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Dust emission and deposition are associated with several factors such as surface
roughness, land cover, soil properties, soil moisture (SM), and wind speed (WS).
A combination of land surface and remote-sensing models has recently been investi-
gated for dust detection and monitoring. The thermal bands of the Meteosat Second
Generation Spinning Enhanced Visible and Infrared Imager (MSG/SEVIRI) satellite
are widely used for qualitative detection of dust over desert because of their high
spectral and temporal resolutions. In this work, the contribution of ground-measured
WS data and satellite-measured SM data on aerosol optical thickness (AOT) retrieval
was investigated using an artificial neural network (ANN) model. ANNs have been
applied in similar applications and have shown a higher performance than simple
multiple-regression models. This performance is mainly due to the ANN’s ability to
capture complex and non-linear relationships between inputs and outputs. A combina-
tion of MSG/SEVIRI brightness temperature (BT)/brightness temperature differences
(BTDs), BTD3.9–10.8, BTD8.7–10.8, BTD10.8–12, and BT3.9, was used as input to the base
ANN model while Aerosol Robotic Network (AERONET) AOT (level 2) data at 0.5 µm
were used as output. These input/output sets were obtained from two stations (Hamim
and Mezaira) lying in the inland desert of the United Arab Emirates (UAE). About
3800 observations were collected, of which two-thirds were used to train the ANN
model and the remaining third was kept as an independent set to assess the accuracy of
the trained model. Later, Advanced Microwave Scanning Radiometer Earth Observing
System (AMSR-E) SM data and ground-measured WS data were used as additional
inputs to the base model to investigate their contribution to the AOT retrieval. SM data
consist of daytime AMSR-E-derived daily and collected from a National Snow and Ice
Data Centre (NSIDC)-archived database. Hourly average WS data were also collected
at 10 m height in the same AERONET sites from two stations managed by the UAE
National Centre of Meteorology and Seismology. All ground and satellite measurements
were extracted for the closest time to AERONET measurements. The use of these addi-
tional inputs has been shown to have a positive impact on the accuracy of simulated
AOT. The addition of these inputs to the base ANN increased R2 from 0.68 to 0.76 and
reduced root mean square error from 0.113 to 0.09.

1. Introduction

Dust and sandstorms are common phenomena in desert and arid environments. Both create
potentially hazardous air quality and adversely affect climate at both regional and world-
wide scales (Sokolik and Toon 1996). The frequent occurrence of dust storms has a direct
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effect on human health, the economy, and the environment, making its detection and assess-
ment of utmost importance. Dust emission and deposition are associated with the transport
of human diseases, plant nutrition, and crop diseases (Kellogg and Griffin 2006). Their fre-
quent occurrence has also been found to have a direct effect on accelerating the corrosion of
historical buildings and monuments (Varotsos, Tzanis, and Cracknell 2009). Additionally,
the presence of dust aerosols has a major impact on the performance of solar energy sys-
tems by attenuating the incident solar irradiance and through deposition on solar collectors
(Eissa, Chiesa, and Ghedira 2012).

Spaceborne remote sensing can allow dust monitoring as it can provide long-term and
global observations. The visible and thermal infrared (TIR) channels of different sensors
such as the Total Ozone Mapping Spectrometer (TOMS), Moderate Resolution Imaging
Spectroradiometer (MODIS), and MSG/Spinning Enhanced Visible and Infrared Imager
(SEVIRI) have been widely used for dust detection and monitoring (Prospero et al. 2002;
Zhang et al. 2006; Schepanski et al. 2007). These applications were built on the basis of the
strong dependency of scattered and absorbed solar radiation on dust layer properties, i.e.
aerosol concentration, particle size distribution, and height (Ackerman 1989; Ackerman
1997; Li et al. 2007). It has been shown through several studies that the techniques using
thermal bands have a distinct advantage over visible bands for detecting dust over bright
underlying surfaces, such as desert, and during the night (Ackerman 1989; Legrand et al.
1989; Zhang et al. 2006). Thus, several methods based on brightness temperature (BT) in
thermal bands (i.e. BT3.7, BT10.8, and BT11, where the subscripts represent wavelengths in
µm) have been proposed for qualitative monitoring of dust (Legrand, Fattori, and N’doume
2001; Schepanski et al. 2007). Other methods derive dust indices or aerosol optical thick-
ness (AOT), which expresses the fraction of radiation passing through a dust layer for
quantitative monitoring of dust in the atmosphere (Hsu et al. 2004; Zhang et al. 2006;
Li et al. 2007; Jolivet et al. 2008; Brindley and Russell 2009; Paepe and Dewitte 2009).
Ground-based measurements collected by the Aerosol Robotic Network (AERONET) or
European Aerosol Research Lidar Network (EARLINET) are widely used as truth data in
such developments. However, the quantitative monitoring of dust over land is complex for
two main reasons. First, the dust has a short lifetime resulting in a high spatial and tempo-
ral variability of its physical characteristics (concentration, particle size distribution, and
chemical composition). Secondly, dust emission depends upon a number of land surface
properties such as wind speed (WS), soil moisture (SM), vegetation, and sediment (Ginoux
et al. 2001; Prospero et al. 2002; Shao 2008).

The influence of WS and SM on satellite-derived dust emission techniques has not been
undertaken to date. Artificial neural network (ANN) techniques can be used to assess the
contribution of these two parameters to BTs in aerosol retrieval. ANNs can model com-
plex real-world problems provided key variables affecting the system under consideration
are identified (Wong 1991; Zhang, Patuwo, and Hu 1998). ANNs have been widely used
in different remote-sensing-related applications thanks to their non-parametric nature and
their relatively easy adaptation to different data types and formats (Wong 1991; Paola and
Schowengerdt 1995; Zhang, Patuwo, and Hu 1998). The use of ANNs in remote-sensing
applications has been increasing rapidly over the past three decades as the quality and
quantity of remotely sensed and ground measurement data sets are also increasing.

The available wind data are either measured locally from meteorological stations or
predicted by weather forecast modelling at the global scale, such as ERA-Interim data
(Simmons et al. 2007). Unlike meteorological data, the accuracy of predicted wind data
from the weather forecast is more accurate at a global scale but less accurate at a local
scale, as they are usually reported as coarse-gridded data. A network of stations with wider
geographic coverage can be used to derive WS data at an unknown point using statistical
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5056 S.P. Parajuli et al.

methods. WM is generally measured at 10 m height in weather stations. However, in many
dust emission models, effective WS at the ground surface (wind friction velocity) is used
to characterize the dust emission mechanism.

The remotely sensed SM is currently available in coarser resolution of about 25 km
from several passive microwave satellites such as the Advanced Microwave Scanning
Radiometer Earth Observing System (AMSR-E) and Soil Moisture and Ocean Salinity
(SMOS), which were launched in 2002 and 2009, respectively (Kerr et al. 2001; Njoku et al.
2003). The launch of the Soil Moisture Active and Passive (SMAP) satellite, scheduled for
2014–2015, will provide SM measurements at finer resolution (Entekhabi 2010).

The main objectives of this work are (1) to develop an ANN-based model to derive AOT
from SEVIRI thermal channels, and (2) to understand and quantify the effect of the main
ground parameters affecting dust emission, which are SM and WS. A set of SEVIRI bright-
ness temperature (BT)/brightness temperature difference (BTDs) (BTD3.9–10.8, BTD8.7–10.8,
BTD10.8–12, and BT3.9) are used as inputs in the base neural network model using
AERONET AOT (level 2) data as output. A large data set of about 3800 observations
was collected between 2004 and 2010 over two locations lying in the inland desert of the
United Arab Emirates (UAE) (Hamim and Mezaira). This data set includes four thermal-
infrared bands of SEVIRI at 3 km resolution (BT3.9, BT8.7, BT10.8 and BT12); AMSR-E
SM data retrieved from the C- or X-band brightness temperature at 25 km resolution;
local WS measured at 10 m height collected from the archive of the UAE National Centre
of Meteorology and Seismology (NCMS); and AOT measurements at wavelengths rang-
ing between 0.34 and 1.640 µm obtained from AERONET stations within the study area.
Both ground and satellite measurements were extracted for the closest time to AERONET
measurements.

2. Background

2.1. Dust emission

WS and SM are the key input parameters of several dust models such as Goddard Chemistry
Aerosol Radiation and Transport (GOCART) (Chin et al. 2000; Ginoux et al. 2001), Dust
Entrainment and Deposition (DEAD) (Zender, Bian, and Newman 2003), and Global
Transport Model of Dust (GMOD) (Yue et al. 2009). Dust emission involves movement
of soil particles in both horizontal and vertical directions, commonly known as saltation
and suspension, respectively. Saltation is caused by the hopping motion of the coarse sand
particles in the horizontal direction and suspension is caused by the direct uplifting of the
fine particles by strong wind shear (Shao 2008). When saltating particles strike other small
particles, transfer of kinetic energy takes place causing the stationary particles to blow. The
forces acting against the wind shear stress are gravity, inter-particle cohesive forces, and
capillary forces that are related to the level of moisture in the upper soil layer and soil
particle-size distribution. Dust emission takes place when the wind shear stress exceeds the
sum of these three forces.

Dust emission is initiated mainly when a dynamic velocity, known as the threshold
friction velocity, is reached (Chepil 1956). Several theoretical and empirical relationships
relating threshold friction velocity with SM variation have been proposed (Chepil 1956;
Bisal and Hsieh 1966; Marticorena and Bergamatti 1995; Selah and Fryrear 1995; Shao
and Lu 2000; Wang 2006). Most of these studies were based on the early work of Bagnold
(Bagnold 1941), who defined the movement of sand particles in terms of threshold fric-
tion velocity. Hence, accurate SM and WS measurements would be of great importance in
retrieving dust and sandstorm properties over their originating location. In addition to wind
(speed and direction) and SM, other soil and land-cover properties such as soil erodibility,
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roughness length, vegetation cover, and soil particle-size distribution are also used in sev-
eral dust emission models. WS is usually measured at a definite height (e.g. 10 m) and the
following logarithmic equation is employed to convert it to surface wind friction velocity
(Priestley 1959):

u(z) = u∗
k

ln
z

z0
, (1)

where u(z) is WS at a height z; u∗ is wind friction velocity; k is the Von Kármán constant
approximated to 0.4; and z0 is the roughness length which depends upon the median diam-
eter of the soil particles, Dmed, given by Dmed

30 (Greeley and Iversen 1985). Equation (1) can
be used to derive quantitative estimation of wind friction velocity from WS measured at
any height.

2.2. Remote sensing of dust

Remote-sensing data have been widely used in dust storm detection and forecasting.
Retrieving dust and sandstorm properties over their originating location (i.e. desert, arid,
and semi-arid regions) using conventional visible channels is a difficult task because of
the bright underlying surfaces (Ackerman 1997). Visible channels can be used to detect
dust over dark background such as vegetation and water bodies, because the presence of
dust in the atmosphere results in higher reflectance compared with that of dark background.
In some cases, heavy dust storms can also be detected over desert using the visible channels
when the desert background is sufficiently dark (wet surface) or when the visual properties
change due to interaction with atmosphere. However, when the reflectance of the dust is
similar to that of underlying desert, it is difficult to detect the presence of dust with visible
channels.

To overcome this limitation, several approaches have been proposed using the near-
infrared and thermal channels (Shenk and Curran 1974; Ackerman 1989; Legrand et al.
1989; Ackerman 1997; Legrand, Fattori, and N’doume 2001; Zhang et al. 2006; Schepanski
et al. 2007; Kluser and Schepanski 2009; Martinez, Ruiz, and Cuevas 2009). Near-infrared
and thermal channel radiation decreases during the day in the presence of dust, because
the dust layer absorbs more radiation than it emits (Legrand et al. 1989). Ackerman
(1997) demonstrated the viability of using brightness temperature difference between bands
3.7 and 11 µm (BTD3.7–11) in tracking dust storms by comparing satellite measurements
with the observed surface visibility. Another useful approach proposed by Ackerman
(1997) and Zhang et al. (2006) is based on the brightness temperature difference between
bands 11 and 12 µm (BTD11–12). Midday BTD11–12 is usually negative in the presence of
dust and positive in the case of cloud.

Apart from the qualitative detection of dust mentioned above, thermal bands were also
used for the quantitative detection of dust. Quantitative detection consists of deriving the
AOT at a specific wavelength from satellite measurements (Hsu et al. 2004; Zhang et al.
2006; Li et al. 2007; Brindley and Russell 2009). Another approach was proposed by Paepe
and Dewitte (2009), where AOT at 8.7, 10.8, and 12 µm was derived by establishing a look-
up table of emissivity ratios by assuming a clear day to be the day having the maximum
value of BT10.8 and negative BTD8.7–11. Such thresholds of BT/BTD for a clear day have
a very dynamic behaviour that depends on environmental and seasonal conditions, making
it difficult to agree on a reference clear-sky brightness temperature for each time and loca-
tion. Other attempts have been made to relate BT10.8 with AOT through a linear relationship
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5058 S.P. Parajuli et al.

(Zhang et al. 2006; Li et al. 2007; Brindley and Russell 2009). These authors showed
that BT10.8/BT11 is linearly proportional to AOT at 0.55 µm, and BTD10.8–12/BTD11–12

is almost linearly proportional to particle size. The visible bands have also been used for
retrieving AOT at 0.635 and 0.490 µm (Hsu et al. 2004; Jolivet et al. 2008), but they are
less effective over bright reflecting deserts such as those found in the UAE. The Deep Blue
algorithm proposed by Hsu et al. (2004) uses the assumption that a desert surface appears
darker in the blue channel (0.412 and 0.490 µm). Deep Blue AOT data were retrieved with
MODIS sensors available on the Aqua and Terra satellites. However, the low temporal reso-
lution of MODIS data (twice daily) compared with the 15 min resolution of MSG/SEVIRI
limits the real-time aspect of the dust detection tool.

2.3. Artificial neural networks

ANNs are commonly used to model complex and non-linear phenomena that involve many
variables. Unlike standard statistical tools, ANN models are distribution free and require
no prior knowledge of statistical distribution to model a given set of data (Benediktsson,
Swain, and Ersoy 1990). However, they require a more intensive iterative computation and
their optimization phase is more difficult to understand. The recent significant advances
observed in computing speed and data processing technologies have contributed to the
increasing expansion of ANNs to several fields of science.

ANNs consist of a set of consecutives layers of neurons: one input layer, one or multiple
hidden layer(s), and one output layer. Similar to the biological human neurons, neurons
in each layer are connected to all neurons in the adjacent layer(s) but not to neurons of
the same layer. The hidden layer(s) lie between the input and output layers and contain
the weights and activation functions. Hidden nodes help the ANN model to define a non-
linear relationship between inputs and output(s). Without hidden nodes, the model would
be equivalent to a linear regression model (Zhang, Patuwo, and Hu 1998). Finding the
optimum number of hidden nodes is very important, as too low a number of hidden layers
may not be enough to train the data and too many may cause an overfitting of the training
data. A commonly used approach is to double the number of input nodes in the hidden
layer(s) (Wong 1991).

The values of all connecting weights are computed during the ANN training phase.
A back-propagation (BP) method is widely used to train the neural network. Modified algo-
rithms such as the Scaled Conjugate Gradient (SCG) algorithm (Moller 1993) and Kalman
filter (KF) (Shah and Palmieri 1990) were found to give varying performance depending
upon the nature and format of input/output sets. The SCG training algorithm was used in
this study while keeping most of the default training parameters as set in the neural network
toolbox of MATLAB (The MathWorks, Inc., Natick, MA, USA). The number of epochs
for training is kept to 1000 to optimize the trade-off between training time and model per-
formance. In BP training, the weights given to each connection are adjusted during the
training process to minimize the difference between actual output and desired output by
evaluating the respective quadratic error, root mean square error (RMSE), absolute error,
etc. (Rumelhart, Hinton, and Williams 1986). In the forward pass, the neurons’ outputs
are updated from the input layer to the output layer to generate the final output; while
in the backward pass, the inter-neuron weights assigned in the forward pass are modified
backwards starting from the output layer to the input layer (Tso and Mather 2009).

In general, the available data set is divided into three separate sets: training, validation,
and testing. A major fraction of the data is utilized for training, since ANN weights are
updated based on the training data set. A testing set is necessary to evaluate the performance
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of the trained model and is usually kept independent from the training set. A validation set
is selected from the training data to avoid overfitting of the ANN by enforcing error criteria.

For the evaluation of the ANN model a regression value (R2), which gives an indication
on how far the simulated outputs are scattered from the actual mean, is calculated. The
mean biased error (MBE) and RMSE are used to optimize the ANN architecture and assess
the accuracy of the trained model. MBE is the mean of the difference between the target
and simulated values. The RMSE is given by the square root of the mean squared error.
The RMSE is useful in analysing the results, since it has the same unit as the estimated
parameter, which is the AOT in this case.

3. Study site and data analysis

3.1. Study site

Two stations, located at Hamim (22.96◦N, 54.3◦E) and Mezaira (53.78◦E, 23.14◦N), were
selected in the inland desert region of the UAE (Figure 1). The choice of inland sta-
tions helps to minimize the effect of fine-mode pollution (generated by industry and urban
areas), as the objective of this study is to analyse wind-eroded dust or coarse-mode dust.
In addition, the following aspects were considered during the selection of the two stations.

2
6

2
5

2
4

2
3

51 52 53 54 55 56

km8040200

Hamim

Mezaira

N

AERONET/Wind station locations

United Arab Emirates

MSG/SEVIRI pixel (3 km)

AM SR-E soil moisture pixel (25 km)

Abu-Dhabi

Dubai

Figure 1. Location of the study sites (Hamim and Mezaira).
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• Both stations recorded in situ AERONET AOT measurements between 2004 and
2010, managed by the National Aeronautics and Space Administration (NASA).

• Both ground weather stations have carried out meteorological measurements since
1977, managed by the UAE NCMS.

Both stations are located in the same region, which is part of a long stretch of the Empty
Quarter desert, extending over Saudi Arabia, UAE, Oman, and Yemen. This region is
mainly characterized by low relative humidity, high temperature, and very little annual
rainfall (Boer 1997). The soil is dominated by sandy soil (about 95% sand and 5% clay
and silt) (EAD 2009). Vegetation in the study area is very sparse and the area is scarcely
affected by human activity.

All ground measurements were collected for the period 2004–2010, this being limited
mainly by the availability of AERONET data at both stations. The data consist of both
ground-based measurements from AERONET and meteorological stations and satellite
data from the AMSR-E and the MSG/SEVIRI.

3.2. Data set description

3.2.1. AERONET measurements

AERONET is a global network of ground-based stations measuring different aerosol-
related parameters at high temporal resolution (Holben et al. 1998). For this study, level
2 AERONET data were used, as these are cloud filtered and quality assured. They include
AOT and the angstrom exponent (α), both measured within the wavelength range of
0.340–1.640 µm.

Since the purpose of this study is to investigate the effect of SM and WS variation on
coarse-mode dust emission, AOT measurements at 0.5 µm wavelength were used; this is
commonly used in characterizing mixed-mode dust particles in the atmosphere. However,
AOT at this wavelength is unable to completely reveal the complex nature of particle size
distribution and vertical profile of the dust column and should be analysed together with
the angstrom exponent (α) to determine the proportions of fine- and coarse-mode dust
particles (Eck et al. 1999). The angstrom exponent is defined as the slope of the line plotted
between the logarithm of the AOT and the corresponding wavelengths (Angstrom 1929).
While there cannot be a sharp threshold value of α for particle size, Eck et al. (2008) have
recommended that observations with α (440, 870) values greater than 0.7 are dominated
by fine-mode while those with values lower than 0.7 are dominated by coarse-mode desert
dust.

Frequency distribution of AERONET AOT over Hamim and Mezaira during the study
period (Figure 2(a)) was found to be similar, with a mean AOT of 0.33. This proves that
there is no significant difference in dust composition between the two stations, since they
are located only 50 km apart. By using a threshold value of 0.7 for α (440, 870), 33% and
40% of the collected observations were identified as fine and coarse mode, respectively.
Whereas advection from industrial and urban pollution, and soil, could be the source of
fine-mode particles, coarse particles are more likely to be either of local origin generated
by the process of saltation and suspension, or transported by strong winds as the soil in the
study area and surrounding areas is primarily composed of sand particles (Prospero et al.
2002; Eck et al. 2008; Reid et al. 2008).
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Figure 2. Frequency distribution over Hamim and Mezaira for (a) AERONET AOT at 0.5 µm, (b)
wind speed at 10 m height (m s−1), and (c) AMSR-E soil moisture (m3 m−3).

3.2.2. WS measurements

Hourly WS measurements were collected at 10 m height from two meteorological stations
located next to the AERONET stations, with the average hourly WS ranging from 0.1 to
10.6 m s−1 (Figure 2(b)). The threshold friction velocity is extremely site specific, but
it usually falls within a narrow range in desert regions. For example, threshold friction
velocity at 10 m usually ranges between 5 and 9 m s−1 in sand-dominated desert regions,
but a constant value of 6.5 m s−1 was frequently adopted in several dust-modelling studies
(Gillette and Passi 1988; Kurosaki and Mikami 2007). In our study, only 7.9% of the WS
data exceeded the threshold friction velocity of 6.5 m s−1 (Figure 2(b)).

3.2.3. AMSR-E SM data

Daily SM measurements were derived from the passive microwave satellite AMSR-E
launched in 2002. This parameter is retrieved from C- or X-band brightness temperature
data for the upper 1 cm surface of the soil. AMSR-E measures brightness temperature
twice daily, at 01:30 and 13:30 local time, with a spatial resolution of about 0.25◦ × 0.25◦
(Njoku et al. 2003). AMSR-E SM data have been widely used and validated in differ-
ent field campaigns (Owe, de Jau, and Holmes 2008; Wang et al. 2009). Since most dust
sources are located in arid or semi-arid regions, it is important to consider the variation
and validation of SM in such regions. One such validation study was done by Al-Jassar
and Rao (2010), in which AMSR-E-derived SM data were compared by taking one pixel
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of AMSR-E data and average gravimetric SM measurements collected over 45 locations
(5 cm depth) lying within the pixel over an arid region of Kuwait. Their results showed that
AMSR-E-derived SM is in agreement with gravimetric SM data, and the error obtained
was within the AMSR-E error range of 3%.

The daily AMSR-E SM measured during the study period ranged between 0.064 and
0.116 m3 m−3 (Figure 2(c)). Unfortunately, the coarse resolution of AMSR-E SM data is the
main limitation in this study. However, since we are more interested in the relative changes
in SM rather than absolute changes, this would not limit our objective. Furthermore, since
the spatial variation of SM is low compared with temporal, it is reasonable to assume that
SM is constant over a 25 km × 25 km area.

3.2.4. SEVIRI thermal band data

The MSG/SEVIRI data consist of brightness temperatures BT3.9, BT8.7, BT10.8, and BT12,
with a spatial resolution of 3 km and temporal resolution of 15 min. The BTs over
the stations are extracted from the pixels nearest to the AERONET measurements. The
combination BTD3.9–10.8, BTD8.7–10.8, BTD10.8–12, and BT3.9 considered for this study is
based on previous studies undertaken (Ackerman 1989; Zhang et al. 2006; Schepanski
et al. 2007). The World Meteorological Organization sand and dust storm warning system
(WMO SDSWS) produces RGB composite images using BTD12.0–10.8 as red, BTD10.8–8.7

as green, and BT10.8 as blue for detecting dust over desert during both daytime and night-
time (Martinez, Ruiz, and Cuevas 2009). In the present study, BT10.8 was replaced by
BT3.9 because it showed a slightly higher sensitivity to dust loading over the study area.
Besides, since the MSG/SEVIRI BTs are measured at higher wavelengths (3.9, 8.7, 10.8,
and 12 µm), they would not be similarly sensitive to AERONET AOT500. In fact, while
AERONET instruments measure the optical properties of airborne dust of a size compara-
ble to the wavelength used (0.5 µm), MSG/SEVIRI thermal channels measure the radiative
properties of airborne dust of a size comparable to their respective wavelengths. However,
this would not limit the purpose of our objective because this study examined the relative
effect of SM and WS on AOT, and the BTs/BTDs selected are sensitive to dust loading as
demonstrated by Zhang et al. (2006) and Paepe and Dewitte (2009).

In order to assess the sensitivity of these BT/BTDs in dust loading, temporal compar-
isons were carried out between two reference days in August 2010: one very dusty (5th) and
one relatively clear-sky/dust-free (13th). These days were selected from the same month
and location (MEZAIRA station) by analysing the AERONET AOT500 measurements and
high-resolution visible (HRV) images over the study area to ensure similar atmospheric
and background conditions. The graphs presented in Figures 3(a), (b), and (c) show tem-
poral variation in BTDs for the two days. As shown in Figure 3(d), the AOT500 value
exceeded 1.0 on 5 August while remaining around 0.4 on 13 August. The results obtained
are consistent with the findings of previous studies. While BTD3.9–10.8 increased in the pres-
ence of dust throughout the day (Figure 3(a)), BTD8.7–10.8 became less negative compared
with clear-sky/dust-free condition (Figure 3(b)). Figure 3(c) shows clearly that variation in
BTD10.8–12 can occur in dusty conditions, but it is less than that on a clear-sky/dust-free
day. It should be noted that since dust emission is highly variable in time and space, the
response of these parameters to the presence of dust may vary under different geographic
locations and climatic conditions.

In order to reduce the effect of fine-mode particles on the results obtained, observations
in AERONET α (440, 870) values greater than 0.7 were removed from the data set since
the WS and SM parameters are directly relevant to coarse-mode desert dust emission, as
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Figure 3. Temporal variation in SEVIRI BTDs and AOT500 over Mezaira station on a day of heavy
dust (5 August 2010) and a clear-sky/dust-free day (13 August 2010): (a) BTD3.9–10.8, (b) BTD8.7–10.8,
(c) BTD10.8–12, and (d) AOT500.

discussed by Eck et al. (2008). This filtration reduced the number of observations over the
two stations. Since these two stations are in the same area with no significant parametric
variations in AERONET AOT500 (as discussed in Section 3.2.1), the two data sets were
combined to increase the number of data available for analysis and to diversify the training
data for better generalization. Finally, a total of 3753 observations corresponding to the
coarse mode were extracted over the two stations. Because of the low temporal resolution
of SM (2–3 days) and WS (hourly), the effective number of observations available was
reduced further. Of the 3753 observations available after filtering (removal of erroneous
and missing data), two-thirds (2502) were used for training and one-third (1251) was kept
as an independent set for model testing and assessment. A summary of data sets collected
for this study is presented in Table 1.

4. Methodology

A neural network-based model was developed to study the effect of SM and WS on coarse-
mode dust particle AOT retrieval from the thermal bands of the MSG/SEVIRI satellite.
To achieve the specified objectives, the methodology consists of

(1) simulating the base model using the MSG/SEVIRI BT/BTDs combination
(BTD3.9–10.8, BTD8.7–10.8, BTD10.8–12, and BT3.9) as inputs and AERONET AOT500

as output;
(2) adding additional inputs (i.e. SM and WS) one at a time to investigate the

contribution of each parameter to the model; and
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(3) applying all inputs (MSG/SEVIRI BT/BTDs combination, SM, and WS) together
in the model.

For each combination of inputs (MSG/SEVIRI BT/BTDs, SM, and WS), training and
testing were done using two independent data sets. According to accepted procedure, two-
thirds of the available data set were used for training and the remaining one-third kept
for testing or accuracy assessment. The MBE, RMSE, and R2 values were calculated for
testing the data set of each combination in order to evaluate and compare their influence in
estimating AOT500.

The neural network toolbox available in the MATLAB application (Demuth and Beale
1997) was used to develop the ANN model, which was then trained with a feed-forward
back-propagation algorithm containing one input layer with the elements of each combina-
tion as input nodes, one hidden layer containing the process function, and one output layer
for the AOT. The number of nodes in the hidden layer was double that of input nodes. First,
the inputs and output were normalized between the interval of [–1 1], then inputs and target
output were randomized to avoid errors due to clustering of the data set and to ensure that
observations were uniformly distributed in the training and testing data sets. From the train-
ing data set, one-third of the data was used for validation. Since the training is unique for
each iteration, the results of successive iterations often vary. Therefore, to check the consis-
tency of the model, a simple ensemble network was built by repeating the training process
100 times. In each training step, training and validation data were randomly selected while
maintaining their proportions at two-thirds and one-third, respectively. The median of the
simulated data was then calculated considering all previous simulation results. For exam-
ple, a simulated output for the nth net would be the median of n simulated outputs, where
n varies from 1 to 100.

Figure 4 shows the typical ANN architecture used in this study when all the inputs are
employed for AOT retrieval.

Figure 4. A typical three-layer artificial neural network model as used in this study. The model con-
tains one input layer with ‘n’ input neurons, one hidden layer with ‘2n’ neurons, and one output layer
with one neuron. T04-T09, T07-T09, T09-10, T04, WS, and SM represent BTD3.9–10.8, BTD8.7–10.8,
BTD10.8–12, BT3.9, wind speed, and soil moisture, respectively.

D
ow

nl
oa

de
d 

by
 [

R
ut

ge
rs

 U
ni

ve
rs

ity
] 

at
 0

7:
44

 1
6 

Fe
br

ua
ry

 2
01

4 



5066 S.P. Parajuli et al.

5. Results and discussion

5.1. SEVIRI thermal band BT/BTDs

The results obtained from the training of our neural network indicate that the suggested
combination of SEVIRI inputs (BT3.9–10.8, BT8.7–10.8, BT10.8–12, and BT3.9) alone gave a
moderate correlation with AERONET AOT500 measurements, where an R2 of 0.68 and an
RMSE of 0.114 were obtained (Table 2). This result is in agreement with the findings of
similar previous studies (Ackerman 1989; Zhang et al. 2006).

During the training process, the performance of the model and the accuracy of the
results obtained were verified by comparing individual and ensemble ANN. The variation
in RMSE and MBE is presented in Figures 5(a) and (c). The results obtained show that
while RMSE and MBE values fluctuate greatly in individual ANNs, they become stable
after about 20 nets. This observation proves that the ensemble ANN is more effective and

Table 2. R2, MBE, and RMSE obtained for different combinations of inputs.

Results

Combinations R2 MBE RMSE

SEVIRI BT/BTDs only 0.68 −0.0008 0.114
SEVIRI BT/BTDs and SM 0.72 −0.0004 0.106
SEVIRI BT/BTDs and WS 0.72 −0.0007 0.107
SEVIRI BT/BTDs, SM, and WS 0.76 −0.0007 0.099
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Figure 5. Error of the model in individual and ensemble ANN: (a) RMSE for MSG/SEVIRI
BT/BTs inputs, (b) RMSE for MSG/SEVIRI BT/BTs, SM, and WS inputs, (c) MBE for SEVIRI
inputs, and (d) MBE for SEVIRI, WS, and SM inputs.
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Figure 6. Correlation between simulated and actual AOT for testing data set for the coarse-
mode fraction only: (a) SEVIRI (BTD3.9–10.8, BTD8.7–10.8, BTD10.8–12, and BT3.9) and (b) SEVIRI
(BTD3.9–10.8, BTD8.7–10.8, BTD10.8–12, and BT3.9), SM, and WS.

stable for the purposes of this study. However, ensemble ANN takes longer to train and
simulate the model depending on the size of the ensemble.

A scatter plot of AOT500 retrieved from SEVIRI BT/BTDs versus measured
AERONET AOT500 for the testing data set is shown in Figure 6(a). It can be seen that the
model highly underestimated AOT500 values greater than 1. This is because of the limited
number of observations in the higher range of AOT500 in the training data set, as depicted
by the right tail of the histogram in Figure 2(a). For the lower range of values, model per-
formance is satisfactory. Results for the training data set are not presented here due to their
inherent bias. Investigation of effects due to change of wavelength in AOT retrieval was also
carried out for AOT1020 and AOT340. The results for these are not presented here because
no significant difference was observed.

5.2. WS and SM effects

In order to analyse the effect of WS and SM on AOT500 retrieval, ANN was trained with
BT/BTDs, SM, and WS as input data following the process described earlier. As seen
in Table 2, the inclusion of SM and WS led to an increase in R2 from 0.68 to 0.72 and
reduced RMSE from 0.114 to 0.10 in each case. The inclusion of WS measured 1 h
before AERONET retrieval was also tested for any lag effect, but did not show any sig-
nificant difference. The corresponding variation in RMSE and MBE is also presented
in Figures 5(b) and (d). Similarly to the previous case, the RMSE and MBE fluctuated
markedly in individual ANN but stabilized after a minimum number of nets.

The combined inclusion of SM and WS raised R2 from 0.68 to 0.76 and lowered RMSE
from 0.113 to 0.099. This represents a 5% increase in R2 and only 1% reduction in RMSE
compared with the SEVIRI BT/BTDs single case. Negative MBE, although low in all
cases, indicates that the model has a systematic tendency to underestimate AOT (Table 2).
A scatter plot of AOT500 retrieved from the SEVIRI BT/BTDs, SM, and WS case versus
AERONET AOT500 measured for the testing data set is shown in Figure 6(b). Similar to the
previous case, it can be seen that the model underestimated high AOT500 values (>1.0) and
performed well for the lower range of values.

D
ow

nl
oa

de
d 

by
 [

R
ut

ge
rs

 U
ni

ve
rs

ity
] 

at
 0

7:
44

 1
6 

Fe
br

ua
ry

 2
01

4 



5068 S.P. Parajuli et al.

The result found does not support the commonly used hypothesis that dust emission
can be expressed in terms of power of WS, on which several dust emission models such
as GOCART (Chin et al. 2000; Ginoux et al. 2001), DEAD (Zender, Bian, and Newman
2003), and GMOD (Yue et al. 2009) are based. This may be because the study area lies in
the desert region dominated by sand dunes, which is not a major source of dust. Further,
AOT retrieved by the AERONET instrument excludes dust lying outside its field of view,
which might be significant depending upon the prevailing WS direction and atmospheric
conditions.

The higher R2 values obtained by adding SM and WS to SEVIRI/MSG BT/BTDs
inputs are attributed directly to their effect on the emission of coarse-mode desert dust
from the underlying surface. The sandy soil composition in the study area (about 95% sand
and 5% clay/silt), coupled with low variation in SM, might have favoured dust emission by
saltation. While coarse-mode desert dust generally has a short lifetime of a few hours that
prevents its transport to other regions of the globe (Yue et al. 2009), it may still originate
from large-scale dust storms such as ‘Haboob’, as reported by Eck et al. (2008).

The limited contribution of WS and SM to AOT retrieval may be explained in more than
one way. Although variation in AMSR-E SM was very low over the study period, as shown
in Section 3, it represents the upper 1 cm of soil while sandy soil has a high infiltration
rate resulting in moist soil in the deeper layers. It was demonstrated that the upper soil
layer may be rapidly eroded during large-scale dust storms because of the drying effect of
wind (Bisal and Hsieh 1966), and hence further dust emission would depend on the SM of
the underlying soil layer. Also, the data set contains a lower number of observations that
exceeds the threshold WS. For a better understanding of the effect of SM and WS on dust
emission, this study needs to be expanded to the active sources of dust around the world,
such as Bodele in Chad. Owing to the unavailability of WS data, it was not possible to
conduct this study in those regions.

6. Conclusion

In this work, the contribution of SM and WS for coarse-mode dust particle retrieval in
a desert region over the UAE was evaluated using AERONET AOT500 (level 2) mea-
surements. First, a neural network ensemble was created with a combination of SEVIRI
BT/BTDs as inputs (BTD3.9–10.8, BTD8.7–10.8, BTD10.8–12, and BT3.9). A moderate correla-
tion (R2 = 0.68) was obtained when only BT and BTDs were used as inputs. This result
proves a certain correlation between BT/BTDs and AOT500. SM and WS were then applied
to the model as additional inputs, and their inclusion increased R2 from 0.68 to 0.76 and
reduced RMSE from 0.113 to 0.09. For more in-depth understanding of dust composition
in the atmosphere, a similar model could be developed for AOT at any other wavelength.
The relatively low contribution of WS and SM to coarse-mode dust particle AOT retrieval
is explained by the complex nature of dust in the UAE, which consists of a mixture of
wind-eroded desert dust and long-range dust transported from surrounding areas. In the
dust source regions where wind erosion is very active and rainfall is infrequent, the effect
of WS and SM on AOT retrieval could be significant. The accuracy of this tool depends
strictly on the accuracy of the input parameters and the availability of historical data.

Acknowledgements
The authors would like to extend special thanks to Dr Prashanth Marphu and Dr Saima Munawwar for
their valuable feedback. The authors are grateful to the Principal Investigators and their staff from the

D
ow

nl
oa

de
d 

by
 [

R
ut

ge
rs

 U
ni

ve
rs

ity
] 

at
 0

7:
44

 1
6 

Fe
br

ua
ry

 2
01

4 



International Journal of Remote Sensing 5069

AERONET stations at Hamim and Mezaira for their effort in establishing and maintaining the sites.
The authors are also grateful to the UAE NCMS for providing the meteorological data. Thanks are
also due to the National Snow and Ice Data Centre (NSIDC) for their effort in hosting and maintaining
AMSR-E SM data and making them publicly available.

References
Ackerman, S. 1989. “Using the Radiative Temperature Difference at 3.7 and 11 µm to Track Dust

Outbreaks.” Remote Sensing of Environment 27: 129–133.
Ackerman, S. 1997. “Remote Sensing Aerosols Using Satellite Infrared Observations.” Journal of

Geophysical Research 102: 17069–17079.
Al-Jassar, H., and K. Rao. 2010. “Monitoring of Soil Moisture over the Kuwait Desert Using Remote

Sensing Technique.” International Journal of Remote Sensing 31: 4373–4385.
Angstrom, A. 1929. “On the Atmospheric Transmission of Sun Radiation.” Geografiska Annaler 11:

156–166.
Bagnold, R. 1941. The Physics of Blown Sand and Desert Dunes. London: Methuen.
Benediktsson, J., P. Swain, and O. Ersoy. 1990. “Neural Network Approaches Versus Statistical

Methods in Classification of Multisource Remote Sensing Data.” IEEE Transactions on
Geoscience and Remote Sensing 28: 540–552.

Bisal, F., and J. Hsieh. 1966. “Influence of Moisture on Erodibility of Soil by Wind.” Soil Science
102: 43–46.

Boer, B. 1997. “An Introduction to the Climate of the United Arab Emirates.” Journal of Arid
Environments 35: 3–16.

Brindley, H., and J. Russell. 2009. “An Assessment of Saharan Dust Loading and the Corresponding
Cloud-Free Longwave Direct Radiative Effect from Geostationary Satellite Observations.”
Journal of Geophysical Research 114: 1–24.

Chepil, W. 1956. “Influence of Moisture on Erodibility of Soil by Wind.” Soil Science 20: 288–291.
Chin, M., R. Rood, S.-J. Lin, J.-F. Muller, and A. Thompson. 2000. “Atmospheric Sulfur Cycle

Simulated in the Global Model GOCART: Model Description and Global Properties.” Journal of
Geophysical Research 105: 24671–24687.

Demuth, H., and M. Beale. 1997. Neural Network Toolbox User’s Guide. Natick, MA: MathWorks.
EAD. 2009. Soil Survey of Abu Dhabi Emirate – Volume I Extensive Survey. Abu Dhabi: EAD.
Eck, T. F., B. N. Holben, J. S. Reid, A. Sinyuk, O. Dubovik, A. Smirnov, D. Giles, N. T. O’Neill,

S.-C. Tsay, Q. Ji, A. Al Mandoos, M. Ramzan Khan, E. A. Reid, J. S. Schafer, M. Sorokine,
W. Newcomb, and I. Slutsker. 2008. “Spatial and Temporal Variability of Column-Integrated
Aerosol Optical Properties in the Southern Arabian Gulf and United Arab Emirates in Summer.”
Journal of Geophysical Research 113: 1–19.

Eck, T., B. Holben, J. Reid, O. Dubovik, A. Smirnov, N. O’Neill, I. Slutsker, and S. Kinne. 1999.
“Wavelength Dependence of the Optical Depth of Biomass Burning, Urban and Desert Dust
Aerosols.” Journal of Geophysical Research 104: 31333–31349.

Eissa, Y., M. Chiesa, and H. Ghedira. 2012. “Assessment and Recalibration of the Heliosat-2 Method
in Global Horizontal Irradiance Modeling over the Desert Environment of the UAE.” Solar
Energy 86: 1816–1825.

Entekhabi, D., E. Njoku, P. O’Neill, K. H. Kellogg, W. Crow, W. N. Edelstein, J. K. Entin, S. D.
Goodman, T. Jackson, J. Johnson, J. S. Kimball, J. R. Piepmeier, R. Koster, N. Martin, K. C.
McDonald, M. Moghaddam, S. Moran, R. Reichle, J. C. Shi, M. Spencer, S. W. Thurman, L
Tsang, and J. Van Zyl. 2010. “The Soil Moisture Active Passive (SMAP) Mission.” Proceedings
of the IEEE 98: 704–716.

Gillette, D., and R. Passi. 1988. “Modelling Dust Emission Caused by Wind Erosion.” Journal of
Geophysical Research 93: 14233–14242.

Ginoux, P., M. Chin, I. Tegen, J. Prospero, B. Holben, O. Dubovik, and S.-J. Lin. 2001. “Sources and
Distributions of Dust Aerosols Simulated with the GOCART Model.” Journal of Geophysical
Research 106: 20255–20273.

Greeley, R., and J. Iversen. 1985. Wind as Geological Process on Earth, Mars, Venus and Titan. New
York: Cambridge University Press.

Holben, B. N., T. F. Eck, I. Slutsker, D. Tanré, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan,
Y. J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov. 1998. “AERONET – A

D
ow

nl
oa

de
d 

by
 [

R
ut

ge
rs

 U
ni

ve
rs

ity
] 

at
 0

7:
44

 1
6 

Fe
br

ua
ry

 2
01

4 



5070 S.P. Parajuli et al.

Federated Instrument Network and Data Archive for Aerosol Characterization.” Remote Sensing
of Environment 66: 1–16.

Hsu, N., S. Tsay, M. King, and J. Herman. 2004. “Aerosol Properties over Bright-Reflecting Source
Regions.” IEEE Transactions on Geoscience and Remote Sensing 42: 557–569.

Jolivet, D., D. Ramon, E. Bernard, P.-Y. Deschamps, J. Riedi, J.-M. Nicolas, and O. Hagolle. 2008.
“Aerosol Monitoring Over Land Using MSG/SEVIRI.” In Proceedings of the EUMETSAT
Meteorological Satellite Conference. Darmstadt, Germany: EUMETSAT.

Kellog, C., and Griffin, D. 2006. “Aerobiology and the Global Transport of Desert Dust.” TRENDS
in Ecology and Evolution 21: 638–644.

Kerr, Y., P. Waldteufel, J.-P. Wigneron, J.-M. Martinuzzi, J. Font, and M. Berger. 2001. “Soil
Moisture Retrieval from Space: The Soil Moisture and Ocean Salinity (SMOS) Mission.” IEEE
Transactions on Geoscience and Remote Sensing 39: 1729–1735.

Kluser, L., and K. Schepanski. 2009. “Remote Sensing of Mineral Dust over Land with MSG
Infrared Channels: A New Bitemporal Mineral Dust Index.” Remote Sensing of Environment
113: 1853–1867.

Kurosaki, Y., and M. Mikami. 2007. “Threshold Wind Speed for Dust Emission in East Asia and Its
Seasonal Variation.” Journal of Geophysical Research 11: 17202.

Legrand, M., J. Bertrand, M. Desbois, L. Menenger, and Y. Fouquart. 1989. “The Potential of Infrared
Satellite Data for the Retrieval of Saharan-Dust Optical Depth over Africa.” Journal of Applied
Meteorology 28: 309–321.

Legrand, M., P. Fattori, and C. N’doume. 2001. “Satellite Detection of Dust Using the IR
Imagery of Meteosat 1. Infrared Difference Dust Index.” Journal of Geophysical Research 106:
18251–18274.

Li, J., P. S. Zhang, J. Schmetz, and W. Menzel. 2007. “Technical Note: Quantitative Monitoring of a
Saharan Dust Event with SEVIRI on Meteosat-8.” International Journal of Remote Sensing 28:
2181–2186.

Marticorena, B., and G. Bergamatti. 1995. “Modeling the Atmospheric Dust Cycle: 1. Design of a
Soil-Derived Dust Emission Scheme.” Journal of Geophysical Research 100: 16415–16430.

Martinez, M., J. Ruiz, and E. Cuevas. 2009. “Use of SEVIRI Images and Derived Products in a WMO
Sand and Dust Storm Warning System.” Earth and Environmental Science 7: 1–6.

Moller, M. 1993. “A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning.” Neural
Networks 6: 525–533.

Njoku, E., T. Jackson, L. Venkataraman, T. Chan, and S. Nghiem. 2003. “Soil Moisture Retrieval
from AMSR-E.” IEEE Transactions on Geoscience and Remote Sensing 41: 215–229.

Owe, M., R. de Jau, and T. Holmes. 2008. “Multisensor Historical Climatology of Satellite-Derived
Global Land Surface Moisture.” Journal of Geophysical Research 113: 1–17.

Paepe, B., and S. Dewitte. 2009. “Dust Aerosol Optical Depth Retrieval over a Desert Surface Using
the SEVIRI Window Channels.” Journal of Atmospheric and Oceanic Technology 26: 704–718.

Paola, J., and R. A. Schowengerdt. 1995. “A Review and Analysis of Backpropagation Neural
Networks for Classification of Remotely-Sensed Multi-Spectral Imagery.” International Journal
of Remote Sensing 16: 3033–3058.

Priestley, C. 1959. Turbulent Transfer in the Lower Atmosphere. Chicago, IL: University of Chicago
Press.

Prospero, J., P. Ginoux, O. Torres, S. Nicholson, and T. Gill. 2002. “Environmental Characterization
of Global Sources of Atmospheric Soil Dust Identified with the NIMBUS 7 Total Ozone Mapping
Spectrometer (TOMS) Absorbing Aerosol Product.” Reviews of Geophysics 40: 1–31.

Reid, J., E. Reid, A. Walker, S. Piketh, S. Cliff, A. Mandoos, S. Tsay, and T. Eck. 2008. “Dynamics of
Southwest Asian Dust Particle Size Characteristics with Implication for Global Dust Research.”
Journal of Geophysical Research 113: 1–14.

Rumelhart, D., G. Hinton, and R. Williams. 1986. “Learning Representations by Back-Propagating
Errors.” Nature 323: 533–536.

Schepanski, K., I. Tegen, B. Heinold, and A. Macke. 2007. “A New Saharan Dust Source Activation
Frequency Map Derived from MSG-SEVIRI IR-Channels.” Journal of Geophysical Research 34:
1–5.

Selah, A., and D. Fryrear. 1995. “Threshold Wind Velocities of Wet Soils as Affected by Wind Blown
Sand.” Soil Science 60: 304–309.

Shah, S., and F. Palmieri. 1990. “MEKA – A Fast, Local Algorithm for Training Feedforward Neural
Networks.” In Proceedings of International Joint Conference on Neural Networks. San Diego,
CA: IJCNN.

Shao, Y. 2008. Physics and Modelling of Wind Erosion. Dordrecht: Springer.

D
ow

nl
oa

de
d 

by
 [

R
ut

ge
rs

 U
ni

ve
rs

ity
] 

at
 0

7:
44

 1
6 

Fe
br

ua
ry

 2
01

4 



International Journal of Remote Sensing 5071

Shao, Y., and H. Lu. 2000. “A Simple Expression for Wind Erosion Threshold Friction Velocity.”
Journal of Geophysical Research 105: 22437–22443.

Shenk, W., and R. Curran. 1974. “The Detection of Dust Storms Over Land and Water with Satellite
Visible and Infrared Measurements.” Monthly Weather Review 102: 830–837.

Simmons, A., C. Uppala, D. Dee, and S. Kobayashi. 2007. “ERA-Interim: New ECMWF Reanalysis.”
ECMWF Newsletter 110: 25–35.

Sokolik, I., and O. Toon. 1996. “Direct Radiative Forcing by Anthropogenic Airborne Mineral
Aerosols.” Nature 381: 681–685.

Tso, B., and P. Mather. 2009. Classification Methods for Remotely Sensed Data. Boca Raton, FL:
CRC Press/Taylor and Francis Group.

Varotsos, C., C. Tzanis, and A. Cracknell. 2009. “The Enhanced Deterioration of the Cultural
Heritage Monuments Due to Air Pollution.” Environmental Science and Pollution Research 16:
590–592.

Wang, L., J. Wen, T. Zhang, Y. Zhao, H. Tian, X. Shi, X. Wang, R. Liu, J. Zhang, and S. Lu. 2009.
“Surface Soil Moisture Estimates from AMSR-E Observations over an Arid Area, Northwest
China.” Hydrology and Earth System Sciences 6: 1055–1087.

Wang, Z.-T. 2006. “Influence of Moisture on the Entrainment of Sand by Wind.” Power Technology
164: 89–93.

Wong, F. 1991. “Time Series Forecasting Using Backpropagation Neural Networks.”
Neurocomputing 2: 147–159.

Yue, X., H. Wang, Z. Wang, and K. Fan. 2009. “Simulation of Dust Aerosol Radiative Feedback Using
the Global Transport Model of Dust: 1. Dust Cycle and Validation.” Journal of Geophysical
Research 114: 1–24.

Zender, C., H. Bian, and D. Newman. 2003. “Mineral Dust Entrainment and Deposition (DEAD)
Model: Description and 1990s Dust Climatology.” Journal of Geophysical Research 108:
doi: 10.1029/2002JD002775.

Zhang, G., B. Patuwo, and M. Hu. 1998. “Forecasting with Artificial Neural Networks: The State of
the Art.” International Journal of Forecasting 14: 35–62.

Zhang, P., N.-M. Lu, X.-Q. Hu, and C.-h. Dong. 2006. “Identification and Physical Retrieval of Dust
Storm Using Three MODIS Thermal IR Channels.” Global and Planetary Change 52: 197–206.

D
ow

nl
oa

de
d 

by
 [

R
ut

ge
rs

 U
ni

ve
rs

ity
] 

at
 0

7:
44

 1
6 

Fe
br

ua
ry

 2
01

4 


