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We study the effect of service level constraint on the economic production quantity (EPQ)

model with random defective rate. We first prove that the expected overall cost for im-

perfect quality EPQ model with backlogging permitted is less than or equal to that of the

same model without backlogging. Secondly, the relationship between “imputed backo-

rder cost” and maximal shortage level is derived for decision-making on whether the

required service level is achievable. Then an equation is proposed for calculating the in-

tangible backorder cost for the situation when the required service level is not attainable.

By including this intangible backorder cost in the mathematical analysis, one can derive a

new optimal lot-size policy that minimizes expected total costs as well as satisfies the ser-

vice level constraint. Numerical example is provided to demonstrate its practical usage.

Copyright © 2006 Yuan-Shyi Peter Chiu. This is an open access article distributed under

the Creative Commons Attribution License, which permits unrestricted use, distribution,

and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The primary operation strategies and goals of most manufacturing firms are to seek a

high satisfaction to customer’s demands and to become a low-cost producer. To achieve

these goals, the company must be able to effectively utilize resources and minimize costs.

The economic order quantity (EOQ) model was the first mathematical model introduced

several decades ago to assist corporations in minimizing total inventory costs. It balances

inventory holding and setup costs, and derives the optimal order quantity. Regardless of

its simplicity, the EOQ model is still applied industry-wide today [1, 13].

In the manufacturing sector, when items are produced internally instead of being ob-

tained from an outside supplier, the economic production quantity (EPQ) model is of-

ten employed to determine the optimal production lot size that minimizes overall pro-

duction/inventory costs. It is also known as the finite production model, because of its

assumption that the production rate must be much larger than the demand rate. The

classic EPQ model assumes that manufacturing facility functions perfectly during a pro-

duction run. However, due to process deterioration or other factors, the generation of
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2 Effect of service level constraint on EPQ with Defects

imperfect quality items is inevitable. A considerable amount of research has been carried

out [4, 7, 8, 12] to address the imperfect quality EPQ problem and some additional ex-

amples are surveyed as follows. Chung [8] investigated bounds for production lot sizing

with machine breakdown conditions. Rosenblatt and Lee [16] proposed an EPQ model

that deals with imperfect quality. They assumed that at some random point in time the

process might shift from an in-control to an out-of-control state, and a fixed percentage

of defective items are produced. Hayek and Salameh [10] derived an optimal operating

policy for the finite production model under the effect of reworking of imperfect quality

items. They assumed that all defective items are repairable and allowed backorders. Chiu

[5] examined an EPQ model with scrap items and the reworking of repairable items.

This paper studies the effect of service level constraint on EPQ model with random

defective rate. In the realistic inventory control and management, due to certain internal

orders of parts/materials and other operating considerations, the planned backlogging is

the strategy to effectively minimize overall inventory costs. While allowing backlogging,

abusive shortage in an inventory model, however, may cause an unacceptable service level

and turn into possible loss of future sales (because of the loss of customer goodwill).

Therefore, the maximal allowable shortage level per cycle is always set as an operating

constraint of the business in order to achieve minimal service level while deriving the

optimal lot-size decision. A noticeable amount of research has been conducted to address

the service level constraint issue [2, 11, 14, 17] and other examples are surveyed below. de

Kok [9] considered a lost-sales production/inventory control model with two adjustable

production rates to meet demand. He obtained the practical approximations for optimal

switch-over levels to such a model under the service level constraints. Chen and Krass

[3] investigated inventory models with minimal service constraints. They showed that

the minimal service level constraint (SLC) model to be qualitatively different from their

shortage cost counterparts and the transformation from SLC model to a shortage cost

model may not be always possible.

For the reason that little attention was paid to the area of investigating the effect of

service level constraint on the EPQ model with random defective rate, this paper intends

to serve this purpose.

2. Mathematical modeling and analysis

2.1. Assumptions and notations. The imperfect production process, due to process de-

terioration or other factors, may randomly generate x percent of defective items at a con-

stant rate d. The inspection cost per item is involved when all items are screening. In

this paper, all defective items are assumed to be scrap items. The production rate P is

much larger than demand rate λ, as the basic assumption of the finite production model.

It follows that the production rate of the scrap items d can be expressed as d = Px. The

following notations are used in our analysis:

(1) Q is the production lot size in the EPQ model with shortage not permitted,

(2) Qb is the production lot size per cycle in the EPQ model with shortage allowed

and backordered,

(3) B is the allowable backorder level in the EPQ model with backlogging permitted,

(4) K is the fixed setup cost for each production run,
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(5) H1 is the maximum level of on-hand inventory in units, when the regular pro-

duction process stops,

(6) c is the production cost per item ($/item, inspection cost per item is included),

(7) h is the holding cost per item per unit time ($/item/unit time),

(8) b is the backordering cost per item per unit time,

(9) cs is the disposal cost for each scrap item ($/scrap item),

(10) T is the cycle length,

(11) t1 is the production uptime,

(12) t2 is the production downtime,

(13) t3 is the time shortage permitted,

(14) t4 is the time needed to satisfy all the backorders by the next production,

(15) TC(Q) is the total inventory costs per cycle in the EPQ model with shortage not

permitted,

(16) TCU(Q) is the total inventory costs per unit time in the EPQ model with shortage

not permitted,

(17) TC(Qb,B) is the total inventory costs per cycle in the EPQ model with backlog-

ging permitted,

(18) TCU(Qb,B) is the total inventory costs per unit time in the EPQ model with

backlogging permitted.

2.2. Formulation of the EPQ model with backlogging. The EPQ model assumes that

the production rate P must always be greater than or equal to the demand rate λ. The

production rate of perfect quality items must always be greater than or equal to the sum of

the demand rate and the production rate of defective items. Therefore, we must have the

following: (P− d− λ)≥ 0 or (1− x− λ/P)≥ 0. Figure 2.1 depicts the on-hand inventory

level and allowable backorder level for the EPQ model with backlogging permitted.

For the following derivation, we employ the solution procedures used by Hayek and

Salameh [10]. From Figure 2.1, one can obtain the cycle length T , production uptime t1,

the maximum level of on-hand inventory H1, production downtime t2, shortage permit-

ted time t3, and t4 as follows:

T =
4
∑

i=1

ti =
Qb(1− x)

λ
, (2.1)

t1 =
H1

P−d− λ
, (2.2)

H1 = (P−d− λ)
Qb

P
−B, (2.3)

t2 =
H1

λ
, (2.4)

t3 =
B

λ
, (2.5)

t4 =
B

P−d− λ
, (2.6)

(

t1 + t4
)

=
Qb

P
. (2.7)



4 Effect of service level constraint on EPQ with Defects

T T

B
t1 t2

t3 t4

Time

H1

Qb

I(t)

P
−
d
−
λ

−λ

P − d − λ
−λ

Figure 2.1. On-hand inventory of the EPQ model with random defective rate and backlogging per-

mitted.

The scrap items built up randomly during production uptime “t1 + t4” are

d ·
(

t1 + t4
)

= x ·Q. (2.8)

The inventory cost per cycle, TC(Qb,B), is

TC
(

Qb,B
)

= c ·Qb + cs · x ·Qb +K +h

[

H1

2

(

t1 + t2
)

]

+ b

[

B

2

(

t3 + t4
)

]

+h

[

d
(

t1 + t4
)

2

(

t1 + t4
)

]

.

(2.9)

Since scrap items are produced randomly during a regular production run, the cycle

length T is a variable (see Figure 2.1). One may employ the renewal reward theorem [18]

to cope with the variable cycle length. By substituting variables form (2.1) to (2.8) in

(2.9), the expected cost E[TCU(Qb,B)]= E[TC(Qb,B)]/E[T] can be obtained as follows

[6]:

E
[

TCU
(

Qb,B
)]

= λ

[

c

1−E[x]
+

cSE[x]

1−E[x]

]

+
Kλ

Qb

1

1−E[x]

+
h

2

[(

1−
λ

P

)

Qb− 2B

]

1

1−E[x]
+

B2

2Qb

(b+h)

1−E[x]
E

(

1− x

1− x− λ/P

)

+h

[

B−

(

1−
λ

P

)

Qb

]

E[x]

1−E[x]
+
hQb

2

E
[

x2
]

1−E[x]
.

(2.10)
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For the proof of convexity of E[TCU(Qb,B)], one can utilize the Hessian matrix equa-

tion [15]:

[

Qb B
]

·

⎡

⎢

⎢

⎢

⎣

∂2E
[

TCU
(

Qb,B
)]

∂Q2
b

∂2E
[

TCU
(

Qb,B
)]

∂Qb∂B
∂2E

[

TCU
(

Qb,B
)]

∂B∂Qb

∂2E
[

TCU
(

Qb,B
)]

∂B2

⎤

⎥

⎥

⎥

⎦

·

[

Qb

B

]

=
2Kλ

Qb

1

1−E[x]
> 0.

(2.11)

Equation (2.11) is resulting positive, because all parameters are positives. Hence, the ex-

pected inventory cost function E[TCU(Qb,B)] is a strictly convex function for all Qb and

B different from zero.

Hence, it follows that for the optimal production lot size Qb and the maximal level of

backorder B, one can differentiate E[TCU(Qb,B)] with respect to Qb and with respect to

B and solve the linear system of (2.12) by letting these partial derivatives equal to zero:

∂E
[

TCU
(

Qb,B
)]

∂Qb
=
−Kλ

Q2
b

1

1−E
[

x]
+
h

2

(

1−
λ

P

)

1

1−E
[

x]

−
B2

2Q2
b

(

b+h
)

E

(

1− x

1− x− λ/P

)

1

1−E[x]

−h ·

(

1−
λ

P

)

E[x]

1−E[x]
+

(

h

2

)

E[x2]

1−E[x]
= 0

∂E
[

TCU
(

Qb,B
)]

∂B
=−h

1

1−E[x]
+

B

Qb
(b+h)E

(

1− x

1− x− λ/P

)

1

1−E[x]

+h
E[x]

1−E[x]
= 0.

(2.12)

Hence, one derives the optimal production policy, Q∗b and B∗ as shown below:

Q∗b=

√

2Kλ

h(1−λ/p)−h2 · {1−E[x]}2/(b+h) ·E
(

(1−x)/(1−x−λ/P)
)−2h(1−λ/p)E[x]+h ·E

[

x2
]

,

(2.13)

B∗ =

(

h

b+h

)

1−E[x]

E((1− x)/(1− x− λ/P))
Q∗b . (2.14)

2.3. Formulation of the EPQ model with shortage not permitted. For the EPQ model

with random defective rate and shortage not permitted, the cycle length T = t1 + t2 (see

Figure 2.1). The expected annual cost E[TCU(Q)]= E[TC(Q)]/E[T] can be obtained as

follows [7]:

E
[

TCU(Q)
]

= λ

[

c

1−E[x]
+ cS

E[x]

1−E[x]

]

+
Kλ

Q

1

1−E[x]

+
hQ

2

(

1−
λ

P

)

1

1−E[x]
−hQ

(

1−
λ

P

)

E[x]

1−E[x]
+
hQ

2

E
[

x2
]

1−E[x]
.

(2.15)
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Differentiating E[TCU(Q)] with respect to Q twice, we find that E[TCU(Q)] is convex

and by minimizing the expected annual cost E[TCU(Q)], one can derive the optimal

production quantity Q∗ as shown in (2.16).

Q∗ =

√

2Kλ

h(1− λ/p)− 2h(1− λ/p)E[x] +h ·E
[

x2
] . (2.16)

2.4. Effects of backlogging and service level constraint on the EPQ model

Property 2.1. The expected annual cost per unit time for the EPQ model with random

defective rate and backlogging not permitted is always greater than or equal to that of the

EPQ model with random defective rate and backlogging allowed. That is, E[TCU(Q)] ≧

E[TCU(Qb,B)], for any given Q=Qb.

Proof. Assume that for any given Q =Qb, employing (2.10) and (2.15), one obtains

E
[

TCU(Q)
]

−E
[

TCU(Q,B
)]

= hB
1

1−E[x]
−

B2

2Q

(b+h)

1−E[x]
E

(

1− x

1− x− λ/P

)

−hB
E[x]

1−E[x]
.

(2.17)

Substituting B from (2.14), one has

∴ E
[

TCU(Q)
]

−E
[

TCU(Q,B
)]

=
h2

2(b+h)

1−E[x]

E
(

(1− x)/(1− x− λ/P)
)Q ≥ 0. (2.18)

Since cost-related parameters h and b are nonnegative numbers, the random defective

rate x and (1− x− λ/P)≥ 0, and the production lot-size Q ≥ 0, hence (2.18) ≥ 0. �

Property 2.1 confirms that it is better (in terms of total inventory costs) to permit

shortage and have them backordered for the EPQ model with random defective rate.

While allowing backlogging, abusive shortage in an inventory model, however, may cause

an unacceptable service level and turn into possible loss of future sales. Hence, the max-

imal allowable shortage level per cycle is always set as an operating constraint for the

business in order to attain the minimal service level.

Suppose that we set α to be the maximum proportion of shortage permitted time per

cycle (i.e., the service level = (1−α)%), then

α=
t3 + t4
T

, (2.19)

∴
α

1−α
=

t3 + t4
t1 + t2

. (2.20)

Substituting t1, t2, t3, and t4 in (2.20), one obtains

∴
α

1−α
=

B

(1− x− λ/P)Qb−B
. (2.21)
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Substituting B in (2.21), one has the following:

1

α
=

(

b+h

h

)

E

(

1− x

1− x− λ/P

)

1

1−E(x)

(

1− x−
λ

P

)

, (2.22)

∴ b = h ·

{

1

α
·

[
[

1−E(x)
]

(1− x− λ/P)
·E

(

1− x

1− x− λ/P

)−1
]

− 1

}

. (2.23)

Assume that

f (α,x)= h ·

{

1

α
·

[
[

1−E(x)
]

(1− x− λ/P)
·E

(

1− x

1− x− λ/P

)−1
]

− 1

}

. (2.24)

Equation (2.24) represents the relationship between the imputed backorder cost f (α,x)

and the maximum proportion of shortage permitted time α. In other words, when the

service level (1−α)% of the EPQ model is set, the corresponding imputed backorder cost

f (α,x) can be obtained. Hence, one can utilize this information to determine whether or

not the service level is achievable. For the computation of E[(1− x)/(1− x− λ/P)], one

can refer to the appendix.

Let bt be the tangible backorder cost per item. If bt > f (α,x) then the service level

(1− α)% is achievable. Otherwise, we need to increase the tangible backorder cost to

f (α,x) and then use it to derive the new optimal operating policy (in terms of Q∗b and

B∗), so that the overall inventory costs can be minimized and the service level constraint

will be attained.

Let bi be the adjustable intangible backorder cost (per item per unit time), then bi
should satisfy the following condition in order to attain the (1−α)% service level:

bi≥
[

f (α,x)− bt
]

. (2.25)

Therefore, by using b = f (α,x) one can derive the new optimal production lot size Q∗b
and the optimal backorder level B∗ that minimizes the expected annual inventory costs

as well as achieves the minimal service level (1−α)%.

3. Numerical example and discussion

A company produces a product for several regional clients. It has experienced a relatively

flat demand λ = 4000 units per year. This item is produced at a rate P = 10000 units

per year. The percentage of imperfect quality items produced is uniformly distributed

over the interval [0,0.1]. All of the defective items are scrap, they cannot be repaired

and the disposal cost cs = $0.3 per scrap item. The accounting department has estimated

that it costs $450 to initiate a production run and each unit costs the company $2 to

manufacture. The cost of holding h is $0.6 per item per year. The service level of this

item, according to the firm’s policy, is set at 70% or above (i.e., the maximum proportion

of shortage permitted time per cycle α is 0.3). Thus, we have

(1) K = $450 for each production run,

(2) x is the proportion of imperfect quality items produced and is uniformly dis-

tributed over the interval [0,0.1],
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Figure 3.1. Convexity of the expected cost function E[TCU(Q∗
b ,B∗)].

(3) c = $2 per item,

(4) bt = $0.2 per item backordered per unit time (the tangible backorder cost),

(5) α= 0.3; the maximum proportion of shortage permitted time per cycle.

First let b=bt. From (2.10), (2.13), and (2.14), one obtains the overall costs E[TCU(Q∗b ,

B∗)] = $9087, the optimal production quantity Q∗b = 6284, and the optimal backorder

level B∗ = 2589. Convexity of the expected cost function for this example is displayed in

Figure 3.1.

For EPQ model with backlogging not allowed, from (2.15) and (2.16), we obtain the

total cost E[TCU(Q∗)]= $9625 and the optimal production quantity Q∗ = 3,323. One

notices that the EPQ model with backlogging permitted has a lower overall cost than that

of the EPQ model with no shortage allowed, as proved by Property 2.1.

3.1. Effect of service level constraint on EPQ model. In this example, suppose we ignore

the 70% service level constraint for now, then from (2.22) the proportion of shortage

time per cycle α = 0.824. This represents a 17.6% service level only. In order to achieve

the required 70% service level (i.e., α = 0.3), one can use the proposed equations (2.23)

and (2.24) and obtain the intangible backorder cost bi ≧ [ f (α,x)− bt] = 1.4. Variation

of x effects on f (α,x) is depicted in Figure 3.2. One notices that as the random defective

rate x increases, f (α,x) increase too.

Variation of λ/P effects on f (α,x) is displayed in Figure 3.3. One notices that as λ/P

increases, f (α,x) increases slightly too. Change of h effects on the f (α,x) is illustrated in

Figure 3.4.

Then, using a minimum b = (bt + bi)= 1.4 and (2.10), (2.13), and (2.14), one can re-

calculate the optimal production quantity Q∗b =3869, the optimal backorder level B∗=

580, and the expected annual costs E[TCU(Q∗b ,B∗)] = $9464. Table 3.1 presents the

variation of α effects on the f (α,x), the optimal operating policy (Q∗b and B∗), the
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Figure 3.2. Variation of x effects on the f (α,x).
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Figure 3.3. Change of λ/P effects on the f (α,x).

expected cost function E[TCU(Q∗b ,B∗)], the E[TCU(Q∗b ,B∗)] excluding an intangible

backorder cost, and the price for raising the service level from 17.6%.

From Table 3.1, one notices that though E[TCU(Q∗b ,B∗)] for 70% service level is

$9464, if we exclude the intangible backorder cost bi (which merely helps us to achieve the

70% service level) from the computation of (2.10), we will obtain the actual cost $9353.
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Figure 3.5. Variation of α effects on the optimal cost E[TCU(Qb,B)] and the E[TCU(Qb,B)] exclud-

ing the intangible backorder cost.

Comparing to $9087, there is an increase of $266 in cost. In other words, $266 is the price

that we actually pay for raising the service level from 17.6% to 70% (see both Table 3.1

and Figure 3.5 for details). One also notices that as the service level (1− α)% increases,

both E[TCU(Q∗b ,B∗)] and the actual price for raising service level increase too.
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Table 3.1. Variation of α effects on the optimal policy, E[TCU(Q∗
b ,B∗)] and [TCU(Q∗

b ,B∗)] exclud-

ing the intangible backorder cost, and price for raising the service level.

Service

level

(1−α)%

α f (α,x) bi Q∗
b B∗ E[TCU(Q∗

b ,B∗)]

TCU(Q∗
b ,B∗)

excluding

intangible

backorder

cost

Price for

raising

service level

100.0% 0.00 ∞ ∞ 3323 0 $9625 $9625 $537

95.0% 0.05 12.58 12.38 3398 85 $9599 $9575 $488

90.0% 0.10 5.99 5.79 3479 174 $9574 $9528 $440

85.0% 0.15 3.79 3.59 3565 267 $9547 $9482 $394

80.0% 0.20 2.70 2.50 3658 366 $9520 $9437 $350

75.0% 0.25 2.04 1.84 3759 470 $9492 $9394 $307

70.0% 0.30 1.60 1.40 3869 580 $9464 $9353 $266

65.0% 0.35 1.28 1.08 3989 698 $9434 $9314 $227

60.0% .40 1.05 0.85 4121 824 $9404 $9277 $189

55.0% 0.45 0.86 0.66 4267 960 $9372 $9242 $154

50.0% 0.50 0.72 0.52 4429 1107 $9340 $9209 $122

45.0% 0.55 0.60 0.40 4612 1268 $9306 $9179 $92

40.0% 0.60 0.50 0.30 4819 1446 $9271 $9153 $65

35.0% 0.65 0.41 0.21 5057 1644 $9234 $9129 $42

30.0% 0.70 0.34 0.14 5335 1867 $9195 $9110 $23

25.0% 0.75 0.28 0.08 5663 2124 $9153 $9096 $9

20.0% 0.80 0.22 0.02 6061 2424 $9109 $9088 $1

17.6% 0.82 0.20 0.00 6284 2589 $9087 $9087 $0

4. Concluding remarks

In practical inventory control and management, due to process deterioration or other fac-

tors, the generation of defective items is inevitable. Also, owing to the existence of internal

orders and other operating considerations, the planned backlogging is the strategy to ef-

fectively minimize overall inventory costs. While allowing backlogging, abusive shortage

in an inventory model, however, may cause an unacceptable service level and turn into

possible loss of future sales. This paper studies the effect of service level constraint on EPQ

model with random defective rate. We first derive and prove that the expected overall in-

ventory costs for EPQ model with backlogging permitted is less than or equal to that of

the same model without backlogging permitted. Secondly, the relationship between im-

puted backorder cost and maximal shortage level is derived for decision-maker to judge

on whether the required service level is achievable. Then we propose an equation for cal-

culating the intangible backorder cost for the situation when the required service level is

not attainable. By including this intangible backorder cost in the mathematical analysis,

one can derive a new optimal lot-size policy that minimizes expected total costs as well
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as satisfies the service level constraint. Numerical example is provided to demonstrate its

practical usage.

For future research, one interesting direction among others will be to investigate the

effect of service level constraint on an imperfect quality EPQ model with rework process.

Appendix

Computation of E((1− x)/(1− x− λ/P))

In this paper, the proportion of imperfect quality x is assumed to be a random variable;

for example, with a uniform distribution over the interval [Xl,Xu], the probability density

function f (x) is

f (x)=

⎧

⎪

⎨

⎪

⎩

1

Xu−Xl
for Xl < x < Xu,

0 otherwise.
(A.1)

The expectation value of E((1− x)/(1− x− λ/P)) can be calculated using the following

integration equation:

E

(

1− x

1− x− λ/P

)

=

∫ Xu

Xl

(

1− x

1− x− λ/P

)

· f (x)dx

=

[

− 1 + x−
λ

P
ln

(

1− x−
λ

P

)]

f (x)

∣

∣

∣

∣

Xu

Xl
.

(A.2)

If the proportion of imperfect quality items x follows some other probability distri-

bution, one may derive the expectation value of E((1− x)/(1− x − λ/P)) accordingly;

perhaps with extra efforts.
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