gap).

Moreover, conduit supplementation with autologous Schwann
cells rapidly grew 6 cm peroneal nerve defect-injured nerves
compared with treatment alone (Strauch et al., 2001). In addition,
Schwann cells in a polyhydroxybutyrate conduit (Mosahebi et al.,
2002; Tohill et al., 2004), fibrin conduit (di Summa et al.,
2011) and poly (lactic-co-glycolic) acid conduit (Bryan et al.,
2000) display more improvements in axonal regrowth and fiber
myelination than the use of conduits alone. Based on a study
comparing green fluorescent protein-labeled Schwann cells with
non-transduced Schwann cells in bioengineered nerve conduits,
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TABLE 2 | The effect of Schwann cell-like cells on cell therapy for peripheral nerve injury-induced neuropathy.

Model Cell source Grafts Outcomes Notes

Rat sciatic nerve
transection with a 12 mm
gap (Mimura et al., 2004;
Ao et al., 2011), 10 mm
gap (Shimizu et al., 2007);
Rabbit facial nerve buccal
branch transection with a
1 cm gap (Wang et al.,
2011)

BMSC-derived Schwann
cells from rats (Mimura
et al., 2004; Ao et al.,
2011), humans (Shimizu
et al., 2007), rabbits (Wang
et al., 2011)

Hollow fiber (Mimura et al.,
2004) Transpermeable tube
(Shimizu et al., 2007)
Chitosan nerve conduits
(Ao et al., 2011),
autogenous vein (Wang
et al., 2011)

Improvements in
regenerative axon
populations (Mimura et al.,
2004; Shimizu et al., 2007;
Ao et al., 2011; Wang et al.,
2011), motor functions and
reconstruction of Ranvier
nodes and myelination
(Mimura et al., 2004; Ao
et al., 2011; Wang et al.,
2011)

• No tumor formation within 6 months
(Mimura et al., 2004)

• Human BMSCs were used in rat sciatic
nerve repair with immunosuppressants
(Shimizu et al., 2007)

• No significant outcomes compared
with sciatic nerve-derived Schwann
cells (Ao et al., 2011)

Rat sciatic nerve
transection with a 1 cm gap
(di Summa et al., 2010,
2011; Orbay et al., 2012;
Kingham et al., 2014) and
15 mm gap (Georgiou
et al., 2015); Tibial nerve
crush in athymic nude rats
(Tomita et al., 2013)

ASC-derived Schwann
cell-like cells from rats (di
Summa et al., 2010, 2011;
Orbay et al., 2012;
Georgiou et al., 2015) and
humans (Tomita et al.,
2013; Kingham et al., 2014)

Nerve fibrin conduits (di
Summa et al., 2010, 2011;
Kingham et al., 2014)
Silicone (Orbay et al., 2012)
Aligned collagen matrix
(Georgiou et al., 2015)

Improvements in axonal
regeneration (di Summa
et al., 2010, 2011; Orbay
et al., 2012; Tomita et al.,
2013; Kingham et al., 2014;
Georgiou et al., 2015) and
myelination (Orbay et al.,
2012; Tomita et al., 2013),
as well as a reduction in
muscle atrophy (di Summa
et al., 2011); neurotrophic
factor release (Kingham
et al., 2014), and glial cell
differentiation (Tomita et al.,
2013); an increase in
conduit vascularity
(Kingham et al., 2014)

• Differentiated ASC transplantation
obtained similar outcomes as that with
differentiated MSCs at 2 weeks (di
Summa et al., 2010), but the treatment
was more effective than differentiated
MSCs in a long-term experiment of
16 weeks (di Summa et al., 2011);

• Differentiated and undifferentiated rat
ASCs had a similar effect on nerve
reconstruction 6 months after
transplantation (Orbay et al., 2012);

• Differentiated human ASCs had a
potent effect on neurotrophic factors
release and axonal regeneration (Tomita
et al., 2013)

Rat sciatic nerve
transection with an 8 mm
gap (Matsuse et al., 2010)

Schwann cells differentiated
from human umbilical
cord-derived MSCs

Matrigel-transplanted graft Promotion of nerve
regeneration and
myelination

• FK506 was used to avoid
immunorejection;

• The effect was comparable to
treatment with human Schwann cells

Mouse sciatic nerve crush
(McKenzie et al., 2006); Rat
sciatic nerve crush (Kumar
et al., 2016; Stratton et al.,
2016; Wu et al., 2020); Rat
sciatic nerve transection
with a 5 mm gap
(Shakhbazau et al., 2014;
Zhang et al., 2014), 10 mm
gap (Khuong et al., 2014;
Zhu et al., 2018)

SKP-derived precursor
Schwann cells from mice
(McKenzie et al., 2006) and
rats (Khuong et al., 2014;
Shakhbazau et al., 2014;
Zhang et al., 2014; Kumar
et al., 2016; Stratton et al.,
2016; Zhu et al., 2018; Wu
et al., 2020; Cong et al.,
2021)

Silicon tube (Shakhbazau
et al., 2014) Decellularized
nerve grafts (Khuong et al.,
2014) Artificial guidance
channels (Zhang et al.,
2014) Chitosan nerve
guidance conduits and silk
fibroin filamentous fillers
(Zhu et al., 2018)

Improvements in axonal
regeneration (McKenzie
et al., 2006; Zhang et al.,
2014), and myelination
(Kumar et al., 2016; Zhu
et al., 2018), sensory
functional recovery
(Shakhbazau et al., 2014),
motoneuron and sensory
neuron regrowth (Wu et al.,
2020; Cong et al., 2021),
behavioral recovery
(Khuong et al., 2014),
surrounding immunological
properties to accelerate
myelin debris clearance
(Stratton et al., 2016)

• The probability of myelination with
SKP-derived Schwann cells was higher
than with naïve SKPs at 2 weeks
post-transplantation, but they had
similar profiles at 4 weeks (McKenzie
et al., 2006);

• Cells in supporting sensory functional
recovery is similar to treatment with
isogenic Schwann cells (Shakhbazau
et al., 2014);

• Cells improved behavioral recovery in
both acute and chronic nerve injury, but
the medium and the dead cells had
fewer effects (Khuong et al., 2014);

• The immunomodulatory role of SKP-
derived precursor Schwann cells on
peripheral neuropathy included
macrophage recruitment and
inflammatory factor expression
(Stratton et al., 2016);

• Transplantation with adult SKP-derived
Schwann cells produced the same
outcome that of acutely injured
Schwann cells, but chronically
denervated Schwann cells were less
effective (Kumar et al., 2016);

• Acellular matrix from SKP-derived
Schwann cells combined with
chitosan/silk scaffolds was beneficial for
nerve repair (Zhu et al., 2018);

(Continued)
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TABLE 2 | (Continued)

Model Cell source Grafts Outcomes Notes

• Extracellular vesicles from SKP-derived
Schwann cells were responsible for
axonal regrowth of motoneurons and
sensory neurons (Wu et al., 2020; Cong
et al., 2021)

Mouse sciatic nerve
transection with a 2–3 mm
gap (Kim et al., 2017)

Schwann cell-like cells from
human pluripotent stem
cells

Matrigel Improvements in nerve
regeneration and
myelination

Cells derived from human pluripotent
stem cells via self-renewing Schwann
cell precursors under sequential
treatments with cultured medium

Mouse sciatic nerve
transection with a 5 mm
gap (Sowa et al., 2017)

Schwann cell-like cells from
direct conversion from
human fibroblast

Gelatin hydrogel Improvements in myelin
formation, axonal regrowth
and motor functional
recovery

The effect of cells in axonal regrowth
and motor functional recovery was
comparable to that of treatment with
Schwann cells from peripheral nerves

Rat sciatic nerve
transection with a 15 mm
or 12 mm (Verdú et al.,
1999; You et al., 2011;
Zhang et al., 2019), and
20 mm gap (Guérout et al.,
2011; Boecker et al.,
2018); Rat facial nerve
transection with a 5 mm
gap (Guntinas-Lichius et al.,
2001) or end-to-end suture
(Guntinas-Lichius et al.,
2002); Rat sciatic nerve
transection with
microsurgical nerve repair
(Radtke et al., 2009a); Rat
sciatic nerve crush lesion
(Dombrowski et al., 2006);
Mouse sciatic nerve
transection with a 3 mm
gap (Goulart et al., 2016)

Olfactory bulb ensheathing
cells (Verdú et al., 1999;
Guntinas-Lichius et al.,
2001; Dombrowski et al.,
2006; Radtke et al., 2009a;
You et al., 2011; Goulart
et al., 2016; Boecker et al.,
2018; Zhang et al., 2019);
Olfactory mucosa
(Guntinas-Lichius et al.,
2002)

Silicone tube prefilled with a
laminin gel (Verdú et al.,
1999); Microporous poly
acid conduit (You et al.,
2011); Tubular conduit
(Goulart et al., 2016); Nerve
guide Perimaix (Boecker
et al., 2018); Nerve
conduits (Zhang et al.,
2019)

Improvements in
regenerative axon
populations (Verdú et al.,
1999); Stimulation on
collateral sprouting
(Guntinas-Lichius et al.,
2001); Promotion in the
accuracy of target
reinnervation and the
vibrissae motor
performance
(Guntinas-Lichius et al.,
2002); Improvements in
axonal regeneration and
functional outcomes
(Radtke et al., 2009a;
Guérout et al., 2011);
Improvements in
myelination and nodal
formation of regenerative
peripheral nerve fibers
(Dombrowski et al., 2006);
Synergistical improvements
in Schwann cells-mediated
sciatic nerve repair (You
et al., 2011); Improvements
in sciatic nerve functional
and morphological recovery
(Goulart et al., 2016;
Boecker et al., 2018); The
increase of the level of brain
derived factor and nerve
growth factor (Zhang et al.,
2019)

• It is a powerful tool for severe nerve
injury (2 months between injury and
repair) (Guntinas-Lichius et al., 2001);

• Transplantation of olfactory mucosa
significantly improves nerve
regeneration (Guntinas-Lichius et al.,
2002);

• No olfactory ensheathing cells are
present in the sciatic nerves 3 months
post-transplantation (Guérout et al.,
2011);

• Olfactory ensheathing cells with the
nerve guide Perimaix has local effects
on nerve regeneration, but not for
traversing the lesion gap (Boecker
et al., 2018);

• Epidermal neural crest stem cell and
olfactory ensheathing cell
co-transplantation effectively repairs
peripheral nerve injury (Zhang et al.,
2019)

the outcomes showed that both of treatments had similar growth
characteristics (Tohill et al., 2004). Fluorescently labeled Schwann
cells will be beneficial for monitoring Schwann cell behaviors and
interactions with axons in bioengineered systems.

The Effect of Schwann Cell-Like Cells on
Cell Therapies for Peripheral Neuropathy
Schwann cells are primary glial cells in the peripheral nervous
system, and autologous and allogeneic Schwann cells are
thought to be good choices for the repair of injured nerves.
However, because acquiring these Schwann cells from nerves

is time-consuming and has secondary morbidity at the donor
site, it is desirable to explore cell sources with similar potential
to produce Schwann cells. Stem cells with wide distribution,
multilineage potential and self-renewal capacity are highly
suitable as alternative cell sources for Schwann cells (Sayad
Fathi and Zaminy, 2017). Here, we emphasize the effect of
stem cell-derived Schwann cell-like cells on cell therapy for
peripheral neuropathy.

A major source of Schwann cell-like cells is mesenchymal
stem/stromal cells (MSCs), which are readily isolated from
a variety of tissues, including bone marrow, skin, adipose
tissue and umbilical cord tissue (Sayad Fathi and Zaminy, 2017;
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Hopf et al., 2020). Bone marrow stromal cell (BMSC)-derived
Schwann cells from rats (Mimura et al., 2004; Ao et al., 2011),
humans (Shimizu et al., 2007) and rabbits (Wang et al., 2011)
may mediate improvements in regenerative axon populations,
motor functions and the reconstruction of Ranvier nodes and
myelination in rat sciatic nerve transection with a 12 mm gap
and a 10 mm gap, as well as in rabbit facial nerve buccal branch
transection within a 1 cm gap. Moreover, tumor formation
was not detected within 6 months (Mimura et al., 2004), and
no significant outcomes occurred compared with treatment
with sciatic nerve-derived Schwann cells (Ao et al., 2011).
Differentiated adipose-derived stem cells (ASCs) are primarily
derived from rats (di Summa et al., 2010, 2011; Orbay et al.,
2012; Georgiou et al., 2015) and humans (Tomita et al., 2013;
Kingham et al., 2014). Transplantation with these cells in
nerve fibrin conduits, silicone or aligned collagen matrix has a
potential role in the repair of peripheral neuropathy to improve
neurotrophic factor release, axonal regrowth (di Summa et al.,
2010, 2011; Orbay et al., 2012; Tomita et al., 2013; Kingham
et al., 2014; Georgiou et al., 2015), myelination (Orbay et al.,
2012; Tomita et al., 2013) and vascularity (Kingham et al.,
2014), as well as reduce muscle atrophy (di Summa et al.,
2011). Notably, differentiated and undifferentiated rat ASCs
combined with silicone in rat sciatic nerve transection with a
1 cm gap had a similar effect on nerve reconstruction within
6 months (Orbay et al., 2012). However, transplantation with
differentiated human ASCs in a nude rat tibial nerve crush model
obtained a better outcome than the use of undifferentiated cells
(Tomita et al., 2013). In contrast to the effect of undifferentiated
ASCs, differentiated ASCs had a similar effect at 2 weeks
post-transplantation but were more effective in a long-term
experiment of 16 weeks (di Summa et al., 2010, 2011). Although
there is no direct evidence of human umbilical cord blood-
MSC-derived Schwann cell-like cells for treating peripheral
neuropathy (Weiss and Troyer, 2006), Schwann cell-like cells
obtained from the mesenchymal tissue surrounding umbilical
cord vessels (Wharton jelly) were combined with Matrigel-
transplanted grafts to repair rat sciatic nerve transection with
an 8 mm gap with the immunosuppressor FK506. The effect
was comparable to that of using human Schwann cells to
promote nerve regeneration and myelination (Matsuse et al.,
2010). Compared with other stem cells, skin-derived precursor
cells (SKPs) are more accessible and readily differentiate into
Schwann cells, and much more attention has been given to
investigating their potential role in cell therapy in peripheral
nerve injury-induced neuropathy. These cells are widely used
to repair rodent sciatic nerve crush or transection with 5 or
10 mm gaps combined with different kinds of grafts, including
silicon tubes (Shakhbazau et al., 2014), decellularized nerve
grafts (Khuong et al., 2014), artificial guidance channels (Zhang
et al., 2014), and chitosan/silk scaffolds (Zhu et al., 2018).
After transplantation, these cells improve sensory functional
and behavioral recovery in both acute (4 weeks) and chronic
(17 weeks) nerve injury (Khuong et al., 2014; Shakhbazau et al.,
2014), axonal regeneration and myelination in vivo (McKenzie
et al., 2006; Zhang et al., 2014; Kumar et al., 2016; Zhu
et al., 2018), and motoneuron and sensory neuron regrowth

in vitro (Wu et al., 2020; Cong et al., 2021). Moreover, they
can adjust surrounding immunological properties to accelerate
myelin debris clearance by recruiting many more macrophages
and enhancing inflammatory factor expression (Stratton et al.,
2016). The myelination of these cells is higher than that of
naïve SKPs in the early stage (McKenzie et al., 2006), and
their ability to support sensory functional recovery is equal to
or better than that of treatments with isogenic Schwann cells
(Shakhbazau et al., 2014). In addition to the great effect of the
cells by themselves, acellular matrix and extracellular vesicles
from SKP-derived cells are also responsible for neuronal regrowth
in vitro (Wu et al., 2020; Cong et al., 2021), but dead cells or
the medium was less effective on nerve repair in vivo (Khuong
et al., 2014). Although great improvements have been obtained
with rat/mouse SKP-derived Schwann cell-like cells, the clinical
application of human SKPs still needs many more studies to
test the utility of cells from different anatomical regions (Dai
et al., 2018). In addition, human pluripotent stem cells can
be differentiated into Schwann cell-like cells via self-renewing
Schwann cell precursor cells through sequential treatment with
conditioned medium in vitro, and the combination with Matrigel
successfully improves axonal regeneration and myelin repair
(Kim et al., 2017). Another interesting source of Schwann
cell-like cells is human fibroblasts, which can be converted
with a cellular reprogramming strategy. In vitro and in vivo
experiments with gelatin hydrogel showed a potential role
of converted Schwann cells in significantly enhancing axonal
regrowth, myelin repair and motor functional recovery, which
is comparable to treatment with Schwann cells from peripheral
nerves (Sowa et al., 2017).

In addition to these Schwann cell-like cells, olfactory
ensheathing cells from olfactory bulb and mucosa share many
properties with Schwann cells which include the support of
axonal regeneration and myelination (Doucette, 1990). They
also exhibit great potentials for nerve repair in peripheral
nerve injury-induced neuropathy (Radtke et al., 2009b, 2011;
Radtke and Kocsis, 2012, 2014). Olfactory bulb ensheathing
cells from mouse (Goulart et al., 2016) and rat mediate
improvements in axonal regeneration, myelination and sciatic
nerve functional recovery in mouse sciatic nerve transection
with a 3 mm gap, and in rat sciatic nerve transection with
a 15 or 12 mm gap (Verdú et al., 1999; You et al., 2011;
Zhang et al., 2019), and 20 mm gap (Guérout et al., 2011;
Boecker et al., 2018), and with microsurgical nerve repair
(Radtke et al., 2009a) and in rat sciatic nerve crush lesion
(Dombrowski et al., 2006), as well as in rat facial nerve transection
with a 5 mm gap (Guntinas-Lichius et al., 2001). As well,
transplantation of olfactory mucosa significantly increases the
accuracy of target reinnervation and accelerates the vibrissae
movements (Guntinas-Lichius et al., 2002). Notably, olfactory
ensheathing cell and Schwann cell, or and epidermal neural crest
stem cell co-transplantation effectively enhance anatomical and
functional repair after sciatic nerve injury in rats (You et al.,
2011; Zhang et al., 2019) through enhancing the level of brain
derived factor and nerve growth factor, which indicates that
cells co-transplantation may serve as a new method for PNI in
future therapies.
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DIABETIC NEUROPATHY

Diabetic neuropathy is one of the most common complications
of diabetic patients. With the incidences of diabetes increasing
annually, especially in type 2 diabetes, studies are focused on
understanding the pathogenic mechanisms, most of which are
associated with neurons and vessels (Kim et al., 2012). However,
accumulating evidence indicates the effect on morphological
alterations and dysfunction in Schwann cells following diabetic
neuropathy (Mizisin, 2014; Naruse, 2019). Studies on the sural
nerves of rodents, cats and patients with diabetic neuropathy
indicate that an apparently normal axon is wrapped by an
abnormal myelin sheath resulting from segmental demyelination
and remyelination (Thomas and Lascelles, 1965; Sima et al.,
1988; Malik et al., 2005; Lennertz et al., 2011). In addition, the
ultrastructure of abnormal Schwann cells showed mitochondrial
enlargement with numerous vacuoles, cytoplasmic expansion,
glycogen inclusion, and hyperplasia of the basement membrane
(Yagihashi and Matsunaga, 1979; Chowdhury et al., 2013; Mizisin,
2014). Metabolic and molecular perturbations of Schwann cells
in diabetic neuropathy include high activity of aldose reductase-
mediated polyol pathway flux, oxidative stress and inflammation,
as well as damage associated with microvascular changes in
Schwann cells, all of which result in decreased neurotrophic
factors release and the accumulation of neurotoxic intermediates
leading to the dysfunction of interactions between Schwann
cells and axons and diabetic neuropathy (Gonçalves et al.,
2017, 2018; Naruse, 2019). Therefore, treating Schwann cells
offers a potential strategy for diabetic neuropathy. Here, we
primarily review the role of Schwann cells in cell therapy for
diabetic neuropathy.

As shown in Table 3, different sources of stem cells exhibit
potential of treating diabetic neuropathy and have an effect on
the function of Schwann cells. BM-derived cells, endothelial
progenitor cells (EPCs), and mononuclear cells (MNCs) can
effectively reverse the symptoms of diabetic neuropathy through
neuroprotective effects and neovascularization (Naruse et al.,
2005; Hasegawa et al., 2006; Jeong et al., 2009; Kim et al.,
2009). During this process, these neurotrophic and angiogenic
factors suppress Schwann cell apoptosis and enhance Schwann
cell proliferation and myelination (Jeong et al., 2009; Kim et al.,
2012). In addition, treatment with BMSCs in hindlimb muscles,
which can be differentiated into Schwann cell-like cells (Caddick
et al., 2006), can ameliorate diabetic neuropathy symptoms,
such as dysfunction of sensory and motor nerves, as well as
demyelination in streptozotocin (STZ)-induced diabetic rats
(Han et al., 2016). In addition to BMSCs, ASCs were transplanted
by intramuscular injection and had a positive effect on the repair
of STZ-induced diabetic neuropathy through the regulation
of Schwann cell-related neurotrophic factor expression and
remyelination (Yigitturk et al., 2021). Compared with stem
cell-based treatment for diabetic neuropathy, additional studies
have been performed with dental pulp stem cells (DPSCs).
After human DPSCs were injected into the hindlimb skeletal
muscle of diabetic mice, increases in vascular endothelial growth
factor and nerve growth factor were detected at the injection
site, while antibody neutralization reversed the effect of human

DPSCs (Hata et al., 2020). Moreover, in STZ-induced diabetic
rats, rat DPSCs ameliorated long-term (52 weeks) diabetic
neuropathy (Omi et al., 2017). Although GFP-labeled rat DPSCs
did not differentiate into Schwann cells after being injected
into skeletal muscles (Hata et al., 2015), they had a beneficial
effect on Schwann cells, including increasing Schwann cell
viability and myelin formation (Omi et al., 2017). Of note,
there was no difference in the therapeutic effect on diabetic
neuropathy between the injection of rat DPSC-secreted factors
and DPSCs (Kanada et al., 2020), and DPSC-secreted factors
promoted Schwann cell proliferation and myelin formation
(Omi et al., 2017). Conditioned medium from ASCs was
also beneficial in preventing foot ulcer formation, ameliorating
diabetic neuropathy in diabetic BKS db/db mice, and blocking
diabetes-induced Schwann cell apoptosis (De Gregorio et al.,
2020). Human DPSCs were used to treat a rat model of
diabetic neuropathy through intramuscular or intravenous
administration of one or two rounds of transplantation were
helpful in contributing to functional recovery, but repeated
doses via the intramuscular route was the most effective
(Datta et al., 2017), which indicates that different routes and
doses produce different effects. Neural crest can differentiate
into multiple types of cells, including Schwann cells and
peripheral neurons (Bronner and LeDouarin, 2012). However,
there has only been one study using neural crest-like cells
derived from induced pluripotent stem cells to treat STZ-
induced diabetic mice, and the transplanted cells differentiated
into Schwann cell-like cells or vascular smooth muscle cells to
effectively improve the impaired vascular and neuronal functions
(Okawa et al., 2013). Although the effect of Schwann cells
as a cell therapy needs further study, Schwann cells are a
key player in the treatment of diabetic neuropathy through
cell transplantation.

CHEMOTHERAPY-INDUCED
PERIPHERAL NEUROPATHY

Chemotherapy-induced peripheral neuropathy (CIPN) is the
most common secondary effect in cancer patients who receive
chemotherapy treatment. Signs of damage to peripheral nerves
in CIPN are associated with sensory abnormalities, including
allodynia (loss of touch sensation, numbness) or hyperalgesia
(pin sensation and tingling), and often manifest as glove-
stocking distributions (Bobylev et al., 2015). Some patients
also exhibit motor nerve damage and altered musculoskeletal
adverse effects (Ibrahim and Ehrlich, 2020). With the increasing
numbers of cancer survivors and no ways to predict who will
develop symptoms or when, there are no effective approved
drugs to prevent or reduce CIPN (Carozzi et al., 2015;
Jordan et al., 2019). Therefore, the management of CIPN
is still a major challenge for clinical treatment. Despite the
lack of direct evidence to illustrate the role of Schwann cell
transplantation in CIPN, more attention has been given to the
impairment of Schwann cells by chemotherapeutic agents and
stem cell therapy for CIPN (Table 4; Al-Massri et al., 2020;
Ibrahim and Ehrlich, 2020).
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TABLE 3 | The effect of different cell therapies on Schwann cells for diabetic neuropathy.

Stem cell
type

Cell source Effect on Schwann cells Notes

MNCs Bone marrow/peripheral
blood

Increased angiogenic and neurotrophic
factor release (Hasegawa et al., 2006;
Kim et al., 2009)

• Implantation into hindlimb muscles in STZ-induced diabetic rats;
• Improvement in vascularity and motor nerve conduction velocity

EPCs Bone marrow (Jeong et al.,
2009)/ cord blood (Naruse
et al., 2005)

• Decreased Schwann cells apoptosis
and enhanced proliferation (Naruse
et al., 2005; Jeong et al., 2009)

• Cell were injected into the hindlimb of STZ-induced diabetic mice or
rats;

• Enhancement in neural neovascularization and neuroprotective effects

BMSCs Bone marrow • Differentiation into Schwann cell-like
cells and the upregulation of
neurotrophic factors and
myelination-related genes (Han et al.,
2016)

• Injection into the hindlimb muscles of STZ-induced diabetic rats;
• Increases in angiogenesis, neural function and myelination

ASCs Adipose tissue • Effects on the Schwann cell signal
network, including neurotrophic effects
and the restoration of myelination
(Yigitturk et al., 2021)

• Injection into the thigh and lower hind-leg muscles of STZ-induced
diabetic mice;

• Restoration of neural structure and function

• Reduced Schwann cell apoptosis with
ASCs-conditioned medium (De
Gregorio et al., 2020)

• Systemic administration in diabetic BKS db/db mice;
• Avoiding foot ulcer formation and ameliorating polyneuropathy

DPSCs Teeth • Increased viability and myelin-related
protein expression in Schwann cells
(Omi et al., 2017)

• Promotion of Schwann cells
proliferation and myelin formation (Omi
et al., 2017)

• Transplantation of human DPSCs into the hindlimb skeletal muscles of
STZ-induced diabetic nude mice;

• Treatment of diabetic polyneuropathy via the angiogenic and
neurotrophic mechanism of hDPSC-secreted factors (Hata et al., 2020)

• Transplantation of rat DPSCs into the hindlimb skeletal muscles of
STZ-induced diabetic rats;

• Improvements in long-term diabetic polyneuropathy (Omi et al., 2017)

• Transplantation of freshly isolated and cryopreserved rat DPSCs into
the hindlimb skeletal muscles of STZ-induced diabetic rats;

• Amelioration of diabetic polyneuropathy (Hata et al., 2015)

• Transplantation of rat DPSCs or administration of secreted factors into
the hindlimb skeletal muscles of STZ-induced diabetic rats;

• Amelioration of diabetic polyneuropathy with either treatment (Kanada
et al., 2020)

• Transplantation into STZ-induced neuropathic rats through the
intramuscular or intravenous route via a single or two repeat doses;

• Contribution to functional recovery with all treatments, but repeated
doses via the intramuscular route was the most effective (Datta et al.,
2017)

Neural
crest cells

Induced pluripotent stem
cells

Differentiation into Schwann cell-like
cells (Bronner and LeDouarin, 2012)

• Transplantation into the hindlimb skeletal muscles of STZ-diabetic
mice;

• Improvement in impaired vascular and neuronal functions (Okawa
et al., 2013)

TABLE 4 | The effect of chemotherapy on Schwann cells.

Anticancer agents Symptoms Effect on Schwann cells Notes

Bortezomib Severe sensory ataxia Myelin damage (Filosto et al., 2007) Acute and transient
endoplasmic reticulum damage to Schwann cells,
abnormal myelination of Remak bundles and
downregulation of myelin-related genes (Shin et al.,
2010)

In vitro and in vivo experiments demonstrated the side
effect of bortezomib on Schwann cells (Filosto et al.,
2007; Shin et al., 2010)

Oxaliplatin, cisplatin,
paclitaxel

Numbness,
dysesthesia,
paresthesia and muscle
weakness

Disruption of myelin formation and mitochondrial
dysfunction in Schwann cells

The cytotoxicity-induced by these drugs requires a
lower dose in Schwann cells than in the dorsal root
ganglion; The effect of these drugs on Schwann cells
are different (Imai et al., 2017)

Epirubicin/docetaxel Pain Improvements in Schwann cell dedifferentiation The side effect was suppressed by concomitant
treatment with duloxetine and allopregnanolone (Matta
et al., 2020)
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Bortezomib, a proteasome inhibitor, is widely used in the
treatment of multiple myeloma and induces axonal-dependent
sensory damage and pathological responses in Schwann cells.
Bortezomib-treated Schwann cells were analyzed by gene
expression microarray, and the results indicated endoplasmic
reticulum damage to Schwann cells accompanied by the
downregulation of myelin-related genes, which was verified
in a patient with high-dose bortezomib-induced peripheral
neuropathy (Filosto et al., 2007; Shin et al., 2010). In contrast,
compared with that in dorsal rooting ganglion neurons, a
lower dose of oxaliplatin, cisplatin or paclitaxel is required
in cultured Schwann cells because of cytotoxicity, and these
drugs have a negative effect on myelin formation in cocultures
but do not affect neurons, which indicates that Schwann cells
are more susceptible to CIPN than other cells. Surprisingly,
mitochondrial dysfunction occurs in cisplatin- and oxaliplatin-
treated Schwann cells but not in paclitaxel-treated Schwann
cells, while only paclitaxel induces Schwann cell dedifferentiation
(Imai et al., 2017). Consistently, Schwann cell dedifferentiation
occurs in epirubicin-docetaxel-induced CIPN, and this effect
is suppressed by concomitant duloxetine-allopregnanolone
treatment (Matta et al., 2020).

Mesenchymal stem/stromal cell therapy, which is a potential
strategy for CIPN treatment, has a beneficial effect on improving
symptoms (Al-Massri et al., 2020). MSC treatment could protect
both sensory and motor neurons and enhance the efficacy
of pregabalin in paclitaxel-induced peripheral neuropathy (Al-
Massri et al., 2019). Notably, nasal administration of MSC-
based therapy reverses cisplatin- or paclitaxel-induced peripheral
neuropathy by Boukelmoune et al. (2021). In addition, ASCs also
have a positive role in alleviating oxaliplatin-induced peripheral
neuropathy (Di Cesare Mannelli et al., 2018). Induced pluripotent
stem cells (iPSCs) can serve as a new method to estimate the
neurotoxicity associated with chemotherapy treatment (Wheeler
et al., 2015; Wing et al., 2017). The mechanisms of MSC-
based therapies, including whether MSCs can differentiate into
Schwann-like cells, need further study. MSC-based cell therapy
may be a promising strategy for patients suffering from the
adverse effects of cancer treatment.

CONCLUSION AND FUTURE
PERSPECTIVES

Emerging evidence has demonstrated the important role of
Schwann cell/Schwann cell-like cell therapy in alleviating
peripheral neuropathy, but a variety of challenges still need to
be investigated. The source of both autological and allogenic
Schwann cells are primarily nerve biopsies and traumatized
nerve stumps, all of which will result in the innervation of
anatomical regions for the donor and undesired morbidities.
Moreover, nerve-derived Schwann cells need a long expansion
time in vitro to produce a large number of cells. The time
between injury and transplantation with Schwann cells should
be minimized to protect patients from a series of secondary
injuries, including muscle degeneration and functional loss.
Given these limitations, Schwann cell-like cells from stem

cells have become a relatively robust alternative cell for the
repair of peripheral neuropathy. The therapeutic application of
pluripotent stem cells is associated with safety and technical and
ethical constraints compared with other stem cell types, such
as BM-MSCs, dM-MSCs and SKPs. However, these cells have a
long differentiation time after isolation and can delay treatment,
resulting in further damage to the patient. Highly efficient
methods for in vitro differentiation and characterization of
Schwann cell-like cells may support future clinical applications.
On the other hand, direct transplantation with these stem
cells, followed by in vivo differentiation associated with the
pathological stage of peripheral neuropathy, may become a
promising and attractive therapeutic strategy. In addition, in
patients transplanted with allogenic Schwann cells or Schwann
cell-like cells, drugs still need to be used to avoid immune
rejection and potential side effects.

Although there is a large amount of evidence on the role
of Schwann cell-like cells in peripheral neuropathy in rodent
animal models, including peripheral nerve injury, diabetes and
chemotherapy, until now, no direct clinical trials have been
developed with these cells. However, for spinal cord injury,
several studies reported the therapeutic benefits of treatment with
these cells. Most studies have been focused on evaluating safety
and adverse events after transplantation (Yazdani et al., 2013;
Mendonca et al., 2014; Anderson et al., 2017; Gant et al., 2021).
Notably, single MSC administration is safe but less effective
than combination treatment with autologous Schwann cells (Oh
et al., 2016), which improves sensory and motor functional
recovery to some extent, as well as bladder compliance (Oraee-
Yazdani et al., 2016, 2021). In addition, the administration of
these cells by intravenous infusion, intrathecal administration
or direct injection into spinal lesions, and the injury level
and size may lead to different outcomes. Due to the effect of
advanced age (Tong et al., 2015; Liu et al., 2018) and sexual
dimorphism (Magnaghi et al., 2006; Stenberg and Dahlin, 2014)
on the characterization of Schwann cells, these factors need to be
taken into consideration when choosing a therapeutic strategy.
Therefore, many more preclinical studies with cell therapies are
needed prior to clinical application.

Schwann cells release a variety of signaling molecules under
both physiological and pathological conditions to promote
neuronal development and postinjury regeneration (Monje,
2020). Therefore, whether appropriate signaling molecules or
drugs are administered in combination with transplanted
Schwann cells still needs to be carefully assessed (Balakrishnan
et al., 2020). In addition to the variability in the repair response
between rodent and human models, relatively long-distance
transection or injury occurs in humans compared with rodent
models, and a slow rate of nerve regeneration requires a
longer time for transplanted Schwann cells or Schwann cell-
like cells to support and remyelinate the regenerated axons
(Balakrishnan et al., 2020).

In summary, although a great number of challenges remain
to be addressed, a growing body of evidence demonstrates the
beneficial therapeutic roles of Schwann cells and Schwann cell-
like cells in peripheral neuropathy. With deeper insights into the
pathology of peripheral neuropathy-related disorders, including
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peripheral nerve injury, diabetes and chemotherapy, as well as
the development of bioengineering systems, Schwann cell-based
therapy will soon be a more attractive and effective strategy for
treating peripheral neuropathy.
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