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ABSTRACT

The speed that an utterance is spoken affects both the dura-

tion of the speech and the position of the articulators. Conse-

quently, the sounds that are produced are modified, as are the

position and appearance of the lips, teeth, tongue and other

visible articulators. We describe an experiment designed to

measure the effect of variable speaking rate on audio and vi-

sual speech by comparing sequences of phonemes and dy-

namic visemes appearing in the same sentences spoken at dif-

ferent speeds. We find that both audio and visual speech pro-

duction are affected by varying the rate of speech, however,

the effect is significantly more prominent in visual speech.

Index Terms— Audio-visual speech, speaking rate, dy-

namic visemes

1. INTRODUCTION

Speech production is a complex function involving a large

number of interacting processes. We present an investigation

into the influence of speaking rate on the way that a person ar-

ticulates an utterance. We consider the affect of speaking rate

on both the acoustic and the visual aspects of speech. This is

an important consideration for both accurate speech recogni-

tion (audio, visual and audio-visual) and natural speech syn-

thesis (audio and visual), yet the influence of speaking rate is

often overlooked.

Speaking rate can be defined as the number of words or

syllables spoken over a unit of time. Speaking rate depends on

many characteristics of the speaker, including their age, gen-

der, physiology and psychological state. For example, on av-

erage, younger people talk faster than older people [1], males

talk faster than females [1], and people speak faster when they

are angry than when they are sad [2]. People also tend to talk

at a faster rate when speaking to a person who is familiar to

them and speaking rate increases as the length of the intended

utterance increases [1]. Variations in speaking rate frequently

occur in natural speech.

Speech spoken at different rates influences the duration of

the segments and also the acoustic properties of the utterance.

For example, as speaking rate increases, the pitch range de-

creases [3] and it is typical for articulators to undershoot tar-

gets to the extent that all vowels are reduced to a schwa [4].

This may in part be due to physiological constraints, since

muscles need a minimum amount of time to contract. Speech

spoken at different rates is not the same as “typical” speech

spoken more quickly or more slowly.

Little is known about the effect that varying speaking rate

has on the movement of the visible articulators, so called vi-

sual speech. It is clear that fast speech is not simply slow

speech sped up. Instead, sequential segments are merged,

boundaries are blurred and some segments are deleted or in-

serted. The work described in this paper measures the extent

to which visual and acoustic information is affected by vari-

able speaking rates by comparing sequences of phonemic and

visemic labels corresponding to repetitions of sentences spo-

ken fast, normal and slowly.

2. PHONEMES AND VISEMES

Phonemes are well defined linguistic units of acoustic speech.

They represent the contrastive sounds of a language and so

can be used to unambiguously transcribe speech utterances.

However, the visual equivalent of the phonemes is not so

well defined. For years, visemes (“visual phonemes”) were

proposed as the units of visual speech [5], identified by

clustering phonemes based on their visible articulator con-

figuration such that phonemes produced with a similar pose

were grouped to form a single viseme class. This cluster-

ing has been performed both subjectively [5–11] and objec-

tively [12–16] using a range of different speakers, stimuli,

and recognition/classification tasks. However, no unequivo-

cal mapping from phonemes to (phoneme cluster) visemes

exists. This is because there is no simple many-to-one map-

ping from phonemes to visual speech. Static visemes do not

account for visual coarticulation, which is the influence of

neighboring speech on the position of the articulators. Coar-

ticulation causes the lip pose for the same sound to appear

very different visually depending on the context in which it

is embedded (see Figure 1) and at times the articulation of

some sounds may not be visible at all. For this reason, the

traditional definition of a viseme functions as a poor model

for a unit of visual speech.

A more realistic model of visual speech is dynamic

visemes [17]. Dynamic visemes are speech movements

rather than static poses and they are learnt by clustering
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Fig. 1: A selection of movie frames during the articulation of

/t/ illustrating the variability of articulator poses due to coar-

ticulation.

visual speech independently of the underlying phoneme

labels. Given some training video containing speech, the

visible articulators are tracked and parameterized into a low-

dimensional space. This parameterization is then automati-

cally segmented by identifying salient points to give a series

of short, non-overlapping gestures. These salient points are

visually intuitive and fall at locations where the articulators

change direction, for example as the lips close during a bi-

labial, or the peak of the lip opening during a vowel. The

speech gestures identified by this segmentation are then clus-

tered to form dynamic viseme groups, such that movements

that look very similar appear in the same class. Identifying

visual speech units in this way is beneficial as the set of dy-

namic visemes describes all of the ways in which the visible

articulators move during speech. For the remainder of this

paper visemes refers to dynamic visemes as defined in [17].

3. DATA CAPTURE AND METHODS

3.1. Audio-Visual Speech Database

A dataset was captured containing an actor speaking 10 sen-

tences from the TIMIT sentence list [18] at 3 speeds (slow,

normal and fast), each repeated 10 times (10× 3× 10 = 300

utterances). The prompts were presented in a randomised or-

der in which the sentences and speaking rates were varied.

The speaking rates of the uttered sentences were checked and

were in accordance with the speeds that the actor was asked

to speak. The video was recorded at 29.97 frames per second

at a resolution of 1920 by 1080 progressive scan using a Sony

PMW-EX3 camera. Audio was synchronously captured at a

sampling rate of 48kHz.

3.2. Data Preparation

To generate dynamic viseme labels the jaw and lips were first

tracked and parameterized for each video frame using an ac-

tive appearance model (AAM) [19]. Speech gestures were

identified by automatically segmenting in AAM space based

on zero crossings from negative to positive in the derivative

of the gradient magnitude. The clustering was performed

in super-feature space using a graph-based clustering method

[20], generating 102 dynamic viseme classes. The number of

Slow Normal Fast

Slow 89.2 ± 2.9 87.5 ± 3.6 84.8 ± 3.5

Normal 86.7 ± 4.0 90.6 ± 3.0 88.8 ± 3.1

Fast 83.2 ± 4.5 88.4 ± 3.7 88.5 ± 3.0

Table 1: The means and standard deviations of phone-

mic similarity (as a percentage) measured across speech se-

quences spoken at different rates.

classes was determined as the point where the mean squared

difference between the super-features within a cluster and the

respective cluster median does not change significantly after

increasing the number of clusters. See [17] for more details.

As a result of the clustering process, each of the 300 sen-

tences were labelled in terms of their dynamic viseme class

labels (1-102) and the sentences were phonetically labelled

using ARPABet notation manually.

3.3. Measuring the Effect of Variable Speaking Rate

The effect of speaking rate on acoustic speech is measured

by calculating the similarity between phoneme sequences for

repetitions of the same sentences spoken at different speeds.

The alignment of the phonemic transcriptions was achieved

using forced alignment in the hidden Markov model toolkit

(HTK) [21], and the phonemic similarity was calculated using

the inverse Levenshtein distance [22]:

Similarity =
N −D − S − I

N
× 100%, (1)

where N is the total number of labels in the reference sen-

tence, and D, S and I are the number of deletions, substitu-

tions and insertions respectively.

To measure the effect of speaking rate on visual speech,

for each sentence the viseme labels were aligned with all other

repetitions of the sentence using dynamic programming, and

the visemic similarity was measured using Equation 1. In

both the audio and the visual cases the similarity was averaged

across the 10 sentences and 10 repetitions for each of the three

speaking rates.

4. RESULTS

The mean and standard deviations of phonemic and visemic

similarities for sentences spoken at different speaking rates

are shown in Tables 1 and 2 respectively. The intersection of

a row/column shows the percentage similarity for the corre-

sponding speaking rates. Unsurprisingly, the phonemic simi-

larities for acoustic speech are high as the same phones tend

to be used to produce different repetitions of the same utter-

ance regardless of speaking rate. However, the results in Ta-

ble 1 indicate that even when speaking the same sentence at

the same speaking rate, the phones uttered are not identical.
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Fig. 2: Frames taken from the mid-point of each phone segment for the phrase “Almonds and pistachio [nuts]”. The top row is

from a slow repetition, and the bottom row is from a fast repetition. No image is shown where a deletion occurs and a phoneme

substitution is shown in red.

Slow Normal Fast

Slow 53.9 ± 7.9 45.5 ± 7.6 27.4 ± 6.7

Normal 32.7 ± 13.3 57.6 ± 8.4 39.8 ± 9.6

Fast -11.7 ± 19.6 23.8 ± 17.4 57.6 ± 8.7

Table 2: The means and standard deviations of visemic sim-

ilarity (as a percentage) measured across sentences spoken at

different rates. Note the negative value comparing slow and

fast speech due to a large number of speech units present in

slow speech which are missing from fast speech.

The lowest similarity is measured between sentences that are

spoken at a fast rate and those that are spoken slowly. For

this speaker, the phones that are most likely to be dropped

from speech that is spoken at a higher rate are /h, t, j/, where

deletions occur 40%, 20%, and 18% of the time respectively.

The most common consonant substitutions for faster speech

are /z/→/s/, /t/→/d/ and /T/→/D/, occurring 16%, 9% and 5%

of the time respectively. Vowels generally become less well

defined and /u/, /U/ and /æ/ often reduce to /2/ (12%, 12% and

9% of the time respectively), and /O/ is substituted for /A/ 11%

of the time. A selection of aligned phoneme sequences for the

sentence “Almonds and pistachio nuts are not so high in oil,

but are rich in protein” is shown in Table 3.

For visual speech the visemic similarities are much lower,

indicating that different lip motions are used to produce the

same words when speaking at different rates. In Table 2 note

the negative value comparing slow and fast visual speech,

which suggests that a large number of dynamic visemes

present in slow speech are missing from fast speech. This is

confirmed in Table 4, which shows a selection of viseme se-

quences for repetitions of a sentence which have been aligned

for visualization. In all cases, the viseme sequences for sen-

tences spoken at a particular speaking rate are more similar

to others spoken at the same speed than those that are spoken

at different speeds, and the faster that a sentence is produced,

the fewer visemes are used. Furthermore, the results indi-

cate that visual speech is influenced more by the effect of

variable speaking rate than acoustic speech as the difference
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Fig. 3: Normalized frequency of insertions and deletions for

each sentence compared with all of its repetitions. Each sam-

ple represents one comparison. Since each sentence is com-

pared with 10 repetitions for each of the 3 speeds, there are

300 samples in each colour. The x-axis represents the differ-

ence between the mean phoneme duration of a sequence and

another repetition to which it is aligned (see Equation 2). The

number of insertions (red) and deletions (blue) are normalized

for sequence length.



Slow

1 A l m 2 n z - æ n p I s t æ S i oU n A t s - A r n A t s oU h aI I n OI l - b 2 t A r I tS - I n p r oU t i n

2 A l m 2 n z - æ n d p I s t æ S i oU n 2 t s - A n A t s oU h aI I n OI l - b 2 t A r I tS - I n p r oU t i n

Normal

1 A l m 2 n d z 2 n p I s t æ S j U n A t s A r n A t s oU h aI I n OI l b 2 d A r I tS I n p r oU t i n

2 A l m 2 n z 2 n p I s t æ S j 2 n A t s A r n A t s oU h aI I n OI l b 2 d A r I tS I n p r oU t i n

Fast

1 A l m 2 n z 2 n p I s t æ S oU n 2 t s A n A t s oU h aI I n OI l b 2 t A r I tS I n p r oU t i n

2 A l m 2 n z n p 2 s t æ S oU n 2 t s A r n A t s oU h aI I n OI l b 2 d A r I tS I n p r oU t i n

Table 3: A selection of aligned phoneme sequences for the sentence “Almonds and pistachio nuts are not so high in oil, but are

rich in protein” spoken at different rates. A dash (-) denotes a short pause.

Slow

1 5 56 67 11 83 56 62 54 93 97 92 43 99 27 64 50 55 13 49 58 98 53 88 19 99 74 6 89 93 35 45 86 79 41

2 5 56 67 11 83 56 62 54 93 97 66 37 84 29 74 64 72 101 55 13 49 63 58 98 44 19 27 6 80 22 84 18 35 45 86 71 73

Normal

1 5 56 61 56 62 54 100 80 66 67 84 87 91 55 13 49 58 98 84 88 19 38 80 93 35 45 86 71 52

2 5 56 61 56 62 54 100 80 87 67 84 87 1 13 49 58 98 44 88 38 89 93 35 101 86 71 52

Fast

1 5 75 8 62 83 80 87 84 87 1 83 80 70 88 6 89 93 35 81 71 52

2 5 96 61 8 62 83 80 87 84 87 1 83 58 70 88 100 89 61 35 81 79 41

Table 4: A selection of aligned viseme sequences for the sentence “Almonds and pistachio nuts are not so high in oil, but are

rich in protein” spoken at different rates.

in visemic similarity is larger and the number of units in a

sequence is more variable.

Figure 2 shows movie frames taken from the mid-point of

each phone segment for the phrase “Almonds and pistachio

nuts” for slow speech (top row) and fast speech (bottom row).

A blank image appears where a phone is not articulated. Note

the difference in lip pose across the two speeds, especially in

the build up to /p/. During the fast repetition the lips move

towards lip closure much earlier than during the slow repeti-

tion.

Figure 3 shows for phone (top) and viseme (bottom) se-

quences the number of insertions and deletions as a function

of the change in average phone duration, which is calculated

using:

∆d̄ab =
1

Na

Na∑

i=1

dai −
1

N b

Nb∑

j=1

dbj , (2)

where N is the number of phonemes in a sentence and dai
and dbj are the durations of phonemes i and j in repetitions a

and b respectively. Each data point represents a comparison

between two repetitions of a sentence and shows the num-

ber of insertions (blue) and deletions (red) of the aligned se-

quences normalized for sequence length. In both graphs the

number of insertions increases when aligning slow speech to

fast (∆d̄ab < 0) and the number of deletions increases when

aligning fast speech to slow (∆d̄ab > 0). However, the trend

is much more prominent for visual speech, where the number

of data points in the top left of the figure can double when the

speech is spoken slowly.

5. DISCUSSION AND FUTURE WORK

Whilst differences in visual speaking style are to be expected

as speaking rate varies, the magnitude of the differences in

Table 2 are surprising. Significantly, this confirms that speak-

ing fast is not the same as slow speech spoken more quickly.

Coarticulation affects speech production for different speak-

ing rates since the visual gestures used to produce the same

sentence at different speeds is very different and the differ-

ences are much more prominent visually than acoustically.

In this work, dynamic visemes are learned for a sin-

gle speaker and are the best units for describing the speech

movements specific to this speaker. However, phonemes are

generic and can be conferred across speakers, enabling a

clearer evaluation of the variability due to speaking rate. A

future goal is to learn and publish a full, speaker-independent

set of dynamic visemes.

We are in the process of extending this study to consider

a larger corpus of speech, including more speakers, and we

will also investigate the influence of emotion on speech pro-

duction. Our longer term goal is to better understand vi-

sual speech articulation such that speech animation can be

adapted automatically so that the visual appearance looks cor-

rect given the intended speaking rate and style.
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