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Iron oxide nanoparticles (IONPs) with acceptable biocompatibility and size-dependent

magnetic properties can be used as efficient contrast agents in magnetic resonance

imaging (MRI). Herein, we have investigated the impact of particle size and surface coating

on the proton relaxivity of IONPs, as well as engineering of small IONPs’ surface coating as

a strategy for achieving gadolinium-free contrast agents. Accordingly, polymer coating

using poly(isobutylene-alt-maleic anhydride) (PMA) with overcoating of the original ligands

was applied for providing colloidal stability to originally oleic acid–capped IONPs in

aqueous solution. In case of replacement of the original ligand shell, the polymer had

been modified with dopamine. Furthermore, the colloidal stability of the polymer-coated

IONPs was evaluated in NaCl and bovine serum albumin (BSA) solutions. The results

indicate that the polymer-coated IONPs which involved replacement of the original ligands

exhibited considerably better colloidal stability and higher proton relaxivity in comparison to

polymer-coated IONPs with maintained ligand shell. The highest r2/r1 we obtained was

around 300.
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INTRODUCTION

Magnetic iron oxide nanoparticles (IONPs) exhibit unique magnetic properties that make them
attractive for different biomedical applications, including drug delivery (Karimi et al., 2016),
magnetic resonance imaging (MRI) (Bruns et al., 2009; Kudr et al., 2017; Li et al., 2017; Smith
and Gambhir, 2017; Woodard et al., 2018), magnetic particle imaging (Bauer et al., 2015), and
magnetic hyperthermia (Laurent et al., 2011; Pardo et al., 2020). The magnetic properties of IONPs
are influenced by the particle size, which arise from the magnetic domain structure (Tromsdorf et al.,
2007; Li et al., 2017). Superparamagnetic iron oxide nanoparticles (SPIONs) are single-domain
IONPs with a diameter of a few to a few tens nanometers that exhibit no remanent magnetization in
the absence of an external magnetic field at room temperature. The superparamagnetic property of
SPIONs, as well as their relatively good biocompatibility (Heine et al., 2014; Sheel et al., 2020), makes
them the currently most used iron oxide–based T2 contrast agents (Kwon et al., 2018). Generally,
large SPIONs provide T2 contrast due to the magnetic inhomogeneity induced by their strong
magnetic moment. However, SPIONs-based T2 contrast agents generate dark signal in T2-weighted
MRI that can mislead the clinical diagnosis (Zhao et al., 2013; Fernández-Barahona et al., 2020). In
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this respect, T1 contrast agents are more desirable for high
accurate resolution imaging (Wei et al., 2017; Li et al., 2019).
T1 contrast agents are commonly based on paramagnetic
compounds with a large number of unpaired electrons. This
includes, for example, Gd3+ andMn2+(Ni et al., 2017). T1 contrast
is induced by magnetic coupling interaction between the nucleic
spins of the protons of water molecules and the electron spins of
the contrast agents. Gadolinium complexes are widely used as T1

contrast agents, despite the fact that free gadolinium ions, leached
from gadolinium complexes, have shown a long-term toxicity
including nephrogenic systemic fibrosis and Gd deposition in the
brain (Khawaja et al., 2015; McDonald et al., 2015). Because of
these limitations, development of alternatives may help to
overcome the drawbacks of Gd-based T1 contrast agents.

Some groups have suggested that the long-term
biocompatibility of iron compared with gadolinium makes
IONPs very attractive materials for T1 contrast agents
(Tromsdorf et al., 2009; Shen et al., 2017). The magnetic
moment of IONPs rapidly decreases as their sizes decrease due
to the reduction in volume magnetic anisotropy and spin canting
effect (Morales et al., 1997; Jun et al., 2008). Since the
paramagnetic properties of small IONPs are similar to Gd-
based contrast agents, these nanoparticles can be utilized as T1

contrast agents because of small magnetic moment and low
toxicity (Bao et al., 2018). It however has to be pointed out
that also for IONPs toxic effects exist (Joris et al., 2017; Feng et al.,
2018; Patil et al., 2018), though to a much lesser extent than for
chelated Gd. Toxicity may depend on various physicochemical
properties such as size, shape, structure, concentration, surface
modification, and solubility (Vanhecke et al., 2017; Feng et al.,
2018; Patil et al., 2018; Vakili-Ghartavol et al., 2020).

MRI contrast enhancement arises from the signal difference
between water molecules residing in different environments that
are under the effect of magnetic nanoparticles (NPs). The size of
IONPs and their surface properties (thickness and chemical
composition) (Wang et al., 2017), as also doping (Pardo et al.,
2020), have influence on the contrast enhancement of SPIONs
(Zhang et al., 2018). Consequently, understanding the
relationships between the relaxivities of water protons under
influence of magnetic NPs and intrinsic properties of these
NPs can give decisive information for predicting the properties
of engineered magnetic NPs. This may help enhancing their
performance in MRI-based theranostic applications (Huang
et al., 2012). Duan et al., for example, reported that the
hydrophilic nature of the surface coating contributes to the
relaxivity of MRI contrast agent (Duan et al., 2008).

Hydrophobic IONPs that are synthesized in organic solvents
can exhibit improved sized distribution, crystallinity, and
magnetic properties in comparison to iron oxide nanoparticles
by aqueous phase methods (Lee and Hyeon, 2012; Wu et al.,
2015). However, the effect of the coating and the ligand density
on the T1 and T2 relaxation times is not fully understood yet.

The aim of this work is to prepare SPIONs stabilized with
polymer by overcoating and replacement of the original ligand
shell methods, in order to elucidate the influence of the polymer
type and polymer coating on the corresponding longitudinal (r1)
and transverse (r2) relaxivities.

MATERIALS AND METHODS

Materials. Oleic acid (OA, ≥93% technical grade), dopamine
hydrochloride, poly(isobutylene-alt-maleic anhydride) (PMA)
(average Mw: 6,000 Da), triethylamine, oleylamine, 1,2
hexadecanediol, benzyl ether, 1-octadecne, trioctylamine,
dodecylamine dimethylformamide (DMF), and anhydrous
sodium sulfate and iron (III) acetylacetonate were provided by
Sigma. Ethanol (EtOH >96%), toluene (≥95% Sigma), and
chloroform were obtained from Carl Roth. Poly(ethylene
glycol) methyl ether (PEG, average Mw: 750 Da) was from
Rapp Polymer. FeCl3·6H2O and sodium oleate were purchased
from Merck and TCI, respectively.

Column chromatography was performed using silica gel
(60 Å) acquired from Fluka. The chemicals and solvents were
used as received, unless otherwise specified. All the syntheses
were carried out under N2 atmosphere using MBraun LABmaster
glovebox and standard Schlenk techniques.

Synthesis of Iron Oxide Nanoparticles
Iron Oxide Nanoparticles of 15 nm to 18 nm. IONPs were
synthesized by thermal decomposition according to the
method described by Hyeon and coworkers with minor
modifications (Park et al., 2004). Briefly, to synthesize the iron
oleate precursor, a 100 ml flask equipped with a Teflon-coated
magnetic stir bar, 9.13 g sodium oleate (30 mmol), and hexane
(3 ml) was added. The mixture was stirred, and then ethanol
(20 ml) was added. All the solids dissolved by slow addition of
distilled water (7.5 ml) according to the previously published
protocol (Park et al., 2004). The reaction was heated to 40°C with
stirring. At this point, the sodium oleate was completely
dissolved. Then, a solution of 2.7 g of iron chloride
(FeCl3·6H2O, 10 mmol) in 7.5 ml water was added to the
reaction vessel. The resulting solution was heated under gentle
reflux (65–70°C) and was kept at that temperature for 4 h. When
the reaction was completed, the solution was transferred to a
separation funnel. The upper red layer was washed with water
and transferred to an Erlenmeyer flask containing anhydrous
sodium sulfate (3 g) in order to remove residual water. Then, the
solution was swirled and filtered with a hydrophobic filter
(0.2 µm, Millipore #SLFG025N). The solution was
concentrated on a rotary evaporator. After drying in high
vacuum, the resulting product was a reddish brown viscous oil
with a mass of around 9 g.

The synthesis of the IONPs relies on the reduction of iron
oleate at high temperature. In a typical experiment, IONPs with a
core diameter of 15 nm were prepared as follows: 3.6 g (4 mmol)
of iron oleate and 0.57 g oleic acid were dissolved in 20 ml of 1-
octadecene, in a three-neck round-bottom reaction flask attached
to the Schlenk line. Next, the mixture was degassed and dried
through heating at 100°C for 45 min, in order to remove volatile
impurities and remaining traces of water in the iron oleate
precursor. The mixture was afterward heated to 320°C at a
heating rate of around 3.3°C/min and was kept for 30 min
under an inert atmosphere. A severe reaction occurred when
the reaction temperature reached 320°C, and the initially
transparent solution became turbid and brownish black. The
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18 nm IONPs were obtained by thermal decomposition of iron
oleate in the presence of oleic acid (0.57 g) in trioctylamine
(20 ml) at 360°C for 30 min. The resulting solution was
allowed to cool down to room temperature by removing the
heating mantle, and then, acetone was added to the solution to
precipitate the IONPs. The IONPs were precipitated by
centrifugation (3,500 rpm, 5 min). The supernatant was
discarded, and the IONP precipitate was dispersed in toluene.
The concentration of the IONPs in solution (i.e., toluene) was
estimated by weighing and determining the mass of one IONP by
transmission electron microscopy (TEM) analysis (Huḧn et al.,
2016). In the following, the concentration of IONPs was
calculated by assuming that they are Fe3O4 spheres of 18 nm
core diameter (dc � 18 nm). The volume of one IONP is VNP � (4/
3) × π × (dc/2)

3
� (4/3) ×π× [(18 × 10–7 cm)/2]3 � 3,050 ×

10–21 cm3. The density of the IONP cores was assumed as the bulk
density of Fe3O4 which is 5.18 g/cm3 (Kurzhals et al., 2017;
Patsula et al., 2019). Therefore, the mass of each IONP is mNP

� ρNP × VNP � (5.18 g/cm3) × (3,050 × 10–21 cm3) � 15,800 ×

10–21 g. The number of IONPs (NNP) in solution of volume
Vsolution can be determined by dividing the total mass of dried
IONPs (mNP,tot) originating for a solution of Vsolution � 1 ml by
the mass of single nanoparticle NNP� (mNP,tot/mNP)� (30 ×

10–3 g)/(15,800 × 10–21 g) � 0.0019×1018. The concentration of
sample is then CNP� (NNP/NA)/Vsolution� [(0.0019×1018)/
(6.022×1023)]/(1 × 10−3 L) � 3.15 µM with Avogadro’s
constant NA � 6.022 × 1023mol−1.

Iron Oxide Nanoparticles of 6 nm. IONPs with a core diameter
of around 6 nm were synthesized via the procedure reported by
Sun et al. (Sun et al., 2004). Fe (acac)3 (2 mmol), oleic acid
(6 mmol), benzyl ether (20 ml), oleylamine (6 mmol), and 1,2-
hexadecanediol (10 mmol) were mixed and magnetically stirred
under a flow of nitrogen. The mixture was heated to 200°C for 2 h
and then was refluxed (∼300°C) for 1 h under nitrogen
atmosphere. A black-brown hexane dispersion of 6 nm IONPs
was produced. After that, the heating was switched off and the
black-brown mixture was allowed to cool to room temperature.
Finally, the product was precipitated with ethanol (40 ml) and
collected by centrifugation (5,000 rpm, 10 min). Then, IONPs
were redispered in a mixture of hexane with 1% (v/v) oleic acid
and oleylamine.

We note that, in the present work, synthesis was reproduced
from previous publications, in which key characterization of these
IONPs is also provided (Park et al., 2004; Sun et al., 2004). The
Fe3O4 structure of the IONPs has not been explicitly verified in
the present work, though there are different methods for this
(Komadel and Stucki, 1988; Corrias et al., 2009), but it is based on
the findings in the original reports about the syntheses. Some
additional basic characterization (XRD, FTIR, and VSM) is
provided in the Supporting Information.

Polymer Coating
Polymer Coating Involving Overcoating of the Original Ligand

Shell. The IONPs were transferred into aqueous solution with
overcoating them using the polymer dodecylamine–modified
poly(isobutylene-alt-maleic anhydride) as described previously
(Huḧn et al., 2016). The amphiphilic polymer comprises a

backbone of poly(isobutylene-alt-maleic anhydride), and
hydrophobic side chains in the form of dodecylamine were
linked to the anhydride rings through formation of amide
bonds. In the amphiphilic polymer PMA–DDA used in the
present work, 75% of its maleic anhydride rings had been
reacted with dodecylamine and 25% of its anhydride rings
were left unreacted (Huḧn et al., 2016). The leftover anhydride
rings of the hydrophilic backbone open up under alkaline
conditions, yielding negatively charged carboxylic groups that
make the IONPs soluble in aqueous solutions. Briefly, polymer
coating of the IONPs was performed by dissolving a desirable
amount of polymer monomers per surface area of IONP. In all of
the samples, we added 3,000 monomers of poly(isobutylene-alt-
maleic anhydride) modified with dodecylamine (PMA–DDA)
dissolved in chloroform per 1 nm2 of effective surface area of the
IONPs (Yang et al., 2017). The concentrations of the IONPs CNP
samples were calculated (Huḧn et al., 2016) as described above.
Then, the volume of polymer solution (Vp) for efficient polymer
coating of the IONPs was determined as described in previous
work (Huḧn et al., 2013; Huḧn et al., 2016; Zhu et al., 2019):

Vp �

R p
area

× π × d2
eff × CNP × VNP

Cp

, (1)

where Cp and Rp/area are the monomer concentration and the
ratio of polymer units per nm2 of effective surface area,
respectively (Huḧn et al., 2016). CNP and VNP are the
concentration and the volume of the IONP solution. The
effective diameter of IONPs (deff) includes the diameter of the
iron oxide cores from TEM images and twice the
hydrophobic stabilizing ligand shell: deff � dc+2dligand and we
assumed dligand � 1 nm. Here, we mixed IONPs with Cp � 0.05 M
monomer concentration and Rp/area � 100 nm−2. After addition
of the polymer in a round flask, the solvent was slowly removed
using a low-pressure system under heating to 40°C in order to
force the polymer to wrap around the IONPs. Then, again
chloroform was added and the drying process was repeated.
The IONP powder was then dissolved in sodium borate buffer
at pH 12. Here, hydrolysis of the remaining maleic anhydride left
two carboxylic groups per newly opened anhydride ring. Then, the
solution was filtered using a 0.22 µm syringe filter. Afterward, the
IONPs were precipitated by centrifugation and the supernatant
was discarded, and the IONPs were redispersed in Milli-Q water.
This procedure was repeated in order to remove residual empty
polymer micelles (Fernández-Argüelles et al., 2007). After
purification, the IONPs were redispersed and kept in Milli-Q
water.

Polymer Coating Involving Replacement of the Original

Ligand Shell. The polymer coating was carried out by
following a previously reported procedure (Wang et al., 2014).
Briefly, to achieve dopamine functionalized PMA, the polymer
synthesis was carried out by dissolving 0.385 g of PMA in 10 ml of
DMF in a 50 ml three-necked round bottom flask. The solution
was purged with nitrogen, and then, the temperature was raised
to 70°C. Then, a mixture of amino–PEG (H2N–PEG–OMe,
0.995 g) and dopamine hydrochloride (0.237 g) activated with
triethylamine (resulting in free amine dopamine) was added
dropwise to the solution, and the mixture was left to react
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overnight at 70°C. To collect the polymer, DMF was removed
under vacuum and then dissolved in chloroform. The solution
was purified by silica gel column chromatography and eluted with
chloroform. Afterward, the solvent evaporated and a gel-like
yellow oil was collected as the resultant product. The polymer
coating was carried out as follows: First, 5 mg of precipitated
IONPs was dispersed in 0.5 ml THF. To this mixture, 1 ml of THF
containing 0.25 mg of dopamine–PMA–PEG was added.
Subsequently, the mixture was sealed and stirred overnight at
50°C under nitrogen atmosphere. Then, an excess of hexane was
added to precipitate the sample and was centrifuged. The
supernatant was discarded and the precipitate was dried. The
final black pellet was dispersed easily in Milli-Q water by
sonication. The aqueous solution was filtered with a 0.22 µm
syringe filter, and the IONPs were precipitated by centrifugation.
Unbound excess ligands were discarded with the supernatant and
the IONPS were redispersed and kept in Milli-Q water. Both
coating procedures are summarized in Figure 1.

Characterization of Iron Oxide
Nanoparticles
All samples were characterized by dynamic light scattering (DLS;
Nanosizer, Malvern) and inductively coupled plasma mass
spectroscopy (ICP-MS; Agilent 7700 series ICP-MS). The
morphology and size distribution of the IONPs were examined
with a transmission electron microscope (TEM, JEOL 1400 plus
100 kV and LEO 912 AB, 120 kV). TEM samples were prepared
by dropping a dilute solution of IONPs on carbon-coated copper
grids and letting the solvent evaporate. The thickness of the
organic shell was determined by TEM with uranyl acetate

negative staining (Yang et al., 2017). Gel electrophoresis
analysis was performed on a Bio-Rad system using 2% agarose
gel. Electrophoresis was carried out for 60 min at 100 V.

Relaxivity Measurements. The magnetic resonance (MR)
relaxivity profile was evaluated in phantoms and the solutions
of the IONPs at different concentrations (cFe � 0.035, 0.07, 0.14,
0.28, and 0.56 mM equivalent Fe content) by using aMRI scanner
with 3 T field strength (Siemens). The longitudinal relaxation
times (T1) were determined using an inversion recovery pulse
sequence (repetition time (TR) � 100, 200, 500, 750 and 1,000 ms
and fixed echo time (TE) � 12 ms. The T1 relaxation time of each
sample was determined based on the equation I ∼ M0 (1 - 2·exp
(-t/T1) to fit the magnitude of the MRI signals at different
inversion times.

A multiple spin echo was used to simultaneously collect data
points at different echo times (TE � 6–180 ms with an increment
of 6 ms) for the T2 measurements. A nonlinear monoexponential
equation I ∼M0·exp (-TE/T2) was used to determine the T2

relaxation time of each IONP sample (Ahmad et al., 2011).
Finally, r1 and r2 values were calculated according to the linear
relationship of longitudinal and transverse relaxation rates vs.
iron concentration of IONPs (Hobson et al., 2019; Ahmadpoor
et al., 2020).

RESULTS

Iron Oxide Nanoparticles Synthesis and
Polymer Coating
IONPs can be prepared by aqueous and nonaqueous methods.
Aqueous methods such as coprecipitation usually produce IONPs

FIGURE 1 | Schematic illustration of the surface chemistry of the IONPs via overcoating of the original ligand shell which relies on coating of the native hydrophobic

IONPs with an amphiphilic polymer PMA–DDA; replacement of the original ligand shell involves the removal of the original ligand and replacing it with dopamine-

functionalized PMA.
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with low crystallinity and a broad size distribution (Ali et al.,
2016). In contrast, nonaqueous methods such as thermal
decomposition may generate better monodispersed IONPs
with high crystallinity. In the present work, three different
sizes of IONPs capped with oleic acid were synthesized by the
thermal decomposition method. For this purpose, a modified
protocol of the previously reported procedure was used. Figure 2
depicts TEM images of the uniform spherical IONPs, which
demonstrate a narrow size distribution. The inorganic (core)
diameter of the IONPs (dc) was derived from the TEM images
using the software Image J, resulting in core diameters dc of the
three different samples of 6.15 ± 0.98, 14.6 ± 1.5, and 17.6 ±

0.91 nm.
The XRD pattern of IONPs (6 nm) (Supplementary Figure

SI-1) demonstrates sharp diffraction peaks that are consistent

with the magnetite phase (JCPDF #19–0629). Also, the FTIR
spectra of IONPs (Supplementary Figure SI-3) show the strong
characteristic band at 574 cm−1 with a shoulder at 630 cm−1,
which are related to the vibrations of Fe−O from octahedral and
tetrahedral sites of magnetite (Muthukumaran and Philip, 2016).
The peaks from 1,408 to 1,586 cm−1 are due to the vibrations of
COO from adsorbed oleic acid over magnetite. The peaks at 2,874
and 2,915 cm −1 are assigned to the stretching modes of CH2 and
CH3 groups of oleic acid (Li et al., 2010). Supplementary Figure

SI-2 shows the magnetic behavior of IONPs at room temperature.
The saturationmagnetization value obtained from theM-H curve
under an applied magnetic field of 80 kOe is about 35 emu/g, and
the IONPs exhibit superparamagnetic properties.

Two strategies have been applied for surface modification of
hydrophobic magnetic IONPs to render them colloidally stable

FIGURE 2 | TEM bright field images of IONPs dried on a grid from a suspension of IONPs in hexane and their corresponding histogram, plotted as the number of

NPs (N) that have a core diameter of dc. (A) IONPs with dc � (6.5 ± 0.98) nm; the scale bar corresponds to 40 nm. (B) IONPs with dc � (14.6 ± 1.5) nm; the scale bar

corresponds to 200 nm. (C) IONPs with dc � (17.6 ± 0.91) nm; the scale bar corresponds to 50 nm.
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in aqueous media. The IONPs were hereby coated with
polymers, either maintaining or replacing the original ligand
shell. An overview of the synthesis strategy is illustrated in
Figure 1. PMA was selected as a model polymer. Maleic
anhydride groups are highly reactive and can be modified
with amine containing functional molecules. This
nucleophilic addition was carried out without needing any
additional reagents, which simplifies the purification steps
and characterization of the prepared product (Wang et al.,
2015). For polymer coating involving replacement of the
original ligands, the polymer was modified with dopamine
(Wang et al., 2014). The ligands of dopamine–PMA–PEG
were characterized by H-NMR spectroscopy. The presence of
methoxy groups, PEG moieties, and catechol groups in the
modified PMA was confirmed by H-NMR analysis. A
multiple peak at 6.32–6.78 ppm, a sharp peak at around
3.3 ppm, and a broad peak at 0.9 ppm are attributed to the
catechol protons of dopamine, PEG, and the methyl group of the
modified PMA, respectively (Figure 3).

All IONPs were transferred from organic solvent to aqueous
solution by polymer coating. Figure 4 shows negative staining
TEM images for IONPs of core diameter dc � 18 nm. Upon
negative staining, apart from the NP coating, also the
organic surface coating is visualized. As it can be seen,
IONPs coated with PMA–DDA and dopamine–PMA–PEG
had core-shell diameters of dcs � 29.65 ± 1.35 and
dcs � 29.85 ± 1.28 nm, respectively, confirming the presence
of the polymeric shell surrounding each IONP. Based on the
negative staining TEM images, both polymer coating techniques
of IONPs with 18 nm core size show a mean diameter around
dcs � 30 nm.

The hydrodynamic diameters (dh) of the different IONPs with
dc � 18 nm were determined with DLS. The “hydro”dynamic
diameter of the initial IONPs before the polymer coating was
determined to be dh � 24.06 nm in toluene. The corresponding
hydrodynamic diameters after the polymer coating were dh � of
28.97 nm and 30.80 nm for the PMA–DDA and
dopamine–PMA–PEG-coated IONPs; see Table 1. The DLS
data indicate that after the polymer coating, the IONPs had
maintained their uniform size with a low polydispersity index
(Table 1). A negative zeta potential of around ζ � -38.4 and
-12.6 mV was determined in water for the PMA–DDA and
dopamine–PMA–PEG-coated IONPs, respectively, using laser
Doppler anemometry (Huḧn et al., 2016).

The PMA–DDA polymer-coated IONPs were also
investigated with agarose gel electrophoresis (Figure 5). Here,
the electrophoretic mobility of the IONPs with different core
diameters dc was investigated. As these IONPs have the same
surface chemistry, retardation in electrophoretic mobility is
associated with increased diameter, which can be seen in
Figure 5 (Pellegrino et al., 2007). The narrow bands on the
polymer-coated IONPs on the gel show that these NPs have
homogenous size and charge distribution (Pellegrino et al., 2004).
Gel electrophoresis is an excellent method to probe colloidal
stability of IONPs (Pellegrino et al., 2007). The buffer has high
ionic strength, and by the applied electric field, the IONPs are
pulled through the pores of the agarose gel, which removes
loosely bound ligands and thus leads to agglomeration. The
data shown in Figure 5 clearly indicate high colloidal stability
of the polymer-coated IONPs. Due to their low charge (i.e., zeta
potential), the dopamine–PMA-PEG-coated IONPs were not
probed by gel electrophoresis.

FIGURE 3 | H-NMR spectra of dopamine–PMA–PEG in DMSO-d6. Multiple peaks at chemical shift δ � 6.32–6.78 ppm and a broad peak at ∼ 0.9 ppm are,

respectively, ascribed to the aromatic protons of catechol and methyl groups in the PMA backbone. The sharp peak at around 3.3 ppm corresponds to the methoxy

groups of PEG (H2N–PEG–OMe).

Frontiers in Nanotechnology | www.frontiersin.org April 2021 | Volume 3 | Article 6447346

Ahmadpoor et al. Surface Coating of Iron Oxide Nanoparticles

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


Colloidal Stability in Physiological
Environments
In various biological applications, NPs are expected to be
exposed to salt- and protein-containing media (Pfeiffer et al.,
2014). We thus examined the colloidal stability of aqueous
dispersions of PMA–DDA and dopamine–PMA–PEG-coated
IONPs in sodium chloride and bovine serum albumin (BSA)
containing media. Measurements of the effective hydrodynamic

diameter were used as a tool to probe the colloidal stability of
IONPs (Hu ̈hn et al., 2016). Loss in colloidal stability hereby is
indicated by agglomeration and thus increased effective
hydrodynamic diameters. As aggregation is time dependent,
the hydrodynamic diameter of IONPs was measured
immediately after exposing the IONPs to NaCl/BSA, and
then measurements were repeated after 24 h incubation time
at room temperature. DLS histograms of the hydrodynamic

FIGURE 4 | TEM images of IONPs after negative staining with uranyl acetate. (A) IONP cores (dc � 17.6 ± 0.91) plus an organic shell of PMA–DDA, resulting in dcs
� 29.65 ± 1.35; the scale bar corresponds to 200 nm. (B) IONP cores (dc � 17.6 ± 0.91) plus an organic shell of dopamine–PMA–PEG, which resulted in dcs � 29.85 ±

1.28; the scale bar is 100 nm.

TABLE 1 | The hydrodynamic diameter dh of 18 nm IONPs as measured by DLS before and after polymer coating. Values were obtained from the intensity distribution (dh,I),

the number distribution (dh,N), and the Z-average (dh,Z). PDI refers to the polydispersity index. Also the mean value of the zeta potential ζ is provided.

Sample Solvent dh,I [nm] dh,N [nm] dh,Z [nm] PDI ζ [mV]

IONP Toluene 31.15 24.06 29.91 0.01 —

IONP@PMA–DDA Water 38.69 28.97 36.77 0.29 −38.4

IONP@dopamine–PMA–PEG Water 59.22 30.80 59.74 0.22 −12.6
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diameters upon exposure to NaCl/BSA are shown in Figure 6.
As colloidal stability of the polymer-coated IONPs was
already demonstrated with gel electrophoresis (Figure 5),
here the DLS studies are limited to the bigger IONPs of dc �
18 nm, as bigger IONPs are more sensitive to agglomeration in

general than smaller IONPs. Salt (here in the form of NaCl) in
the solution screens the electric charge on the surface of the NPs,
thus decreasing the effective surface charge density, resulting in
colloidal instability and aggregation of the NPs, as can be seen
for the PMA–DDA-coated IONPs. As PEG can contribute steric
stabilization, the dopamine–PMA–PEG-coated IONPs are less
affected by the addition of salt, which is in good agreement with
previous studies (Caballero-Díaz et al., 2013). To probe protein
adsorption (Vilanova et al., 2016) on the surface of the polymer-
coated IONPs, we used serum albumin (bovine: BSA) as a model
protein, because serum albumin is the most abundant protein in
blood serum (Huḧn et al., 2013). While the protein corona
depends on the details of the surface chemistry (Guerrini et al.,
2018), here we wanted to probe only colloidal stability. The data
of Figure 6 demonstrate that up to high BSA concentrations,
there was no protein-induced agglomeration of the IONPs
(apart from the PMA–DDA-coated IONPs at the maximum
concentration). Due to limits in the resolution of measuring the
hydrodynamic diameter of the NPs with DLS, the formation of
the protein corona could not be observed as possible with other
techniques (Carril et al., 2017), but the data indicate that, in
particular, the dopamine–PMA–PEG-coated IONPs are
colloidally stable under physiological conditions.

Relaxivity Measurements
To investigate the MR performance of the polymer-coated
IONPs, we carried out longitude relaxivity (r1) and transverse
relaxivity (r2) measurements. Relaxation times Ti and relaxivities
ri are related by

FIGURE 5 | Photographs of an agarose gel on which PMA–DDA-coated

IONPs of dc � 6, 15, and 18 nm had been run for 1 h at 100 V. For this, the

IONP samples had first been mixed with Orang-G-containing loading buffer,

before they had been loaded into a 2% agarose gel. After the application

of voltage, the negatively charged NPs run toward the positive pole.

FIGURE 6 | Hydrodynamic diameter (dh; here, the number distribution dh,N is plotted) of 18 nm IONPs coated with (A,C) PMA–DDA and (B,D) with

dopamine–PMA–PEG, as measured at different concentrations of NaCl and BSA at 0 and 24 h after exposure. In (A), the decrease in dh at high NaCl concentrations at

24 h is due to sedimentation of the NPs, which, in this way, are no longer in the light path of the DLS measurement.
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1
Ti

�

1
Ti,0

+ ri · CFe, (2)

where Ti are the observed relaxation times in the presence of the
contrast agent, Ti,0 is the relaxation time of pure water protons, and
cFe is the concentration of the MRI contrast agent, in this case, iron
(Banerjee et al., 2017). The small IONPs significantly affect the
spin–lattice (T1) relaxation due to the high number of metal ions
on the surface and the spins canting, while the spin–spin (T2)
relaxation is related to proton dephasing by local field
inhomogeneity (Ni et al., 2017). The data clearly show a
dependence of proton relaxivity on particle size (Figure 7). This
size dependence is believed to arise from surface spin anisotropy,
due to the larger surface area–to–volume ratio for smaller IONPs
(Smolensky et al., 2013). Since the larger IONPs have more
effective magnetic relaxation of the water protons around the
NPs, they show higher transverse relaxivity r2. In addition to
the intrinsic material and size-dependent properties of IONPs,
the surface coating is also an important factor for T2 relaxivity (Ni
et al., 2017). According to the quantum mechanical outer-sphere
theory, the T2 relaxivity is described by

1
T2

� (256 · π2
·

c
2

405
) · V*

·

Ms2 · r2

[D · (1 + L
r)], (3)

where V* and Ms are the volume fraction and the magnetic
saturation of the magnetic NPs, respectively, γ is the proton
gyromagnetic ratio, r is the radius of the nanoparticles, D is the
diffusion coefficient of water, and L is the thickness of an
impermeable surface shell on the iron oxide core (Ni et al.,
2017). From our experimental data, we can determine r � dc/2
and L� (dcs - dc)/2. The dependence of r2 from dc (i.e., r) follows the
tendency as given by the formula above: the higher dc, the higher r2.

The dependence from the surface is harder to discuss, in
particular, as it is not known to what degree the polymer shells

are impermeable to water. The hydrophilic coating on the surface
of the IONPs improves their diffusion and should also partly
hinder water molecules to reach the surface of the cores, resulting
in faster T2 relaxation (Zhang et al., 2018). The relaxivity results in
Figure 7 show that dopamine–PMA–PEG-coated IONPs have
higher r2 relaxivity than PMA–DDA-coated IONPs with similar
iron oxide core sizes dc. As mentioned before, at the core size of
dc � 18 nm, the TEM images show no significant difference
between the diameters dcs of IONPs coated with
dopamine–PMA–PEG and PMA–DDA. These results indicate
that the increase in T2 relaxivity can be attributed to the
increased volume of diffusion of water surrounding each NP to
the outer sphere due to the highly hydrophilic nature of PEG in the
dopamine–PMA–PEG coating (Duan et al., 2008; Zhang et al.,
2018). On the other hand, the catechol groups of dopamine are rich
in π-electrons which influence the magnetic field inhomogeneity
around the polymer-coated IONPs and accelerate the r2 relaxivity
of water molecules (Zeng et al., 2014).

When IONPs are smaller than dc � 10 nm, they show dual
T1/T2 imaging, in which T1 enhancement refers to surface effects
on themagnetization andwater/ionmetal center interaction on the
surface of NPs (Bao et al., 2018; Thapa et al., 2018). According to
the inner-outer sphere theory, the exposure of surface iron ions
contributes to the T1 behavior of small IONPs. T1 relaxation of
IONPs arises from direct contact of water protons with the iron
(Bao et al., 2018). Therefore, the T1 signal is very sensitive to
surface-cappingmolecules and their packing density on the surface
of the IONPs. Both the exposure of iron ion centers on the surface
of NPs and the water accessibility affects the T1 performance of
IONPs (Peng et al., 2016; Bao et al., 2018; Xiao et al., 2018).

Our results reveal that, at similar core sizes dc, the r1 relaxivity of
polymer-coated IONPs is dependent on the nature of polymer coating
(Figure 7). In particular, the small IONPs (dc � 6 nm) coated with
dopamine–PMA–PEG show higher r1 relaxivity than the ones coated
with PMA–DDA (Table 2). Dopamine serves as a strong anchor

FIGURE 7 | (A) Longitudinal relaxivity (r1) and (B) transverse relaxivity (r2) as a function of polymer coating and particle size dc of IONPs.

Frontiers in Nanotechnology | www.frontiersin.org April 2021 | Volume 3 | Article 6447349

Ahmadpoor et al. Surface Coating of Iron Oxide Nanoparticles

https://www.frontiersin.org/journals/nanotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/nanotechnology#articles


group to functionalize IONPs. Indeed, the catechol unit in dopamine
exhibits a specific affinity to the surface of IONPs, as a result of
improved orbital overlap of the five-membered catechol ring and
reduced steric effect (Chi et al., 2013; Palui et al., 2015). In
dopamine–PMA–PEG-coated IONPs, the catechol groups of
dopamine are replaced with oleic acid as the original hydrophobic
ligand on the surface of IONPs and provide hydrophilic dispersion of
the NPs. On the other hand, the IONPs can be encapsulated by
amphiphilic PMA–DDA, in which the hydrophobic oleic acid is
wrapped within the polymer layer. Encapsulation of the IONPs is
carried out by hydrophobic interaction between oleic acid and the
dodecylamine groups (Lin et al., 2008). This hydrophobic layer
restricts the access of water protons to the surface of the magnetic
NPs. Hence, IONPs coated with dopamine–PMA–PEG show higher
r1 relaxivity than IONPs coated with PMA–DDA. The r1 relaxivity of
dopamine–PMA–PEG is also higher than the one of Gd-DOTA
(Dotarem®) as a positive contrast agent with 2.7 mM−1s−1 at 3 T. We
note that we focused on our discussion about comparing of r1 and r2.
However, there are also other contrast modalities. For example,
contrast is often discussed in terms of r2/r1 (Lee, 2011). The
respective values for the here investigated IONPs are enlisted in
Table 2.

CONCLUSION

In summary, IONPs of 6, 15, and 18 nm core diameter with a
narrow size distribution were synthesized through thermal
decomposition, followed by polymer coating with/without
replacement of the original ligand shell. Polymer coating of
IONPs with dopamine–PMA–PEG exhibited higher colloidal
stability in NaCl-containing solutions. Furthermore, proton
relaxivity measurements demonstrated high r1 and r2

relaxivities for 6 and 18 nm dopamine–PMA–PEG-coated
IONPs, respectively. Considering the higher colloidal stability
and enhancement of negative and positive contrast of
dopamine–PMA–PEG-coated IONPs with increase in size, this
polymer could be assumed as an efficient candidate for polymer
coating of IONPs as T1 and T2 contrast agents. Thereupon, the
present investigation of r1 and r2 relaxivities of IONPs with
different surface coatings and similar shell sizes helps toward a
reasonable understanding of surface impacts in obtaining high-
performance NPs as MRI contrast agents. While here the focus is
given on the aspect of the influence of the surface coating on
relaxivity, future studies would also have to take into account
other effects of the surface coating, such as different
biocompatibilities and biodistributions.
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