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Abstract: Deep learning techniques are the future trend for designing heart sound classification
methods, making conventional heart sound segmentation dispensable. However, despite using
fixed signal duration for training, no study has assessed its effect on the final performance in detail.
Therefore, this study aims at analysing the duration effect on the commonly used deep learning
methods to provide insight for future studies in data processing, classifier, and feature selection.
The results of this study revealed that (1) very short heart sound signal duration (1 s) weakens the
performance of Recurrent Neural Networks (RNNs), whereas no apparent decrease in the tested
Convolutional Neural Network (CNN) model was found. (2) RNN outperformed CNN using Mel-
frequency cepstrum coefficients (MFCCs) as features. There was no difference between RNN models
(LSTM, BiLSTM, GRU, or BiGRU). (3) Adding dynamic information (∆ and ∆2MFCCs) of the heart
sound as a feature did not improve the RNNs’ performance, and the improvement on CNN was
also minimal (≤2.5% in MAcc). The findings provided a theoretical basis for further heart sound
classification using deep learning techniques when selecting the input length.

Keywords: heart sound; deep learning (DL); recurrent neural networks (RNNs); convolutional neural
network (CNN)

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, accounting
for approximately 31% of the mortality [1]. Auscultation is the most common and effective
way in early screening, which plays a vital role in CVD detection for necessary action
to lower the risk for worsening heart diseases. However, it relies significantly on the
physician’s listening ability and clinical experience. Experienced cardiologists can distin-
guish between 73% and 80% accuracy of pathological murmurs, while inexperienced new
physicians or trainees can distinguish 20–40% accuracy [2,3]. A misdiagnosis will lead the
patient to miss the best time for treatment or increase the cost due to unnecessary further
detection (e.g., electrocardiogram, cardiac ultrasound, and computerised tomography).

Heart sound is produced by the closure of a valve or tensing of a chordae tendineae
that the physician will listen to during the auscultation. The acoustic sensors can capture it,
and its waveform are visualised as a phonocardiogram (PCG), as shown in Figure 1. In
healthy conditions, S1 and S2 are the two main components in the waveform, representing
the sound of mitral and tricuspid valve closure (S1) and the closure of the aortic and
pulmonic valves (S2), respectively. In addition, S3 and S4 are also innocent components
seen on children’s PCG but rarely seen in adults. They indicate the sound caused by an
increase in ventricular blood volume and an atrial gallop by blood being forced into a stiff
ventricle. Pathological heart sounds differ from healthy ones due to the murmurs primarily
caused by the abnormal heart structure. Murmurs can occur in the systolic interval or the
diastolic interval, reflecting different types of CVDs, e.g., the most common mitral or aortic
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stenosis murmurs can be seen during systole [4]. As shown in Table 1, the heart sound
components are short in time and low in frequency, and its principal frequencies are at
the lower end of the human ear (20–20k Hz), which is not sensitive to hear. Therefore,
traditional auscultation has natural shortcomings.
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Figure 1. Visualisation of heart sound signal with its component locations.

Table 1. Heart Sound Components and their properties.

Heart Sound S1 S2 S3 S4

Duration (ms) 100–160 80–140 40–50 40–50
Frequency (Hz) 30–50 40–70 <30 <20

Occurrence Sound of mitral and
tricuspid valve closure

Sound of aortic and
pulmonic valve closure

The sound caused by an
increase in ventricular

blood volume

Sound of an atrial gallop
produced by blood being
forced into a stiff ventricle

Computer-aided heart sound analysis has great potential to improve auscultation
accuracy by overcoming human hearing limitations and clinical experience. An electronic
stethoscope is used instead of the traditional acoustic stethoscope to record the heart sound
signal. Then, a machine learning classification algorithm will conduct the automated
diagnosis. Typical PCG signal classification algorithms include three significant steps:
segmentation (including component identification), feature extraction, and classification [5].
Firstly, the conventional segmentation breaks the whole signal into each heart cycle and
locates the heart sound components, as shown in Figure 1. It should be noted that the
meaning of segmentation in the heart sound processing is slightly different from the typical
signal processing. In standard signal processing, segmentation means cutting the signal
into segments by moving windows.

In contrast, heart sound processing means breaking the signal into heart cycles and
indicating the heart sound components. To avoid confusion, the ‘segmentation’ in this
paper means the conventional heart sound segmentation, and we will use other verbs to
describe our signal processing. After segmentation, features such as time-frequency, energy-
based, wavelet transform, and Mel-frequency cepstrum coefficients (MFCCs) are extracted
from the signals to train a classifier. MFCCs are the most commonly used features in sound
processing studies. Their frequency bands in Mel-scale can approximate human auditory
system response more closely than linear-scaled spectrums because they consider the
human ear perception sensitivity concerning the changing frequencies. Thus, using MFCCs
as features is particularly suitable for simulating the auscultation activity. Afterwards,
machine learning methods will classify the input heart sounds into normal and abnormal
classes based on these features.

It is still an open question on the necessity of segmentation. As mentioned, conven-
tional segmentation aims to locate the heart sound components, helping extract the features,
especially in the time domain. However, there is no widely recognised golden PCG seg-
mentation technique. Unsuccessful segmentation will conversely affect the accuracy and
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robustness of the algorithm and increase computation load. In addition, several representa-
tive studies without conventional segmentation have achieved considerable performance
in the heart sound classification [6–12]. Thus, segmentation becomes an optional step that
should depend on the selected features and classifiers. Generally, algorithms without seg-
mentation make use of deep learning methods based on artificial neural networks (ANNs)
such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The
signal is not segmented to identify components in these algorithms but broken into signal
pieces of equal duration. As a result, different studies cut the heart sound recordings into
various epoch durations, e.g., some studies broke the recordings into one-second epochs
to enlarge the dataset as much as possible for training and validation [9,12]. In contrast,
others were cut into five-second pieces to retain more information in each segment [10,13].
Different data structures and settings make it hard to evaluate the proposed methods, so it is
necessary to unravel how to choose the appropriate PCG input duration for a given dataset.

The aim of this study is threefold: (1) to systematically investigate how the duration of
input PCG signals will affect the performance of deep learning methods; (2) to compare the
performance of commonly used RNNs, including gated recurrent unit (GRU), long short-
term memory (LSTM), Bidirectional LSTM, and GRU (BiLSTM and BiGRU) under different
epoch lengths; (3) to ascertain if adding dynamic information (deltas and delta-deltas of
MFCCs) as the feature can improve the performance of the tested deep learning methods.
Ultimately, the findings of this study will provide insight to determine reasonable input
length, classifiers, and features for designing deep learning PCG classification algorithms
in the future.

2. Related Works

The earliest publication on automated PCG classification can be traced to 1963, when
Gerbarg et al. used a threshold-based method to identify rheumatic heart disease [14]. Since
then, many articles have been published on the PCG segmentation techniques, features
selection, and classification methods. The proposed classification algorithms include logistic
regression [15], random forest [16], K-nearest neighbours (KNN) [15,17,18], regression
tree [19], support vector machine (SVM) [15,20,21], hidden Markov model (HMM) [22],
and ANN and its variants [23–25]. However, it was almost impossible to systematically
and uniformly evaluate and compare the early research performance in this field, as they
used different datasets with different classification tasks. With the development of deep
learning techniques in recent years, more researchers switched from traditional machine
learning to deep learning methods to design improved classification algorithms.

In 2016, PhysioNet/Computing in Cardiology (CinC) Challenge created an extensive
database sourcing from nine different heart sound databases with 4430 recordings collected
from 1072 healthy participants and patients with a variety of conditions [26]. This database
can be used for binary classification (normal and abnormal heart sound) and as the platform
to assess classifiers and features objectively. Furthermore, it provided the basis for designing
deep learning PCG classification methods. Despite ambiguous discussion on the best
classifier or the selection of features according to the PhysioNet challenge results, almost
half of the top performances, especially the top three applied the neural network algorithms.
This showed a great potential of deep learning in improving the performance of automated
PCG classification. For the feature selection, 4 of the top 10 algorithms used MFCCs, given
the proven track of their reliability and universality [27].

Moreover, Yang and Hsieh used RNN without segmentation, ranking 13 in the Chal-
lenge (Acc: 79%) [28]. This method aroused interest in the necessity of segmentation and led
to future research on PCG classification using RNNs models. Practically, RNNs are suitable
for sound recognition with the advantage of exhibiting temporal dynamic characteristics,
and it has achieved great success in automatic handwriting and speech recognition [29].
After the challenge, more researchers explored deep learning methods without segmen-
tation using the PhysioNet database. Table 2 outlines several representative studies in
recent years.
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Table 2. Recent advancements in heart anomaly detection using deep learning.

Authors Year Segmented (Input Length) Features Model Acc (%)

Huai et al. [10] 2020 No. (5 s intervals, 2 s window) Time-Frequency (Spectrogram) CNN + LSTM 91.06
Deng et al. [13] 2020 No. (5 s) MFCCs, ∆MFCC, ∆2MFCC CNN + RNN 98.34
Xiao et al. [30] 2020 No. (3 s length, 1 s shift) Raw signals, MFCCs, PSDs CNN 93

Dissanayake et al. [12] 2020 No. (1 s, 0.1 s shift) MFCCs LSTM, CNN 99.72
Zhang et al. [6] 2019 No. (2 s) Temporal Quasi-Periodic Features LSTM 94.66
Latif et al. [31] 2018 Yes. (2, 5, and 8 cycles) MFCCs RNNs 98.61
Maknickas and
Maknickas [9] 2017 No. (128 × 128 frames) MFCCs CNN 84.15

Rubin et al. [32] 2017 Yes. (3 s) Time-Frequency, MFCCs CNN 84

From Table 2, MFCCs could be considered the most frequent and mainstream recog-
nised feature. It is still controversial whether CNN or RNN (LSTM, BiLSTM, and GRU) is
more suitable for heart sound classification. A combined classifier seems to be the future
trend that could contain the advantages of both CNN and RNNs. Because the data length
of the recordings in the PhysioNet database varies from 5 s to 2 min, different studies have
cut the raw data into smaller lengths without segmentation. They have then rebuilt the
pre-processed datasets for training, validation, and testing. This unifies the data, enlarges
the training datasets, and improve the classification performance to a certain extent. Typi-
cally, the epoch durations ranged from 1 s (approximately one heart cycle) to 5 s (shortest
heart sound recording in the PhysioNet database). However, various data structures make
it hard to compare their claimed performance objectively. Moreover, it is unclear if the best
input duration can ensure that both training sample size and each sample’s information
are sufficient.

This paper will fill the mentioned knowledge gap by breaking the PhysioNet database
into different lengths (1–5 s) to rebuild new datasets. Inspired by the previous studies,
MFCCs are chosen as features. Commonly used CNN and RNNs structures will be com-
pared under similar settings. The study will assess the effect of input length and classifier
selection on model performance.

3. Proposed Classification Algorithms

This section will introduce the concept of MFCC-based features, including standard
MFCCs, the first-order MFCC (∆MFCCs), and the second-order MFCC (∆2MFCCs). A
detailed description of the neural network models used in this study, including CNN,
LSTM, BiLSTM, GRU, and BiGRU, will follow.

3.1. Extraction of MFCC Features

Mel-frequency cepstrum (MFC) is a vital representation in sound processing that uses
Mel-scale instead of linear scale to display the short-term power spectrum. The advantage of
the Mel-scale is that it can reflect more closely to the human non-linear auditory system. The
human auditory sense is more sensitive to identifying the voice changes in low frequency. In
contrast, people need a larger frequency band in high frequency (over 500 Hz) to distinguish
the same pitch increment. The relationship between the two scales (Hz and Mel) is:

Mel( f ) = 2595log10

(
1 +

f
700

)
(1)

where Mel(f ) is the frequency in the Mel-scale, f is the frequency in the linear scale. MFCCs
are the coefficients derived at Mel filter banks that describe the energy distributed in the
different critical frequency bands. The extraction of MFCCs includes the following steps:
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(1) Pre-emphasis

The purpose of pre-emphasis is to amplify and compensate the high-frequency com-
ponent that is suppressed in sound production. This will increase the Signal-to-Noise Ratio
(SNR) and balance the frequency by enhancing the high-frequency content, which is usually
small in magnitudes. A pre-emphasis filter shown in Equation (2) is generally applied.

x(t) = s(t)− µs(t− 1) (2)

where s(t) is the sound signal, x(t) is the filtered signal, and µ ∈ [0.9, 1] is used for high-pass
pre-emphasis.

(2) Fourier transform

To obtain the spectrum of the input signal, a short-time Fourier transform is used to
convert the signal from the time domain into the frequency domain. The conversion is:

X(k) =
N−1

∑
n=0

x(n)e−2jπnk/N , 0 ≤ k ≤ N (3)

where x(n) is the input signal, X(k) is the corresponding Fourier coefficients, and N repre-
sents the number of samples in each frame. The power spectrum is squared X(k)2.

(3) Mel-scaled power spectrum

Mel spectrum could be obtained by the power spectrum passing through a set of
Mel-scaled filter banks, where the banks Bm(k) is:

Bm(k) =



0, k < f (m− 1)

k− f (m−1)
f (m)− f (m−1) , f (m− 1) ≤ k < f (m)

f (m+1)−k
f (m+1)− f (m)

, f (m) ≤ k ≤ f (m + 1)

0, k > f (m + 1)

(4)

m is each Mel filter of all M filters. k is the samples in frames. f (m − 1), f (m) and
f (m + 1) represent the beginning, medium, and end frequency of each Mel triangle filter.
The Mel-scaled power spectrum is the product of the power spectrum X(k)2 and the banks
Bm(k), which is:

P(n) =
N−1

∑
n=0

X(k)2Bm(k), 0 ≤ m ≤ M (5)

(4) Discrete cosine transform (DCT)

MFCCs could be derived by the DCT of the logarithmic Mel spectrum:

MFCCs(i) =
M
∑

m=1
log[P(n)] cos

[
i
(

m− 1
2

)
π
M

]
,

i = 1, 2, 3, . . ., L
(6)

where L shows the order of frame for the MFCCs and M represents the number of Mel
filter banks.

(5) Dynamic characteristic (∆ & ∆2MFCCs)

Besides standard MFCCs, we explore adding the ∆MFCCs and ∆2MFCCs as input
features in this study. Because MFCCs can only describe the sound signal’s static informa-
tion (spectral envelope shape), heart sound is inherently time-variant, and the dynamic
information may help describe the signal more accurately. In addition, the human ear is
more sensitive to sound changes. Thus, to better emulate the auscultation procedure, we
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add the dynamic information of the heart sound signal aiming to improve the detection
accuracy. The extraction of ∆MFCCs is:

di =
∑N

n=1 n(MFCCsi+n −MFCCsi−n)

2 ∑N
n=1 n2

(7)

where di is delta coefficient between MFCCsi+n and MFCCsi−n at frame i, and N is usually
set to be 2. Similarly, ∆2MFCCs (Di) could be calculated by:

Di =
∑N

n=1 n(di+n − di−n)

2 ∑N
n=1 n2

(8)

3.2. Deep Learning Models

Deep learning (or deep neural networks, DNNs) refers to the machine learning algo-
rithms using a neural network with more than one hidden layer. These interconnected
layers are sequential, consisting of neurons to multiply their input and corresponding
weight. The sum of the neural outputs is passed to the subsequent layer neurons after
activation functions such as a sigmoid, tanh, or rectified linear unit (ReLU). This procedure
is repeated until the final output layer, and the training procedure optimises the weights
during forward and backward propagation. As indicated in Table 2, this has proven
successful for heart sound classification. Commonly used DNNs include:

(1) Convolutional Neural Network (CNN)

CNN is a deep learning model that consists of convolutional (Conv), pooling, and fully
connected layers. The Conv layer has a set of spatially small and learnable filters (kernels)
working as feature detectors. They move across the input matrix “like sliding window”,
calculating the dot product of the kernel parameters and windowed inputs. The output can
be interpreted as the extracted feature map subject to the kernels. Usually, more than one
kernel is used for the convolution. Thus, the output size will be several times larger than
the input. For instance, an input size 32 × 32 (1024) matrix after four kernels (size 3 × 3,
stride 1, padding 0) convolution will output 4× 30× 30 (3600). Therefore, the pooling layer
is used for down-sampling to reduce the feature maps and the amount of computation
and control overfitting. Max pooling is the most commonly used pooling layer, which
remains the maximum in the rectangular filtered region. Following the last instance, a
2 × 2 size max-pooling filter with a stride of two will reserve only 25% of its original size,
so only 800 parameters are transferred to the next layer. The fully connected layers can
map the extracted features into catalogues for classification. Sometimes, a SoftMax layer
follows the fully connected layer to the logits into a class probability distribution before the
final output.

(2) Recurrent Neural Networks (RNNs)

Unlike CNN focusing on the spatial characteristics of the input, RNNs are specialised
in processing sequence data such as time series, text, and audio. Generally, RNNs conduct
the same computation procedure cyclically on each segment of the sequences, and the
following output is based on previous calculations. From network structure, it includes
memory to store the hidden internal state ht, which could be calculated by the previous
hidden state ht−1 and input xt, that

ht = fW(Wxhxt + Whhht−1 + bh) (9)

where fW refers to the hidden layer function such as a tanh activation function with
parameter W shared across time (i.e., Wxh indicates the weight of the input-hidden layer,
Whh is the weight of the hidden-to-hidden layer, and Wyh is the weight of hidden-to-output).
b is the corresponding bias vector. The predicted output is:

yt = Wyhht + by (10)
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However, this general architecture will face exploding weights and vanishing gradient
issues on long-term sequences. Therefore, methods such as LSTM were proposed to
improve this condition.

Long Short-Term Memory (LSTM): LSTM reminds the general RNN architecture
and changes the memory cell unit structure, making it capable of storing extended time
intervals. As shown in Figure 2a, input, output, and forget gates control the information
flow within the memory cell. For a given input xt at specific time t, the corresponding
output after passing the gates are:

It = σ(WIFxt + WhIht−1 + WCICt + bI)
Ot = σ(WxOxt + WhOht−1 + WCOCt + bO)
Ft = σ(WxFxt + WhFht−1 + WCFCt + bF)

(11)

where I, O, and F represent the input, output, and forget gate, respectively. Similar to
Equations (9) and (10), W is the weight of recurrent connections (i.e., WIF indicates the
weight of the input-forget gates layer). h is the hidden state, and b is the bias. σ is the
sigmoid activation function. The memory Ct of this unit can be obtained by:

Ct = FtCt−1 + Ittan h(WxCxt + WhCht−1 + bC) (12)
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The hidden state vector (output vector) of this LSTM unit will be transferred to the
next time interval, and it can be calculated by:

ht = Ottan h(Ct) (13)

Gated Recurrent Unit (GRU): GRU can be regarded as a simplified LSTM unit that
integrates the input gate with the forget gate, forming a new update gate to decide the
acceptance or abandonment of the information. In addition, there is a reset gate to deter-
mine how much memory is to be forgotten. The two gates work together to adaptively
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remember or forget during the sequence reading. Its structure is shown in Figure 2b. The
computational flow in one unit is given below:

Ut = σ(WxU xt + WhUht−1 + bU)
Rt = σ(WxRxt + WhRht−1 + bR)

ĥt = tan h
(

Wĥxxt + Uhĥt
(Rtht−1) + bĥ

)
ht = (1−Ut)ĥt−1 + Ut ĥt

(14)

where U and R represent the update and reset gate. ĥ and h are the candidate activa-
tion vector and output vector. The nomenclature of the rest variables is the same as the
equations before.

Bidirectional Recurrent Neural Networks (BRNN): Standard RNNs are unidirec-
tional with the constraint that they can only predict the current state based on previous
information. Because future information is not reachable at that moment, bidirectional
RNNs were proposed to improve this situation by connecting opposite directional hidden
layers to the same input. As a result, the output layer can obtain both previous and future
states information by the forward and backward pass. The structure of the BRNN is shown
in Figure 2c. In this study, we will also explore using bidirectional LSTM and GRU to
investigate if there can be an improvement in the detection accuracy.

4. Data Analysis
4.1. Datasets and Preprocessing

The database used in this study was the PhysioNet database, which consists of
3153 recordings, including 2488 normal and 665 abnormal cases. They were recorded
by different research teams using different electronic stethoscopes under both clinical and
non-clinical settings. Because of the uncontrolled measuring environment, the duration of
the recordings ranged from 5 to 120 s. Different noise types such as body motion, ambient
noise, and inside body sound (i.e., intestinal sound) were added to the original heart sound.
This fits the actual auscultation situation but causes more difficulty to the classification
algorithm. In addition, the subjects included children, adults, and the elderly. The abnor-
mal cases involve various heart conditions, especially coronary heart disease and valvular
diseases. More details about it can be seen in [26].

As the principal objective of this study was to investigate the PCG duration effect
on the classification performance, the raw heart sound recordings in the database were
further cut into 1 s (71,344 segments), 2 s (34,982 segments), 3 s (22,510 segments), 4 s
(16,749 segments), and 5 s (13,015 segments) length without overlapping. Their labels
were also generated according to the raw database into normal and abnormal (two classes).
Since the testing datasets in the PhysioNet Challenge were not published, we divided the
available datasets into training: validation: testing by 8:1:1.

4.2. Features Extraction

This study used MFCCs as the input feature for the deep learning models. The
window framing for the extraction was a hamming window with 30 ms length and 20 ms
overlap. Thirteen MFCCs were extracted for each window. The final feature map was
a 13N × (100D − 2) matrix, where N = 1 when only MFCCs were extracted and N = 3
when deltas and delta–deltas were extracted as features. D is the duration length in second.
Figure 3 represents MFCCs features from 1 s heart sound recording under both healthy and
unhealthy conditions.
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4.3. Model Interpretation

Another objective of this study is to compare the performance of deep learning models
under similar conditions. Therefore, we built neural networks using different network
structures, as shown in Figure 4. The overall design is MFCCs features input to the specific
network module followed by a classification module to predict.
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BiLSTM, GRU, and BiGRU models.

We applied three convolutional (Conv) layers with 32, 64, and 128 filters (size 3 × 3)
on each CNN layer. Each Conv layer was connected to a batch normalisation layer (scale 1,
offset 0, momentum rate 0.9) to speed up the training and reduce the sensitivity to network
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initialisation before the activation function (ReLU). Two max-pooling layers (size 2) were
used before the second and third Conv layers to reduce the calculation amount. After the
layers, the spatial features of the input were extracted and transferred to the fully-connected
layer for classification.

The RNNs models used in this study were two layers. Because in our testing, the
one-layer model did not perform well on the heart sound classification with approximately
75% accuracy (two layers performed around 90%). This testing result stands in line with
the description in [31]. Furthermore, deeper layers did not show noticeable improvement
in the performance as well. The number of hidden units was all set to 50 in each RNN layer,
the state activation function was tanh and gate activation function was sigmoid.

4.4. Performance Metrics

Accuracy is the key parameter to evaluate the performance of a classification algo-
rithm. However, the data structure in this study was not balanced (normal: abnormal is
approximately 4:1), so we also calculated the true positive rate (sensitivity, Se), true negative
rate (specificity, Sp), and overall score (MAcc).

Acc = TP+TN
TP+FP+TN+FN ,

Se = TP
TP+FN ,

Sp = TN
TN+FP ,

MAcc = Se+Sp
2

(15)

where TP (True positive) is the correctly classified healthy condition cases and TN (True
negative) indicates the correctly classified unhealthy cases. Similarly, FP (False positive) rep-
resents the wrong detection on the normal sets and FN (False Negative) means incorrectly
identified abnormal cases. The overall score (MAcc) is the average of the Se and Sp.

4.5. Training Settings

The optimiser selected in this study was stochastic gradient descent with momentum
(SGDM, learn rate 0.01, momentum 0.9). Compared with the commonly used Adam
optimiser, its convergence speed may be slower, but its convergent result can be better
to find the best solution. The learning rate was constant 0.01, and data shuffling was
conducted for each epoch. Max epoch was set to 100, but an early stopping was applied
with the patience of 5 epochs to prevent overfitting.

4.6. Statistical Analysis

To statistically analyse the PCG duration effect and compare the performances of the
models, we trained and tested all models ten times with different input PCG lengths to
avoid random results. For each time, all the models were shared with the same random
seed for the division of samples into training, validation, and testing sets to guarantee
comparability of the results. A non-parametric test (Mann–Whitney U test) were conducted
between results for statistical purposes.

5. Results
5.1. PCG Duration Effect on the Deep Learning Performance

The performances (in MAcc) of the proposed models using MFCCs, ∆MFCCs, and
∆2MFCCs as input are shown in Figure 5. The RNN models (LSTM, GRU, BiLSTM, and
BiGRU) showed an apparent increase between 1 and 2 s (from approximately 0.87 to 0.89),
whereas there was no evident change trend between 2 and 5 s. Taking BiLSTM data as an
example for statistical analysis, the p-value of 1 and 2 s is 0.017, and it is over 0.45 among
2 to 5 s, which proved that our finding is not random. However, on the CNN model, the
effect of PCG duration is negligible from our results (p > 0.3 between different durations).
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Thus, we can conclude that the 1 s length PCG segment is unsuitable for training RNN
models to classify heart sound, but it is acceptable for CNN models.
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Figure 5. The proposed models’ performance (10 times average) with different input PCG sig-
nal lengths.

5.2. RNNs vs. CNN

Because there is no apparent PCG duration effect shown in Figure 5 between 2 and
5s, in this part, we analyse the performances of all the proposed models based on 5 s
PCG duration, which are summarised in Table 3. RNN models outperformed the CNN
model with the higher average accuracy, sensitivity, and overall score. Furthermore, the
difference among the four RNN models was negligible within 1.5% (p ≥ 0.175). The best
performance came from GRU with 94.07% in Acc, 94.81% in Sp, 91.29% in Se, and 93.05% in
MAcc. According to the current result, it is hard to say which RNN model is the best for
heart sound classification. Notably, RNNs had better overall performance than the CNN
model using MFCCs as input (p ≤ 0.044 paired with RNN models).

Table 3. Comparison between the deep learning models with 5 s PCG input (10 times, average ±
standard deviation %).

Model Acc Sp Se MAcc

LSTM 91.86 ± 1.20 95.42 ± 1.45 81.75 ± 5.95 88.58 ± 2.44
BiLSTM 92.64 ± 0.75 95.14 ± 1.33 84.77 ± 3.87 89.95 ± 1.58

GRU 92.13 ± 0.44 95.22 ± 1.37 83.01 ± 2.69 89.12 ± 0.87
BiGRU 92.35 ± 0.72 95.31 ± 1.87 83.24 ± 3.46 89.27 ± 1.04
CNN 90.08 ± 1.22 93.80 ± 2.46 79.02 ± 4.57 86.41 ± 1.7

5.3. Effect of Using ∆MFCCs and ∆2MFCCs as Features

The performance of adding ∆MFCCs and ∆2MFCCs as features are shown in Figure 6.
Because the result is applicable on all RNN models, hereby in Figure 6, only BiLSTM
performance is selected to display. It indicates no observed improvement on the RNN
models by using extended MFCCs as the feature (p = 0.748). However, on the CNN model,
using ∆MFCCs and ∆2MFCCs increased the classification accuracy a little bit (≤2.5%,
p = 0.003).
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6. Discussion

This study analyses the PCG duration effect on the heart sound classification perfor-
mance and compares the deep learning models using MFCCs as input features. Because
of the machine learning algorithm design, when limited training data are given, it is a
standard practice to segment the database further to increase the number of training sets for
accuracy improvement. Conventional segmentation (identification) breaks the PCG signals
into each heart cycle for heart sound classification. However, segmentation is complicated
work and cannot always complete the task accurately, especially when there is a murmur
or noise inside. More studies just clipped the datasets by seconds in recent years, but no
detailed analysis on the effect of the split length. In this study, the results have shown that
1 s length PCG is not an appropriate length on RNN models, while it might be applicable
for the CNN model. A normal heartbeat at rest ranges from 60 to 100 per minute, which
means 1 s length can only cover a complete heart cycle. For RNNs, they are specialised
in processing sequence data. Thus, the whole heart cycle will be helpful to provide more
comprehensive information for the trained network. However, the CNN model has the
advantage of exploring specific spatial characteristics, which means missing partial infor-
mation, mainly the edge information, may not directly affect the final performance of the
classification. From 2 to 5 s, there is a balance between the information amount of single
data and total sample size that did not affect the classification results. As a result, we
suggest using 2 s PCG length to process the datasets on RNN models because a shorter
segment means the potential for more repeated testing on one testing recording. This may
be helpful to reduce the random error increasing the algorithm robustness, also it could
control the sensitivity and specificity by appropriate threshold.

The comparison between deep learning models showed that RNNs performed better
than the CNN model when using MFCCs as input. Because the MFCCs as a sequence
to describe the instantaneous, spectral envelope shape of the heart sound signal did not
hold too much spatial information for CNN to extract. The CNN model may perform
better with a deeper structure or analyse the pattern-based time-frequency features such as
the heart sound spectrogram, Mel-frequency cepstrum, etc. However, it will also require
greater computing power to process during training. Among the RNN models, though
their performances were quite close in our study, we suggest GRU based on the computing
amount and processing time. In our testing (CPU: Intel(R) ES 1650 v3 @3.50GHz, GPU:
NVIDIA Quadro M2000), using GRU to finish the training (5 s, MFCCs only, 30 epochs)
costs approximately 395 s, while LSTM needed 433 s and BiLSTM spent 588 s. From the
structure, GRU is simpler than LSTM with fewer gates to calculate, bidirectional RNNs
almost double the computing load by calculating the inverse propagation. Therefore, a more
straightforward structure neural unit was recommended when no noticeable performance
improvements were shown among them.

Thirdly, in exploring using ∆MFCCs and ∆2MFCCs as additional features, we found
no improvement on the final classification results of RNN models, but a slight increase
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in CNN models. This may be because ∆MFCCs and ∆2MFCCs are derivatives of MFCCs,
for RNN input sequence, no additional information was added. However, the CNN
model viewed the input as a pattern; extended features can supplement more spatial
characteristics. Another interesting finding is that most MFCCs information to classify
heart sound as normal or abnormal was based on the first three dimensions (MFCC1,
MFCC2, and MFCC3), as shown in Figure 3. These dimensions correspond to the low-
frequency band part of the signal. We tested using the first three MFCCs instead of all
13 MFCCs as input and found Acc 91.43%, Sp 94.39%, Se 82.07%, and MAcc 88.23% on
5 s BiLSTM, which did not show an apparent decrease in the performance. Thus, it is a
potential way to reduce the calculation amount.

7. Conclusions

This study found that the PCG duration will affect the deep learning performance,
and the commonly used 1 s length is not a reasonable option to process the datasets. We
suggested starting from 2 s since a bit longer duration can provide more information and
benefit the classification performance. However, only increasing the input length without
changing network architecture does not guarantee better performance. When using MFCCs
as training features, RNNs outperformed the CNN model, whereas there is no apparent
difference among the RNN models (LSTM, BiLSTM, GRU, or BiGRU, within 1.5%). In
comparison, GRU has the advantages of a smaller computational load and a faster training
speed. For MFCC features, adding dynamic information (∆MFCCs and ∆2MFCCs) of the
heart sound did not improve the RNN performance, and the improvement on CNN is
also minimal.
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