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Abstract

Background: Regular smoking is associated with a wide variety of syndromes with prominent inflammatory
components such as cancer, obesity and type 2 diabetes. Heavy regular smoking is also associated with changes in
the DNA methylation of peripheral mononuclear cells. However, in younger smokers, inflammatory epigenetic
findings are largely absent which suggests the inflammatory response(s) to smoking may be dose dependent. To
help understand whether peripheral mononuclear cells have a role in mediating these responses in older smokers
with higher cumulative smoke exposure, we examined genome-wide DNA methylation in a group of well characterized
adult African American subjects informative for smoking, as well as serum C-reactive protein (CRP) and interleukin-6
receptor (IL6R) levels. In addition, complementary bioinformatic analyses were conducted to delineate possible pathways
affected by long-term smoking.

Results: Genome-wide DNA methylation analysis with respect to smoking status yielded 910 significant loci after
Benjamini-Hochberg correction. In particular, two loci from the AHRR gene (cg05575921 and cg23576855) and one locus
from the GPR15 gene (cg19859270) were identified as highly significantly differentially methylated between smokers and
non-smokers. The bioinformatic analyses showed that long-term chronic smoking is associated with altered promoter
DNA methylation of genes coding for proteins mapping to critical sub-networks moderating inflammation, immune
function, and coagulation.

Conclusions: We conclude that chronic regular smoking is associated with changes in peripheral mononuclear cell
methylation signature which perturb inflammatory and immune function pathways and may contribute to increased
vulnerability for complex illnesses with inflammatory components.
Background
Smoking is the largest preventable cause of morbidity
and mortality in the United States. It largely exerts these
effects by increasing liability to complex disorders, such as
cancer, chronic obstructive pulmonary disease (COPD),
type 2 diabetes (T2DM) and obesity [1]. Smoking driven
chronic diseases contribute to early death, disabilities, and
strain the health care system [2]. Therefore, understanding
the mechanism(s) through which smoking increases vul-
nerability to these disorders may establish new avenues
for prevention or treatment of these complex disorders.
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Although some of the details remain unclear, one of the
key mechanisms through which smoking may increase li-
ability to these complex disorders is inflammation.
Although serological quantification of well characterized

serum markers such as C-reactive protein (CRP) and
interleukin 6 receptor (IL6R) may provide a partial under-
standing of inflammatory changes with respect to smok-
ing, this approach provides limited comprehension of
molecular perturbation at a genome-wide scale.
A surge in recent publications has suggested that smok-

ing associated changes in DNA methylation may contribute
to these perturbations. This surge began with sporadic-
ally published single gene studies that linked smoking to
changes in MAOA promoter methylation as well as to
an increased risk for coronary heart disease mediated
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through methylation changes at F2RL3 [3,4]. But in the
past two years, these more limited examinations have
been joined by several genome-wide investigations that
have identified a growing number of loci whose methyla-
tion status is associated to smoking. The initial attempt at
a more systematic approach was reported by Breitling and
colleagues who used the Illumina HumanMethylation 27K
BeadChip to probe DNA from peripheral mononuclear
cell pellets and identified several candidate loci including
F2RL3 (cg03636183), GPR15 (cg19859270) and ORAI2
(cg02564523) [5]. The first truly genome-wide results
using the then newly introduced Illumina HumanMethy-
lation 450K BeadChip were first reported by Monick and
colleagues who studied methylation in lymphoblast and
lung macrophage DNA and found a large number of loci
with particular emphasis on differential methylation at
the Aryl Hydrocarbon Receptor Repressor (AHRR) [6].
Six months later, using cord blood, Joubert and colleagues
confirmed and extended these findings at AHRR and
further nominated GF1 and CY1A1 as genes affected by
smoking status [7]. Finally, in a study just published,
Zeilinger and colleagues identified a larger set of findings
that confirmed the prior loci noted above and extended
the gene list to include loci such as HIVEP3 (cg15542713),
and CACNA1D (cg15417641 and cg21188533) [8].
These genome-wide finding present a potential portal

for a better integrated understanding of pathways through
which smoking potentially accelerates disease states. Pre-
vious studies have established several smoking associ-
ated disease pathways. One such is the cyclooxygenase-2
(COX-2) pathway where the expression of COX-2 induced
by smoking leads to an increase in prostaglandin E2
(PGE2) that mediates tumor progression and an increase
in thromboxane A2 (TxA2), contributing to tumor growth
[9]. The COX-2 pathway that has been shown to be in-
volved in numerous smoking related cancers is only one
in many similar pathways that could conceivably hold the
key to designing new therapeutic interventions and in
some instances aid in improving current medical care.
A more recently developed method of identifying path-

ways perturbed by smoking is by coalescing informa-
tion from network biology and epigenetics, specifically
DNA methylation. DNA methylation is a critical medi-
ator between the genome and the environment. Al-
though genome-wide DNA methylation analyses allow
the identification of differentially methylated CpG sites
and genes, there is growing evidence that genes do not
function independently, but rather in networks. Hence,
it is crucial to not only delineate individual loci affected
by long-term smoking, but, in addition, use network
theory to translate that single locus methylation infor-
mation into a more holistic understanding of the ef-
fects of smoking on the function of the proteome and
the cell in general.
This global understanding is necessary to help under-
stand the reasons why some individuals are affected more
severely than others. Even though the rate of adults smok-
ing is roughly equivalent in Whites and African Americans,
African Americans disproportionately experience smoking
associated medical comorbidities [10]. The reason for this
disparity is not known but both genetic and sociological
factors have been postulated. Epigenomic interrogation of
this cohort would allow the disparity examination from a
different perspective.
In prior studies, we have analyzed the relationship of

smoking to peripheral mononuclear cell DNA methyla-
tion in young adult African American smokers [11]. To
determine whether smoking and peripheral mononuclear
cells may have a role in the systemic inflammation in
long-term smokers, we conducted a study to examine the
relationship of smoking to genome-wide DNA methyla-
tion in an independent and well characterized African
American cohort who are older and have greater cumula-
tive smoke exposure. In addition, we use a recently devel-
oped network based analysis technique to understand
the effect of these smoking associated changes in DNA
methylation on protein interaction networks. Our data
suggest that regular chronic smoking is associated with
highly significant differential methylation at a large num-
ber of loci including AHRR (cg05575921 and cg23576855)
and GPR15 (cg19859270). Furthermore, the bioinformatic
analyses demonstrate enrichment of loci involved in regu-
lation of inflammation, immune function and coagulation.
Results
Clinical characteristics of the cohort
The clinical characteristics of the 111 African American
females from the FACHS project who participated in this
study are given in Table 1. In brief, the subjects were
middle-aged and tended to be severely obese. In this well
characterized cohort, pack years was used as a quantita-
tive measure of long-term cumulative smoking. Consist-
ent with the high rate of medical comorbidities noted in
this population, the average serum CRP levels (mg/l) were
5.0 in smokers (n = 50) and 2.9 in non-smokers (n = 61).
The average serum IL6R levels (pg/ml) were 227 in
smokers and 209 in non-smokers. The level of serum CRP
(p < 0.05), but not the level of serum IL6R, was signifi-
cantly higher in smokers.
As a first step of our analyses, we analyzed the rela-

tionship of the two serum inflammatory markers fea-
tured in this study, CRP and IL6R, to each other and to
pack years. Figure 1 illustrates the results of those
analyses. A positive correlation was present between
CRP and IL6R. Significant positive association was only
observed between pack years and CRP (p < 0.0092; Adj
R2 = 0.064).



Table 1 Clinical and demographic characteristics of
female FACHS subjects participating in the genome-wide
methylation studies

Smoker Control

Age 48.1 ± 7 48.7 ± 11

BMI 31.1 ± 8 35.3 ± 7

Smoking status 50 61

Current average cigarettes/day 5 ± 8
*Smoker pack-years

≥ ½ and < 10 17

≥ 10 and < 20 7

≥ 20 7

CRP (mg/L) 5.02 ± 7.6 2.89 ± 3.2

IL6R (pg/mL) 227 ± 58 209 ± 56

*Total number of smoking individuals does not match the number of
individuals accounted for under pack-years due to missing data points.

Figure 1 Correlation between inflammatory cytokine levels and
clinical characteristics of the FACHS female subjects. Panel a
illustrates the relationship between two serum inflammatory
proteins, CRP and IL6R. Panels b and c represent the relationship
between pack years and serum IL6R and CRP respectively.
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Genome-wide DNA methylation analyses
We analyzed the genome-wide methylation data of per-
ipheral mononuclear cell DNA using MethLAB with re-
spect to smoking status, controlling for slide, plate and
mixed cell population effects. This analysis was geared
towards identifying differentially methylated CpG loci as
a result of long-term smoking. Since inflammation is
closely related to smoking, we speculated that the methyla-
tion of genes involved in inflammation would be perturbed.
From the analysis, after genome-wide Benjamini-Hochberg
correction, 910 probes remained significantly associated at
the 0.05 level to smoking status. The 30 most significant
CpG sites of this analysis are shown in Table 2 and all sig-
nificant CpG sites are shown in Additional file 1. As hy-
pothesized, the most significant gene noted was GPR15
(cg19859270) which has been implicated in immune func-
tion as a gene that encodes for the G protein-coupled
chemokine receptor for human immunodeficiency virus
type 1 and 2.
Two other CpG probes, cg05575921 and cg23576855

(ranked 2nd and 4th, respectively) were situated in the
body of the aryl hydrocarbon receptor repressor (AHRR)
gene. The protein encoded by this gene provides feedback
inhibition of AHR activation of the xenobiotic pathway by
several different mechanisms [12,13]. Our analyses indi-
cate that on average, at these two loci, smokers tended to
be hypomethylated. Moreover, our analyses are consist-
ent with prior results of young adult African American
smokers. In young adult African Americans, cg05575921
was also highly significantly affiliated to smoking and
smokers tended to be hypomethylated. However, although
hypomethylation was apparent at cg23576855 in both
young and older smokers, this site was only significant with
respect to long-term smoking and therefore could be a po-
tential cumulative smoking biomarker.
Validation of Illumina array findings
Validation of genome-wide DNA methylation results is
crucial, considering that the average beta values between
smokers and non-smokers at numerous loci differed
merely by about 0.1. Our previous study and this study



Table 2 The thirty most significantly associated probes to smoking status after genome-wide correction

Average beta values

Probe ID Gene Placement Island status Smokers Non-smokers T-test Corrected p-value

cg19859270 GPR15 1stExon 0.77 0.87 2.44E-25 1.19E-19

cg05575921 AHRR Body N_Shore 0.68 0.83 2.54E-24 6.17E-19

cg08672695 N_Shelf 0.65 0.48 4.58E-20 7.40E-15

cg23576855 AHRR Body N_Shore 0.52 0.71 2.78E-17 3.37E-12

cg02657160 CPOX Body N_Shore 0.77 0.83 4.09E-17 3.97E-12

cg21161138 AHRR Body 0.62 0.70 5.74E-17 4.64E-12

cg18230367 RNASE4 TSS200 N_Shore 0.05 0.07 2.13E-16 1.48E-11

cg02319016 PAK2 5'UTR S_Shelf 0.70 0.56 1.53E-15 9.27E-11

cg26607002 NOSTRIN TSS200 0.68 0.63 4.31E-15 2.32E-10

cg04677326 C19orf28 TSS200 Island 0.17 0.15 4.98E-15 2.42E-10

cg01940273 Island 0.50 0.59 5.69E-15 2.51E-10

cg05457881 C6orf218 TSS1500 0.18 0.22 6.91E-15 2.79E-10

cg06126421 0.65 0.76 7.79E-15 2.91E-10

cg21566642 Island 0.38 0.48 8.62E-15 2.99E-10

cg13086586 PAICS Body S_Shore 0.17 0.23 3.26E-14 1.05E-09

cg15281724 TXLNB Body 0.78 0.69 9.63E-14 2.92E-09

cg15645254 NAALAD2 Body 0.78 0.75 1.23E-13 3.51E-09

cg19111030 ANKRD53 TSS1500 N_Shore 0.17 0.20 1.96E-13 5.30E-09

cg09741592 HNRNPA1 Body S_Shore 0.18 0.23 3.23E-13 8.25E-09

cg08528204 TMEM116 TSS1500 S_Shore 0.17 0.20 8.77E-13 2.07E-08

cg17391741 N_Shore 0.82 0.85 8.97E-13 2.07E-08

cg15614155 N_Shore 0.83 0.78 1.06E-12 2.34E-08

cg05916255 ABCC2 Body N_Shore 0.85 0.82 1.17E-12 2.47E-08

cg25223391 UVRAG Body 0.71 0.67 1.31E-12 2.52E-08

cg00736283 ASF1B TSS200 Island 0.13 0.11 1.32E-12 2.52E-08

cg26703534 AHRR Body S_Shelf 0.62 0.68 1.35E-12 2.52E-08

cg16851858 N_Shelf 0.73 0.77 1.55E-12 2.80E-08

cg02521854 N_Shelf 0.13 0.11 1.69E-12 2.93E-08

cg15658543 CARD11 5'UTR 0.88 0.85 1.91E-12 3.20E-08

cg13789443 GALNT11 5'UTR S_Shore 0.60 0.55 2.00E-12 3.24E-08

All average methylation values are non-log transformed beta-values. Island status refers to the position of the probe relative to the island. Classes include:
1) Island, 2) N (north) shore, 3) S (south) shore, 4) N (north) shelf, 5) S (south) shelf and 6) blank denoting that the probe does not map to an island.
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indicate that cg05575921 as opposed to cg19859270 is
not only sensitive to long-term smoking, but also to early
smoking. Therefore, cg05575921 being the more consist-
ently sensitive smoking biomarker was independently vali-
dated using quantitative-PCR on a subset of 62 African
American females. The characteristics and methylation
levels from both methods for cg05575921 for the individ-
uals in this subset is given in Additional file 2. A strong
correlation of 0.94 (p-value < 0.0001) between these two
methylation detection methods was observed (Figure 2(a)).
Furthermore, alongside the cg05575921 methylation level
obtained via the Illumina platform, this independent ap-
proach also identified cg05575921 as a biomarker for
smoking (ANOVA p-value < 0.0001 for both Illumina and
quantitative-PCR as depicted in Figures 2(b) and 2(c),
respectively).
GoMiner analyses
We next analyzed the differential distribution of the
methylation results using the traditional GoMiner algo-
rithm which treats each probe as an independent assess-
ment. These results are shown in Table 3. Surprisingly,
after FDR correction, only 2 of the top 30 pathways were
significant at the 0.05 level. Both of these pathways were
associated with phospholipid transport.



Figure 2 (See legend on next page.)
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(See figure on previous page.)
Figure 2 Correlation between Illumina cg05575921 methylation and quantitative-PCR validation cg05575921 methylation and their
respective association to smoking status. Panel a illustrates the correlation between cg05575921 methylation from the Illumina platform and
cg05575921 methylation from an independent quantitative-PCR validation (r = 0.94, p < 0.0001). Panels b and c depict the relationship between
both independently obtained cg05575921 methylation level and smoking status.
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Protein-protein interactions: network analyses using the
miPALM algorithm
Even though conventional genome-wide DNA methyla-
tion analyses yielded consistent identification of differen-
tially methylated CpG loci at the AHRR gene, this analysis
did not capture the connectivity of co-regulated genes
as a result of long-term smoking. Hence, we employed
Table 3 The top 30 differentially regulated gene ontology pa

GO category Category name

GO:0004012 Phospholipid-translocating ATPase activity

GO:0005548 Phospholipid transporter activity

GO:0042954 Lipoprotein transporter activity

GO:0015914 Phospholipid transport

GO:0010876 Lipid localization

GO:0016043 Cellular component organization

GO:0042623 ATPase activity coupled

GO:0016887 ATPase activity

GO:0003708 Retinoic acid receptor activity

GO:0006869 Lipid transport

GO:0045892 Negative regulation of transcription DNA-dependent

GO:0005319 Lipid transporter activity

GO:0051253 Negative regulation of RNA metabolic process

GO:0071840 Cellular component organization or biogenesis

GO:0016817 Hydrolase activity acting on acid anhydrides

GO:0042491 Auditory receptor cell differentiation

GO:0042626 ATPase activity coupled to transmembrane movement of s

GO:0043492 ATPase activity coupled to movement of substances

GO:0016820 Hydrolase activity acting on acid anhydrides catalyzing
transmembrane movement of substances

GO:0003727 Single-stranded RNA binding

GO:0043954 Cellular component maintenance

GO:0045668 Negative regulation of osteoblast differentiation

GO:0016462 Pyrophosphatase activity

GO:0005112 Notch binding

GO:0016818 Hydrolase activity acting on acid anhydrides in
phosphorus-containing anhydrides

GO:0065007 Biological regulation

GO:0032504 Multicellular organism reproduction

GO:0048609 Multicellular organismal reproductive process

GO:0032502 Developmental process

GO:0004032 Aldehyde reductase activity
an alternative approach for understanding the possible
effects of smoking associated DNA methylation changes
on cellular function by reducing the dimensionality of
data and taking advantage of our understanding of the
protein interactome. We used the miPALM algorithm
which employs a greedy search strategy on weighted net-
works to re-analyze the genome-wide methylation data
thways from the GoMiner analysis

Genes

Total Changed Log10 p-value FDR

15 6 -5.35 0.00

29 7 -4.51 0.04

3 3

33 7 -4.12 0.09

188 16 -3.36 0.37

3231 136 -3.26 0.36

276 20 -3.14 0.45

343 23 -3.06 0.44

7 3 -2.97 0.49

167 14 -2.95 0.45

439 27 -2.92 0.42

66 8 -2.89 0.39

446 27 -2.82 0.42

3341 137 -2.82 0.39

777 41 -2.80 0.38

17 4 -2.73 0.42

ubstances 103 10 -2.72 0.40

104 10 -2.69 0.39

105 10 -2.66 0.38

29 5 -2.65 0.35

29 5 -2.65 0.35

18 4 -2.63 0.35

770 40 -2.62 0.34

9 3 -2.61 0.35

773 40 -2.59 0.35

7226 267 -2.54 0.36

514 29 -2.53 0.35

514 29 -2.53 0.35

3571 143 -2.53 0.34

3 2
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utilizing only the subset of DNA methylation data mapped
to gene promoter regions.
Using this approach, smoking associated DNA methyla-

tion mapped to 10 significant protein sub-networks ranging
from 5 (Figure 3(a)) to 24 (Additional file 3: Figure S1(b))
proteins with miPALM p-values ranging from p < 0.002
(Figure 3(a)) to p < 0.05 (Figure 3(c)). Figure 3 and Tables 4,
5, 6, 7 detail four sub-networks and the differential distribu-
tion of its constituent proteins with respect to Gene Ontol-
ogy (GO) pathways. The first sub-network consists of 5
proteins, second consists of 6 proteins, third consists of 16
proteins and the fourth consists of 17 proteins. Consistent
with our hypothesis, the BiNGO analysis demonstrated
significant enrichment of proteins in the first and sec-
ond sub-network to GO pathways involved in immune
function (Tables 4 and 5), the third sub-network for the
JAK-STAT signaling cascade (Table 6) and the fourth sub-
network for coagulation (Table 7). BiNGO analysis of the
other 6 sub-networks resulted in pathways being enriched
for molecular transport (Additional file 4: Figure S2(a)),
wounding (Additional file 4: Figures S2(b) and (c)), cell
signaling (Additional file 3: Figure S1(a)), RNA processing
(Additional file 3: Figure S1(b)), and central nervous sys-
tem (Additional file 3: Figure S1(c)). Please see Additional
Figure 3 Protein sub-networks identified by the miPALM algorithm a
two proteins is depicted by line width. The color of each node represents
smokers and non-smokers after correction for multiple comparisons (-log P
proteins (p < 0.008) respectively, enriched for immune function based on th
enriched for the JAK-STAT signaling pathway based on the BiNGO analysis.
coagulation based on the BiNGO analysis.
file 3, Additional file 4, Additional file 5, Additional
file 6, Additional file 7, Additional file 8, Additional file 9,
Additional file 10 for complete details on these 6 sub-
networks.

Discussion
In summary, we confirm prior observations demonstrat-
ing that on average, the level of CRP is higher in smokers
than non-smokers, consistent with increased inflamma-
tion levels in smokers. We also extend findings by our-
selves and others on the effect of smoking on peripheral
mononuclear cell DNA methylation to show that contin-
ued smoking is associated with altered methylation signa-
tures at AHRR and in pathways associated with immune,
coagulation and CNS function.
The strength of the genome-wide findings with respect

to the effects of smoking on DNA methylation indicates
a need for a better longitudinal understanding of the re-
sponse of the genome to tobacco smoke. In two consecu-
tive prior studies of younger African American smokers
with considerably less total cumulative tobacco smoke ex-
posure, we demonstrated that the principal changes of the
DNA methylation signature in response to smoking were
in the xenobiotic response pathway regulated by the AHRR
nd visualized using Cytoscape. Strength of the interaction between
the negative log p-value from the t-test (see color bar insert) between
’). Sub-network (a) and (b) consists of 5 proteins (p < 0.002) and 6
e BiNGO analysis. Sub-network (c) consists of 16 proteins (p < 0.05)
Sub-network (d) consists of 17 proteins (p < 0.03) enriched for



Table 4 Top 10 pathways from BiNGO pathway analysis of protein sub-network depicted in Figure 3(a)

Genes

GO category Category name Total Changed Corrected p-value

GO:0002252 Immune effector process 129 5 6.23E-9

GO:0006956 Complement activation 40 4 1.09E-8

GO:0002541 Activation of plasma proteins in acute inflammatory response 41 4 1.09E-8

GO:0006959 Humoral immune response 77 4 1.07E-7

GO:0051605 Peptide maturation by peptide bond cleavage 81 4 1.07E-7

GO:0002526 Acute inflammatory response 89 4 1.31E-7

GO:0002253 Activation of immune response 96 4 1.53E-7

GO:0016485 Protein processing 105 4 1.92E-7

GO:0051604 Protein maturation 115 4 2.47E-7

GO:0050778 Positive regulation of immune response 146 4 5.84E-7
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gene [11]. In contrast, in this group of African American
female smokers, many of whom have been smoking for 25
or more years, the magnitude of the remodeling of the
DNA methylation signature is significantly greater and ex-
tends to a number of other genes and pathways including
those relevant to inflammation, immune, coagulation and
CNS function. At the single gene level, the findings at
GFI1 (probe rank 24), F2RL3 (probe rank 49) and GPR15
(probe rank 1) serve to directly confirm prior findings by
other investigators [5,7,14]. At a more integrated level, the
implication of alterations of pathways involved in immune/
inflammatory activities and coagulation (see Figure 3) is
consistent with the known effects of smoking on risk for
inflammatory related diseases and stroke [1,15].
Since there is a strong association between cigarette

smoking and innate immunity, we hypothesized that net-
works enriching for immune system/inflammation would
be generated. Two such networks are depicted in Figures 3
(a) and (b) that highlight the potential role of peripheral
mononuclear cells in moderating vulnerability to some
but not all complex illnesses with inflammatory compo-
nents. The BiNGO analysis of network 3(a) indicated that
Table 5 Top 10 pathways from BiNGO pathway analysis of pr

GO category Category name

GO:0042221 Response to chemical stimulus

GO:0042330 Taxis

GO:0006935 Chemotaxis

GO:0043200 Response to amino acid stimulus

GO:0001101 Response to acid

GO:0007626 Locomotory behavior

GO:0014075 Response to amine stimulus

GO:0006954 Inflammatory response

GO:0040011 Locomotion

GO:0010243 Response to organic nitrogen
the proteins are involved in the response to acute inflam-
mation and complement activation. Specifically, MASP2
with a differential methylation adjusted p-value of 3.78 ×
10-6 is known to be a protease that activates the comple-
ment cascade, enabling the clearing of pathogens. It has
been shown that MASP2 is also associated with the recur-
rence and survival rate of cancer (colorectal cancer in spe-
cific) [16]. Therefore, studying the effects of smoking in a
weighted network approach allows us to speculate that pa-
tients with colorectal cancer may increase their survival
chances and prevent the recurrence of cancer by avoiding
smoking. In clinical settings, knowing smoking history
could assist physicians in making better judgments of the
efficacy of treatments.
Based on network 3(a), it can also be seen that MASP2

interacts strongly with MASP1 and FCN1. MASP1 is
known to support MASP2 in the complement activation
cascade [17] and this network validates that a strong
interaction is present between these two serine prote-
ases. MASP2, MASP1, and FCN1 play key roles in in-
nate immunity. Aberrant methylation of these genes as a
result of smoking could possibly impair an individual’s
otein sub-network depicted in Figure 3(b)

Genes

Total Changed Corrected p-value

1465 5 1.18E-3

169 3 1.18E-3

169 3 1.18E-3

20 2 1.18E-3

27 2 1.74E-3

273 3 2.84E-3

46 2 3.26E-3

315 3 3.26E-3

440 3 7.22E-3

77 2 7.22E-3



Table 6 All pathways from BiNGO pathway analysis of protein sub-network depicted in Figure 3(c)

Genes

GO category Category name Total Changed Corrected p-value

GO:0060397 JAK-STAT cascade in growth hormone signaling pathway 4 2 3.49E-3

GO:0060396 Growth hormone receptor signaling pathway 8 2 5.41E-3

GO:0071378 Cellular response to growth hormone stimulus 8 2 5.41E-3

GO:0060416 Response to growth hormone stimulus 10 2 6.51E-3

GO:0007169 Transmembrane receptor protein tyrosine kinase signaling pathway 219 4 7.24E-3

GO:0007167 Enzyme linked receptor protein signaling pathway 346 4 3.51E-2

GO:0007259 JAK-STAT cascade 35 2 4.85E-2
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innate immunity, leading to the development, progres-
sion and recurrence of cancer. The network shown in
Figure 3(b) is enriched for chemotaxis. Here, it can be
noted that CCL13 with a differential methylation ad-
justed p-value of 0.00012 forms relatively strong interac-
tions with MMP3, CCL2 and CCBP2. Again, similar to
network 3(a), these interactions corroborate the role of
smoking in the progression of inflammation.
Our work also builds on the prior work by Breitling and

colleagues who showed the role of smoking associated dif-
ferential methylation at coagulation factor II (thrombin)
receptor like-3 (F2RL3) in moderating coronary artery dis-
ease, which also has a strong inflammatory component
and whose presence is positively associated with CRP
[3,18]. Furthermore, the network in Figure 3(d) that en-
riches for coagulation showed F2 as the central protein,
forming interactions with other proteins including F11
and CRB2. The miPALM analyses which generated path-
ways with important implications demonstrate that the
pathways involving IL6R and F2RL3 may not be the only
important inflammatory genes/pathways operant in per-
ipheral mononuclear cells and suggest the possibility that
smoking associated DNA methylation may act through a
variety of mechanisms to increase systemic inflammation
Table 7 Top 10 pathways from BiNGO pathway analysis of pr

GO category Category name

GO:0050878 Regulation of body fluid levels

GO:0007596 Blood coagulation

GO:0050817 Coagulation

GO:0007599 Hemostasis

GO:0042060 Wound healing

GO:0009611 Response to wounding

GO:0065008 Regulation of biological quality

GO:0006950 Response to stress

GO:0050896 Response to stimulus

GO:0002526 Acute inflammatory response
and vulnerability to some illnesses with an inflammatory
component.
The time frame in which these cells begin to experi-

ence smoking associated inflammatory changes in DNA
methylation is not clear. In our prior examinations of
young adult smokers, these changes were not evident on
genome-wide basis. But these subjects were relatively
young (19-22 years old) at the time of ascertainment and
the cumulative smoking exposure of even the heaviest of
the smokers was not as extensive as that the lightest of
the current smokers [11]. Understanding when that shift
to inflammatory processes occurs may be important to
the allocation of smoking cessation resources. Although
it is well established that in general smoking cessation
decreases risk for adverse outcomes such as myocardial
infarctions and cancer, this may not be true for all pa-
tients who quit smoking. According to the “pulmonary
overflow” hypothesis, many of the inflammatory changes
associated with smoking are not due to the direct effects
of smoke but are rather secondary to the “spillover” of
inflammatory cytokines from activated macrophages in
the lung parenchyma. Because this inflammatory process
tends to be self-perpetuating once it has been initiated,
if “overflow” hypothesis is correct, stopping smoking in
otein sub-network depicted in Figure 3(d)

Genes

Total Changed Corrected p-value

146 11 4.69E-17

103 10 9.69E-17

103 10 9.69E-17

109 10 1.31E-16

199 10 5.10E-14

541 12 2.17E-13

1542 12 4.70E-8

1773 12 2.10E-7

3633 13 5.12E-5

89 4 6.47E-5
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individuals with severe diseases may have little effect on
subsequent inflammatory changes in the peripheral mono-
nuclear cell compartment. If so, focusing smoking cessation
resources on those smokers who do not have substantial
diseases as evidenced by either peripheral or direct mea-
sures, may lead to more effective use of prevention dollars.

Conclusions
In conclusion, we reiterate that smoking contributes to
inflammation which is consistent with increase in the
average serum inflammatory protein, CRP. We also dem-
onstrate that methylation residues at the AHRR locus are
sensitive to cumulative smoking and could be potential
smoking biomarkers. However, the main finding in this
well characterized cohort of long-term smokers is that dif-
ferential methylation between smokers and non-smokers
are key in delineating epigenetically contextual pathways
and to identify highly connected networks that could be
used for smoking related health diagnostics like cancer and
coronary heart disease. We show the extensive effects of
smoking on peripheral mononuclear cell DNA methylation
on pathways involved in coagulation, CNS and immune
function. Understanding aberrant methylation caused by
smoking in a network setting provides an integrated stage
for understanding complex diseases like cancer while
designing potential therapies. Finally, smoking is an im-
portant confounder and should be included in future
diagnostic models to accurately understand diseases.

Methods
Informed consent
The participants provided written consent to participate
in this study. The written consent form, consent proced-
ure, and protocols pertaining to this study were approved
by the Institutional Review Board at the University of
Iowa, the University of Georgia and Iowa State University.

Human subjects
The subjects described in the current study are adult
African American females from the states of Iowa and
Georgia who participated in data and biomaterial collec-
tion during the most recent waves of the Family and
Community Health Study (FACHS). The FACHS study
is a longitudinal examination of factors affecting the
health and health related outcomes of rural African
American families [19]. These adults were identified be-
cause they had an 11 or 12-year-old child who resided in
eligible recruitment area in either Iowa or Georgia. These
geographical zones of eligibility varied with respect to socio-
economic status and were not selected for any other char-
acteristic except relative enrichment in African American
residents. Lists of these potential caretaker-offspring dyads
living in these areas were then generated by community of-
ficials in Georgia and school officials in Iowa.
To recruit these individuals in the study, potential par-
ticipant families were selected randomly from these lists
and were then sent an introductory letter of invitation
followed by a phone call. Families expressing interest in
the study were then provided with a complete descrip-
tion of the study and if still willing, consented. The pro-
tocols and procedures pertaining to this study were
approved by the Institutional Review Board at the Uni-
versity of Iowa, the University of Georgia and Iowa State
University.
Each participant in the FACHS study is interviewed

every two years in their homes with a battery of struc-
tured and semi-structured instruments that characterize
the medical and psychological status of each subject and
environment in which the subject is embedded. The data
and biomaterials used in this study were collected during
the most recent wave (Wave 10) of the project. As part
of that examination, subjects were phlebotomized to
provide biomaterials for the current study with a subset
additionally being interviewed with the tobacco module
from the Semi-Structured Assessment for the Genetics
of Alcoholism-II (SSAGA-II) [20]. Individuals who were
actively smoking were characterized as smokers and
those denying any use of tobacco products were charac-
terized as non-smokers.
Genome-wide methylation profiling
For the current study, peripheral mononuclear cell DNA
samples from FACHS subjects were assessed for genome-
wide methylation status using our standard protocols
[6,11]. In brief, DNA was prepared from ficoll purified
peripheral mononuclear cell DNA pellets using a Qiagen
(Valencia, CA) DNA Mini Kit. Measurement of genome-
wide peripheral mononuclear cell DNA methylation status
of FACHS participants was conducted using the Illumina
(San Diego, CA) HumanMethylation450 Beadchip by the
University of Minnesota Genome Center (Minneapolis,
MN) using the protocol specified by the manufacturer [6].
This array contains 485,577 probes recognizing CpG posi-
tions of at least 20,216 known transcripts, potential tran-
scripts or CpG islands. Subjects were randomly assigned
to 12 sample “slides” with groups of 8 slides being bisulfite
converted in a single batch. Four replicates of the same
DNA were also included to monitor slide-to-slide and
batch bisulfite conversion variability. The resulting data
were inspected for complete bisulfite conversion and aver-
age beta values for each targeted CpG residue was deter-
mined using the Illumina Genome Studio Methylation
Module, Version 3.2. The beta value at a CpG locus is the
ratio between the intensity of the methylated probe to the
sum of intensities of the methylated and unmethylated
probes, also known as the total probe intensities. The
resulting data was then processed using a custom PERL
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script to remove beta values with a detection p-value
greater than 0.05.

Accounting for mixed cell population
In order to account for mixed cell population in periph-
eral mononuclear cell mixture, a regression calibration
approach similar to that developed by Houseman and
colleagues was performed [21]. Since the method devel-
oped by Houseman and colleagues was based on the
Illumina HumanMethylation 27K BeadChip, we instead
utilized the Illumina HumanMethylation 450K BeadChip
data of purified cells (CD4+ T cells, CD8+ T cells, CD14+
monocytes, CD19+ B cells and CD56+ Natural Killer cells)
contributed by Reinius and colleagues (GEO database
under accession number GSE35069) and performed a re-
gression in MethLAB, Version 1.5 [22,23]. The Benjamini-
Hochberg method at a 0.05 significance level was used for
genome-wide correction. This resulted in 815 sites being
significantly differentially methylated with respect to cell
types. The top 100 sites were then imported into JMP Ver-
sion 10 (SAS Institute, Cary, USA) and principal compo-
nents analysis (PCA) was performed. Based on the Scree
plot of this PCA, the first 5 factors were chosen to be in-
cluded in downstream genome-wide analyses to control
for signal as a result of mixed cell population.

Analysis of genome-wide DNA methylation data
Genome-wide methylation data analyses were conducted
using the R package, MethLAB, Version 1.5 as previously
described [11]. Briefly, the genome-wide differential methy-
lation between smokers and non-smokers were evaluated
while controlling for slide, plate and mixed cell population
effects. In MethLAB, the phenotype dependent differential
methylation p-value at each CpG site is determined using a
linear model [23]. Genome-wide false discovery rate was
corrected using the method of Benjamini-Hochberg using
the MethLAB default significance level of 0.05 [24].

Validation of differential methylation at cg05575921
An independent validation of the differential methylation
at cg05575921 was performed on a subset of 62 individuals
using quantitative-PCR primer probe set obtained from
Behavioral Diagnostics Inc (Iowa City, IA). Quantitative-
PCR was performed with an ABI7900 (Life Technologies,
New York) using provided reagents, internal controls and
standard manufacturer protocols. Interpolation of internal
control methylation was used to deduce percent methyla-
tion of each sample. Pearson correlation was performed to
determine the correlation between the methylation level
obtained via the Illumina platform and that obtained from
the quantitative-PCR. Also, the relationship between cg05
575921 methylation from the quantitative-PCR and smok-
ing status was assessed using an analysis of variance
(ANOVA) test.
Protein network analyses
Protein sub-networks pertinent to smoking were identified
using our previously described methods [25]. In brief, the
genome-wide methylation data were first divided into bins
based on the position of the CpG site with respect to the
gene. We then focused the analyses on CpG probes that
mapped to the promoter region of the gene. This is due to
the known influence of promoter methylation on tran-
scription [26]. This resulted in a total of 22,609 genes or
potential gene transcripts with at least one CpG probe
mapping to their putative promoter region. Using the data
from all probes mapping to a given promoter region, two
promoter methylation vectors were constructed for each
gene; one for smokers and the other for non-smokers.
Using the statistical programming language, R [27], for
each gene, an unpaired t-test was performed between
the two vectors resulting in p-values of differential
methylation between smokers and non-smokers, that were
adjusted for multiple comparisons using the Benjamini-
Hochberg method [24].
Human protein-protein interaction data were down-

loaded from the iRefIndex database [28]. This database
provides a comprehensive and non-redundant version
of protein-protein interactions (PPI) available in several
other primary interaction databases including BIND,
BioGRID, CORUM, DIP, HPRD, IntAct, MINT, MPact,
MPPI, and OPHID. The 22,609 genes were then com-
pared to the non-redundant PPI that were extracted.
There were 29,912 interactions that mapped to the list
of genes. In order to construct an edge-weighted net-
work, the subset of interactions alongside the adjusted
p-values was used to calculate the PPI edge weights.
The following equation was used to calculate the edge

weight between two genes:

wij ¼ log p’i � p’j
� �

=log p’minð Þ2

Where wij is the edge weight between genes i and j, p’i
is the adjusted p-value of the t-test between smokers
and non-smokers for gene i, p’j is the corresponding ad-
justed p-value for gene j, and p’min is the minimum ad-
justed p-value among the 22,609 adjusted p-values
calculated for the respective 22,609 genes.
Computed edge weights were assigned to their re-

spective PPI and the resulting output was used to identify
significant sub-networks using the miPALM algorithm
implemented in JAVA. Briefly, this algorithm, which uses
a greedy search method, identifies highly connected sub-
networks using a novel graph theoretic measure, paramet-
ric local modularity [25,29].
Statistically significant sub-networks at the 0.05 signifi-

cance level were imported into Cytoscape, a bioinfor-
matics platform that allows visualization and analysis of
biological networks [30]. The Cytoscape plugin BiNGO
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was used to determine Gene Ontology (GO) categories
of statistically overrepresented genes [31]. In addition,
the adjusted p-values of individual genes were imported as
a node attribute and visualized as a color gradient. Edge
weights were used as an edge attribute to represent the
strength of interactions illustrated by the width of the lines
connecting nodes.

Enzyme linked immunosorbent assay (ELISA)
Sera were obtained using serum separator tubes. After
centrifugation, sera were frozen at -80°C until use. ELISA
assessments of CRP and IL6R serum levels were con-
ducted using a DuoKit from R&D Systems (Minneapolis,
USA) according to manufacturer’s recommendations.

Regression analyses
The analyses of clinical and serological data were ana-
lyzed using the suite of general linear model algorithms
(e.g. ANOVA, Bivariate, ordinal logistic regression) con-
tained in JMP, Version 10 (SAS Institute, Cary, USA).
Where indicated, the portion of the variance explained
by the model tested is given by the Adjusted R square
(Adj R2).

Availability of supporting data
The Illumina Human Methylation 450K BeadChip data
used in this study has been deposited to the Gene Ex-
pression Omnibus (GEO) database. The GEO accession
number is GSE53045.
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