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Atom chips use current flowing in lithographically patterned wires to produce
microscopic magnetic traps for atoms. The density distribution of a trapped cold
atom cloud reveals disorder in the trapping potential, which results from
meandering current flow in the wire. Roughness in the edges of the wire is usually
the main cause of this behaviour. Here, we point out that the edges of
microfabricated wires normally exhibit self-affine roughness. We investigate the
consequences of this for disorder in atom traps. In particular, we consider how
closely the trap can approach the wire when there is a maximum
allowable strength of the disorder. We comment on the role of roughness in
future atom–surface interaction experiments.

1. Introduction

Atom chips are microfabricated structures that allow the preparation and
manipulation of cold atom clouds or Bose–Einstein condensates (BEC) above a
substrate surface. Often, these structures use current-carrying wires to produce
tightly confining magnetic microtraps close to the substrate surface, where atom
clouds can be held still, transported, or split [1–5]. With the integration of optical
components [6] and movable structures [7] into atom chips, new possibilities are
now opening for neutral atoms on a chip to form quantum sensors, clocks and
information processors [8]. However, the homogeneity and stability of atom clouds
can be compromised close to a metallic surface by physical factors that cause
fragmentation and/or the loss of atoms. Two main phenomena have been identified:
(i) spatial imperfections of the wire, which cause the current to flow non-uniformly
and make the atom trap rough, and (ii) thermal fluctuations of the magnetic field
near the surface, which drive spin flips of the atoms and cause loss [9]. The first of
these is the subject of our paper.

Recently, the corrugation of magnetic fields close to a wire has been studied
extensively. Initial experiments showed that atom clouds break up into fragments
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as they approach the surface [10, 11], then it was demonstrated that this is due to a
magnetic field component parallel to the wire [12], caused by transverse components
of the current density. Some theoretical efforts were made to relate this to the
details of the current flow [11] and to roughness of the surface and irregularity in the
edges of the wire [13, 14], which cause the current to meander. If the meander has a
single spatial Fourier component of wavevector q0, the decay of this anomalous field
decreases with distance d above the wire according to the Bessel function K1ðdq0Þ to a
good approximation [11]. When the transverse current has a broad noise spectrum,
this decay can sometimes be described by a power law [12].

Conductors lithographically patterned on an atom chip are usually fabricated
with good bulk homogeneity in order to minimize this potential problem of magnetic
roughness. The width of the wire is typically comparable to the distance between the
magnetic trap and the surface. In these typical cases, the meandering of the current is
driven mainly by the roughness of the edges, as determined by the fabrication
process. Three processes are available, namely, (i) electrodeposition of the metal into
a mould formed by a thick photoresist [13, 15], (ii) etching of a complete metallic film
to create the space between wires [15] using wet chemicals or ion beam milling [16],
and (iii) evaporation of the metal onto the substrate through a mask formed by a
patterned resist (the method known as lift-off).

With all these methods of microfabrication, the edges of the wires exhibit
self-affine fractal roughness [17, 18], a type of roughness that we now discuss.
Consider an edge along the z direction with roughness fluctuations f(z). By definition
the height–height correlation function is given by GðrÞ2 ¼ h½ fðzÞ � fðzþ rÞ�2i, the
autocorrelation function is CðrÞ ¼ h fðzÞfðzþ rÞi, and the mean square roughness is
�2 ¼ h fðzÞ2i. The angle brackets denote averaging over the (large) length of the wire.
These quantities are connected by the relation GðrÞ2 ¼ 2�2 � 2CðrÞ. A self-affine
fractal edge is one that satisfies the scaling law GðrÞ / r�, where � is known as the
roughness exponent or Hurst exponent. The statistical properties of such an edge are
invariant when the length is scaled by a factor �, provided there is an accompanying
scaling of the transverse dimension by ��. Microfabricated edges exhibit precisely
this type of behaviour on small length scales [19] up to a characteristic length �,
known as the correlation length. For r > �, G(r) tends to the constant value 21=2� and
the autocorrelation function C(r) tends to zero. This behaviour is captured by the
empirical autocorrelation function

CðrÞ ¼ �2 exp½�ðr=�Þ2��, ð1Þ

which has the required assymptotic behaviour at large and small r and fits
experimental data well [20]. The Hurst exponent � is normally between 0 and 1y,
while the correlation length and rms roughness are both typically in the range
1–100 nm [13, 19, 20].

Considerable progress has been made in understanding how roughness in the
edges of a wire can generate roughness in the magnetic traps produced by the wire
[11, 13, 14]. However, the analyses to date have considered edges with a white noise

yWhen �>1, the surface is said to be super rough. Films grown by molecular beam epitaxy,
where surface diffusion is the dominant process, are one example.

2150 Z. Moktadir et al.
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spectrum or other rather specific model spectra. Here we reconsider the magnetic
noise of atom traps, taking into account this realistic and more generally applicable
model of the self-affine fractal edge roughness.

2. Description of self-affine roughness along an edge

Figure 1 defines a coordinate system and shows the wire that we are considering.
The left and right edges of the wire lie on y¼ 0 and y ¼ y0 with fluctuations fLðzÞ and
fRðzÞ, respectively. Hence, the centre of the wire lies on y0=2þ �yðzÞ, where
�yðzÞ ¼ 1=2 fLðzÞ þ fRðzÞ½ �, with correlation function CðrÞ ¼ h�yðzþ rÞ�yðzÞi. We take
as our starting point the empirical correlation function C(r) given in equation (1).
In the particular case when � ¼ 1=2, the corresponding power spectrum has the
Lorentzian form

P
1

2
, q

� �
¼

2

p
Re

ð1
0

CðrÞ expð�iqrÞdr

� �
¼ �2�

2=p
1þ q2�2

, ð2Þ

where q spans the range 0 to1. In order to have analytical results for a more general
range of possibilities, we extend the power spectrum of equation (2) to the form

Pð�, qÞ ¼ �2�
2=p

ð1þ aq2�2Þ
1
2þ�

� �2� ~P: ð3Þ

This is a one-dimensional version of the approximation introduced by Palasantzas
(section IV of [20]) to describe surface noise. The parameter a in the denominator of

L

I

B

x

y0

d

y

z

x0

0

Figure 1. Sketch of the ideal wire geometry under consideration. Current I flows uniformly
along z. At height d above the wire, this makes a field along y. Roughness in the edges of the
wire causes the current to deviate from side to side, producing a noise field �Bz.

Effect of self-affine fractal roughness of wires on atom chips 2151
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this spectrum is needed to ensure that the integral of equation (3) over all q yields the
mean square roughness �2. This normalization condition requires

a ¼
G2ð�Þ

pG2ðð1=2Þ þ �Þ
, ð4Þ

where G is the Euler function. We find by direct numerical integration that the
power spectrum corresponding to equation (1) is reasonably well reproduced by
equation (3), but only over the range 1=4 < � < 1. Figure 2 shows the dimensionless
spectrum ~P, defined in equation (3), for these two extremes of the Hurst exponent �.
At low frequency it has the value ð2=pÞð�2�Þ regardless of �, but as the frequency
increases, the spectrum with lower � also has lower noise. At higher frequency still,
this necessarily reverses because these spectra are normalized. Typical profiles of the
centre position y0=2þ �yðzÞ, plotted over a length 2�, are inset into the figure to
illustrate this. The case of � ¼ 1=4 exhibits more high-frequency noise but less
long-wavelength noise than that of �¼ 1.

This model is expected to describe fluctuations in the centre of a wire fabricated
on an atom chip. In particular, it describes the atom chip wires currently being used
at Imperial College London, which are made by ion beam milling a gold film.
These typically have roughness � ’ 3 nm, correlation length � ’ 20 nm and Hurst
exponent � ’ 0:5. The noise reported in figure 8 of Schumm et al. [13] is also
consistent with this model, giving for their evaporated wire the values � ’ 1:4 nm,
� ’ 0:8 and � ’ 50 nm. (Note, however that such analysis of the power spectrum is
not a very reliable way to measure � or � [21].) In the following, we discuss the
roughness of the magnetic atom traps produced when current flows through such a
wire and we investigate how the field fluctuations vary with the Hurst exponent � and
correlation length �. Wires made by electrodeposition into a thick photoresist mould
have so far been much rougher. For example, the electroplated wire of [13] had
� ’ 70 nm, � ’ 0:5 and � ’ 200 nm. Moreover, the spectrum of that wire exhibited
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Figure 2. Spectrum of wire roughness P̃ defined by equation (3) versus q�, where � is
the correlation length. Spectra are plotted for two Hurst exponents, � ¼ 1=4 and � ¼ 1. Inset
are two representative plots showing the roughness over a length 2� along z with these two
values of �.
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a second power-law region with exponent �2:2 at wavelengths longer than 20 mm,
indicating a second regime of correlated roughness.

3. Roughness of the atom trap formed by a wire

Consider the wire in figure 1. If the current I flows uniformly along the z direction,
the magnetic field lines lie in the xy plane. In particular, the field points in the
y direction above the centre of the wire. This field is cancelled at a height d by
applying an opposite uniform bias field and the resulting line of zero magnetic field is
surrounded by a transverse quadrupole field. Magnetic atoms can then be trapped
at height d above the centre of the wire by the magnetic dipole interaction �l � B.
A small uniform bias field Bz is often applied along the z direction as well, so that the
magnetic field minimum goes to Bz rather than to zero. This suppresses the loss of
atoms through non-adiabatic spin flips.

In reality, the noise in the edges of the wire causes the current to deviate from side
to side, generating a noise field component �Bz along the z direction. Consequently,
the potential energy along the centreline of the trap is no longer the constant ��zBz

but is modulated by noise ��z�Bz. Assuming that the wire is thin (along x) compared
with the height d, the power spectrum of this noise can be written as

SðqÞ ¼ �2
zB

2
0

�2�

d2

� �
~P ~f 2 ¼ �2

zB
2
0

�2�

d2

� �
~S, ð5Þ

where B0 ¼ �0I=2pd is characteristic of the ideal field produced by the wire and �2� ~P
is the power spectrum describing fluctuations in the centre of the wire, which we take
here to be given by equation (3). The dimensionless scaling factor ~f 2 translates the
noise in the centre of the wire to the noise in the field. It is given by [14]

~f ¼ ðqdÞ2
2 sinh 1

2 qy0
� �

qy0 sinhðqy0Þ

X1
n¼0

ð�1ÞnKnþ1ðqdÞ

n!ð2qdÞn
�2nþ1

1

2
qy0

� �
� �2nþ1 �

1

2
qy0

� �� �
, ð6Þ

where Kn(x) is the modified Bessel function of the second kind and �n(x) is the
incomplete Gamma function. This expansion is useful in the range d > y0=2, where a
small number of terms is sufficient to achieve convergence: 50 terms at d ¼ 0:6y0 and
fewer terms at larger distance. When d < y0=2, the individual terms become
excessively large and the series appears not to converge. In summary, the spectrum
S(q) of the noise in the magnetic atom trap depends on the Hurst exponent � and
four length scales: � and � in P(�, q), which characterize the roughness of the edges
and y0 and d in ~f, which define the geometry of the trap. The overall energy scale is
given by �zB0.

The frequency dependence of ~f 2 is illustrated in figure 3. The three curves
correspond to wire widths of d / 10 (solid line), d / 2 (dashed) and d=0:6 (dotted).
When y0 is small compared with d, ~f is quite insensitive to its value, but ~f becomes
small for a wider wire as the edges move further away compared with d. At low
frequencies, i.e. when qd � 1, the function ~f 2 ’ ½qdð2d=y0Þ arctanðy0=2dÞ�

2 increases
in proportion to q2, reaching a maximum in the vicinity of qd ¼ 1. For large qd,

Effect of self-affine fractal roughness of wires on atom chips 2153
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the function decays as ðp=2Þqdð2d=y0Þ
2 expf�qd ½2þ ðy0=2dÞ

2
�g. If the current

wanders periodically from side to side with a given amplitude, the angular variation

of the current density j is inversely proportional to the wavelength. Consequently, the

transverse component jy is proportional to the frequency q. This is the physical

cause of the linear cutoff in ~f at low frequency. The exponential (Bessel) cutoff at high

frequency is due to Laplace’s equation for the magnetostatic potential, which

naturally smoothes high frequency ripples as one goes far away from the wire.

Note that ~f 2 is also studied and plotted in figure 3 of [13] (where it is called ‘response

function of the magnetic field to the wire edge fluctuation’). It is, however, derived in

a different way, using an expansion different from equation (6).
The dimensionless spectrum ~S of the noise in the trapping potential

(see equation (5)) is the product of the two spectra ~P and ~f 2, shown in figures 2

and 3. Whereas ~P depends on the frequency through q�, ~f is a function of qd,

therefore the shape of the spectrum ~S depends on the ratio d=� as illustrated in

figure 4. The dashed curve in figure 4 represents the case of short correlation length,

� ¼ d=100, for which q� � 1 over the whole range of the graph, making ~P constant

at 2=p. In this limit, equation (5) gives SðqÞ ¼ �2
zB

2
0 2�2�=pd2
� �

~f 2, a spectrum that is

independent of the wire roughness except for the �2� in the overall scale factor.

This general behaviour of a spectrum proportional to ~f 2 persists throughout the

range �9 d, as also indicated by the solid line representing � ¼ d. At the other

extreme, the dotted curve in figure 4 represents the case of long correlation length,

� ¼ 33d, for which qd � 1 over the whole range of interest, giving ~f 2 ’ ðqdÞ2 and

therefore SðqÞ ’ �2
zB

2
0�

2�q2 ~P. This general behaviour of SðqÞ / q2 ~P is characteristic

of the whole range � > d, as also illustrated by the dash-dotted line in figure 4.
Figure 5 shows the effect of changing the Hurst exponent in the roughness

spectrum of the wire from �¼ 1, as in figure 4 (light curves), to � ¼ 1=4 (heavy

curves). When � � d (dashed curves), the change of Hurst exponent makes no

difference because the spectrum is essentially independent of ~P. By contrast, the dotted

0.1 1 1050.50.01

Dimensionless spatial frequency qd
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D
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  f
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Figure 3. Scaling factor ~f2 as a function of the dimensionless frequency qd. This quantity
links the noise in the edges of the wire to the noise in the magnetic atom-trapping potential.
Curves are shown for three ratios of height to width: d=y0 ¼ 10 (solid curve), 2 (dashed) and
0.6 (dotted).

2154 Z. Moktadir et al.



D
ow

nl
oa

de
d 

B
y:

 [I
m

pe
ria

l C
ol

le
ge

 L
on

do
n]

 A
t: 

22
:4

4 
2 

O
ct

ob
er

 2
00

7 

curves representing � ¼ 33d exhibit a strong dependence on the Hurst exponent.
Reducing � from 1 to 1/4 suppresses the low frequency noise and increases the power at
higher frequencies, as already noted in the context of figure 2. This has the effect of
moving the peak of the noise spectrum to higher frequencies. The same effect is seen in
the dash-dotted curves of figure 5 representing � ¼ 10d. When � is equal to d (solid
curves), the change to � ¼ 1=4 suppresses the low frequency part of the spectrum, but
the corresponding increase at higher frequency is not evident because the spectrum is
cut off at higher frequencies by the exponential roll-off of the function ~f 2.

The mean square roughness of Bz, let us call it V for variance, is obtained by
integrating equation (5) over frequency:

Vð�, �, d, y0Þ � hB2
zi ¼

1

�2
z

ð1
0

SðqÞdq: ð7Þ
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Dimensionless spatial frequency qd
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Figure 4. Plot of the product ~P ~f 2, which determines the roughness spectrum S̃ of the
magnetic atom trap. The Hurst exponent is �¼ 1 and d ¼ 2y0. Curves are shown for four
ratios of correlation length � to distance d: �=d ¼ 33 (dotted line), 10 (dash-dotted line),
1 (solid line), 0.01 (dashed line).
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Figure 5. Roughness spectra S̃ of the magnetic trap for two values of the Hurst exponent �.
Light curves: �¼ 1. Heavy curves: � ¼ 1=4. As in figure 4, spectra are given for �=d ¼ 33
(dotted), 10 (dash-dotted), 1 (solid), and 0.01 (dashed).
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Once again, it is useful to adopt a dimensionless version in order to understand how
V depends on the various length scales involved. The form

~V
d

y0
,
d

�
,�

� �
¼

d

�

� �2
V

B2
0

¼

ð1
0

~S�dq ð8Þ

renders the field variance dimensionless and makes it a function of d=y0, d=� and �.
This is plotted versus d=y0 in figure 6 for three values of d=� and two values of �.
We see immediately that the dimensionless variance Ṽ is approximately constant
with distance, corresponding to a 1/d 4 variation in V that weakens when d9 y0.
This result is consistent with experimental observations that the noise decreases with
increasing distance from the wire [11–13]. All the dependence on � and � is contained
in Ṽ, which is largest when d ’ � (solid lines). Changing � from �¼ 1 (light curves) to
� ¼ 1=4 (heavy curves) makes essentially no difference when �=d is small (dashed
lines), because ~P is effectively a constant under these conditions, as discussed above.
By contrast, the same change of � reduces the noise when d ’ � (solid line) and
increases it when d � � (dotted line). Another view of the same parameter space is
given in figure 7, which plots the field noise Ṽ at height d ¼ y0 versus d=�, for three
values of �. This shows more clearly the peaking of the noise near � ¼ d, and the
insensitivity to the value of the Hurst exponent when � is small.

The best present methods for fabricating atom chip wires yield correlation
lengths of order 1–100 nm, while current experiments operate at distances in the
range 1–100mm. This places experiments firmly in the domain of small �=d, where the
value of the Hurst exponent does not influence the roughness of the magnetic trap
significantly and we can take ~P ’ 2=p. In this regime we find that ~V / �=d. For any
particular value of y0 we can integrate equation (8) numerically to obtain the
constant of proportionality. For example, with y0 ¼ d we find

~V
d

y0
¼ 1,

d

�
� 1,�

� �
’ 0:274

�

d
: ð9Þ

1 1.5 2 3 5 7 10
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Figure 6. Dimensionless magnetic field variance Ṽ versus distance d of the trap from the
wire, normalized to the width y0 of the wire. Curves are given for �=d ¼ 1 (solid), 20 (dotted)
and 0.01 (dashed). Light curves: �¼ 1. Heavy curves: �¼ 0.25.
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For narrower wires, i.e. for d > y0, this constant changes very little as we have
already seen in figure 6. As ~P is taken constant in this regime, the corresponding 1/d5

variation in V is identical to the one calculated in [13] when considering edges with a

white noise spectrum. Nevertheless, here, the overall scale factor �2� in V is related to

the real spectral density of the edge roughness.

4. Consequences for the design of the atom trap

One of the primary motivations for atom chips is to achieve small traps with high

trapping frequencies. This requires a high field gradient, which is approximately

�0I=ð2pd2Þ for narrow wires (by which we mean d�y0). The tightest confinement is

achieved by bringing the atoms close to narrow wires, even though smaller wires

carry less current [13], but this also increases the roughness of the magnetic field.

In many experiments, the field has a maximum permissible variance, let us call it

Vmax. For example, a Bose–Einstein condensate will break into separate clouds

unless the noise in the trapping potential is smaller than the chemical potential.

In these cases, the limit on trap roughness imposes a minimum distance from the

surface and hence a maximum achievable magnetic field gradient.
The heat generated by electrical resistance limits the current that can be tolerated

in a lithographically fabricated wire to Imax ¼ 	y0x
1=2
0 [22], where x0 is the thickness

of the wire (figure 1) and the constant 	 characterizes the heat flow across the

interface between the wire and the substrate. When the maximum current is passed

through a wire having y0 ’ d, equations (8) and (9) give the variance of Bz as

V ¼ 0:274
�2�

d3

� �
�0	

2p

� �2
x0: ð10Þ
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Figure 7. Dimensionless magnetic field variance Ṽ versus the ratio d=� for the particular
case d ¼ y0. Solid line: �¼ 1, dashed line: � ¼ 1=2, dotted line: � ¼ 1=4. Dashed-dotted line:
�=d law given by equation (9) and valid when d � �.

Effect of self-affine fractal roughness of wires on atom chips 2157



D
ow

nl
oa

de
d 

B
y:

 [I
m

pe
ria

l C
ol

le
ge

 L
on

do
n]

 A
t: 

22
:4

4 
2 

O
ct

ob
er

 2
00

7 

Upon setting this equal to Vmax, we find that the distance of closest approach and the
maximum field gradient are

dmin ¼ 0:274�2�
�0	

2p

� �2 x0
Vmax

� �1=3
, ð11Þ

B0
max ¼

�0Imax

2pd2min

¼
�0	x

1=2
0 Vmax

0:274� 2p�2�

 !1=3

: ð12Þ

Let us take V1=2
max ¼ 1mG, for which the rms roughness in the potential corresponds

to a temperature of 67 nK. We take 	 ’ 3� 107 Am�3=2 [13, 22], which is typical for
gold wires on a Si=SiO2 substrate. We further assume the values x0 ’ 1 mm,
� ’ 3 nm, and � ’ 20 nm, which are typical of our present wires, as discussed in
section 2. Then the minimum distance of approach to the wire is dmin ’ 6mm, the
current in the wire is Imax ’ 170mA, and the corresponding maximum field gradient
is B0

max ’ 11T cm�1.
In the presence of a bias field Bz along the z direction (figure 1), the potential

energy of the trapped atom near its equilibrium position is �zðB
2
z þ ðB0

max
Þ
2
Þ
1=2,

where 
 is the transverse (xy) displacement. The corresponding frequency for
transverse harmonic oscillations is

fmax ¼
1

2p
B0
max

�z

mBz

� �1=2

, ð13Þ

where m is the mass of the atom. Taking a typical value of Bz ’ 0:5G, the maximum
transverse frequency for 87Rb atoms in the F¼ 2, mF ¼ þ2 ground state is
fmax ’ 190 kHz. This result indicates that atom chips can achieve very high trapping
frequencies, comparable with those already demonstrated in optical lattices, while
remaining adequately smooth. The correspondingly small extension of the vibra-
tional ground state wavepacket is only, 17 nm, making such traps very promising for
studying the physics of 1-dimensional cold gases [23].

5. Discussion

We have examined how a magnetic trap formed by a current-carrying wire is
sensitive to the roughness on the edges of the wire. In particular, we have extended
previous discussions to consider the case of a self-affine fractal roughness spectrum
with a correlation length �. This is of interest because the methods used to fabricate
wires on an atom chip generally produce such roughness. Our analysis has shown
how the spectrum of trap roughness involves an interplay between the spectrum of
the wire roughness and the spectrum of the transfer function that converts deviations
of the current into fluctuations of the magnetic field. In most current experiments,
there is a clear hierarchy of length scales in which d ’ y0 � �. When there is also a
maximum acceptable roughness of the magnetic trap, this leads to equation (11)
for the minimum operating distance between the trap and the wire. There is
correspondingly a maximum achievable field gradient given by equation (12).
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These results argue for minimizing the quantity �2� because this determines the

spectral density of the edge roughness at low frequency, which is what generates the

noise in the magnetic trap. In these cases where d ’ y0 � �, the Hurst exponent is

less important because it only affects the spectrum at frequencies above 1=�, which
do not contribute significantly to the trap roughness. Naturally, if there is a second

power-law regime at long wavelength, as in some wires [13], then the

corresponding Hurst exponent significantly affects the magnetic trap roughness at

that length scale.
There is considerable interest in trapping atoms much closer to the surface.

Atoms trapped at sub-micron distances would begin to probe the details of the

short-scale noise and in that case the value of � would be significant. In the range of

0.1–1mm one could intentionally create surfaces with a variety of noise spectra in

order to propagate BEC through custom-made disorder potentials as a study of

quantum localization phenomena, as proposed by [14]. Experiments of this type have

already been done using random optical potentials [24–26], but this magnetic

disorder offers a different noise spectrum with the possibility of very short correlation

length. The effective amplitude of the noise can be conveniently controlled by

appropriate modulations of the currents that form the trap, as recently demonstrated

by [27]. A natural lower limit to the distance of closest approach is set by the

electromagnetic attraction of the atom towards the surface—the van der Waals

(Casimir–Polder) force—which grows as 1/d4 (1/d5) and overwhelms the trapping

force at a distance of order 100 nm [28, 29]. This force itself is also of fundamental

interest and can be measured further away from the surface by means of cold atoms

[29, 30], possibly trapped on an atom chip [31]. Even more exotically, one can

hope to measure the gravitational attraction at short range, which might exhibit

departures from the Newtonian law as a result of extra dimensions [32].

These experiments also require careful control over the noise of the surface.

We note that if the distance to the surface becomes much less than the width of

the wire, the corrugation of the surface [13] and imperfections of the bulk [33] may

contribute significantly to the magnetic trap roughness.
In this study we have not considered the role of additional technical noise at long

correlation lengths, but such noise certainly exists as a result of imperfections in the

fabrication process and can make a significant contribution to the roughness of the

magnetic trap at long wavelength. For example, a supposedly straight line may be

bent by optical aberrations during the lithographic patterning. A bend of only

100 mrad amounts to a deviation of only 10 nm over a length of 100 mm. Nevertheless,

in a bias field of B0¼ 10G this would generate an appreciable unwanted Bz of 1mG.

There can also be a periodic wobble of straight lines due to the imperfection of

mechanical translation stages. These kinds of defects are very hard to measure by

standard microscopy because they involve small transverse displacements over length

scales larger than the normal field of view in an SEM or AFM microscope. In fact,

this noise is best measured by the cold atoms themselves through its effect on their

density distribution in the trap. Krüger et al. [33] have already noted that on certain

length scales, this method may provide a uniquely sensitive way to probe the

magnetic field near surfaces.
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