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We study the influence of surface roughness on the adhesion of elastic solids. Most real surfaces
have roughness on many different length scales, and this fact is taken into account in our analysis.
We consider in detail the case when the surface roughness can be described as a self-affine fractal,
and show that when the fractal dimension D f.2.5, the adhesion force may vanish, or be at least
strongly reduced. We consider the block-substrate pull-off force as a function of roughness, and find
a partial detachment transition preceding a full detachment one. The theory is in good qualitative
agreement with experimental data. © 2001 American Institute of Physics.

@DOI: 10.1063/1.1398300#

I. INTRODUCTION

Even a highly polished surface has surface roughness on
many different length scales. When two bodies with nomi-
nally flat surfaces are brought into contact, the area of real
contact will usually only be a small fraction of the nominal
contact area. We can visualize the contact regions as small
areas where asperities from one solid are squeezed against
asperities of the other solid; depending on the conditions the
asperities may deform elastically or plastically.

How large is the area of real contact between a solid
block and the substrate? This fundamental question has ex-
tremely important practical implications. For example, it de-
termines the contact resistivity and the heat transfer between
the solids. It is also of direct importance for sliding friction,1

e.g., the rubber friction between a tire and a road surface, and
it has a major influence on the adhesive force between two
solid blocks in direct contact. One of us has developed a
theory of contact mechanics,2 valid for randomly rough ~e.g.,
self-affine fractal! surfaces, but neglecting adhesion. Adhe-
sion is particularly important for elastically soft solids, e.g.,
rubber or gelatine, where it may pull the two solids in direct
contact over the whole nominal contact area.

In this paper we discuss adhesion for randomly rough
surfaces. We first calculate the block-substrate pull-off force
under the assumption that there is complete contact in the
nominal contact area. We assume that the substrate surface
has roughness on many different length scales, and consider
in detail the case where the surfaces are self-affine fractal.
We also study pull-off when only partial contact occurs in
the nominal contact area.

The influence of surface roughness on the adhesion be-
tween rubber ~or any other elastic solid! and a hard substrate
has been studied in a classic paper by Fuller and Tabor.3

They found that already a relative small surface roughness
can completely remove the adhesion. In order to understand
the experimental data they developed a very simple model
based on the assumption of surface roughness on a single
length scale. In this model the rough surface is modeled by
asperities all of the same radius of curvature and with heights
following a Gaussian distribution. The overall contact force
was obtained by applying the contact theory of Johnson,
Kendall, and Roberts4 ~JKR! to each individual asperity. The
theory predicts that the pull-off force, expressed as a fraction
of the maximum value, depends upon a single parameter,
which may be regarded as representing the statistically aver-
aged competition between the compressive forces exerted by
the higher asperities trying to pry the surfaces apart and the
adhesive forces between the lower asperities trying to hold
the surfaces together. We believe that this picture of adhesion
developed by Tabor and Fuller would be correct if the sur-
faces had roughness on a single length scale as assumed in
their study. However, when roughness occurs on many dif-
ferent length scales, a qualitatively new picture emerges ~see
the following!, where, e.g., the adhesion force may even van-
ish ~or at least be strongly reduced!, if the rough surface can
be described as a self-affine fractal with fractal dimension
D f.2.5. We also note that the formalism used by Fuller and
Tabor is only valid at ‘‘high’’ surface roughness, where the
area of real contact ~and the adhesion force! is very small.
The present theory, on the other hand, is particularly accurate
for ‘‘small’’ surface roughness, where the area of real contact
equals the nominal contact area.

II. QUALITATIVE DISCUSSION

Assume that a uniform stress s acts within a circular
area ~radius R! centered at a point P on the surface of a
semi-infinite elastic body with elastic modulus E , see Fig. 1.
This will give rise to a perpendicular displacement u of P bya!Electronic mail: b.persson@fz-juelich.de
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a distance which is easy to calculate using continuum me-
chanics: u/R's/E . This result can also be derived from
simple dimensional arguments. First, note that u must be
proportional to s since the displacement field is linearly re-
lated to the stress field. However, the only other quantity in
the problem with the same dimension as the stress s is the
elastic modulus E so u must be proportional to s/E . Since R

is in turn the only quantity with the dimension of length we
get at once u;(s/E)R . Thus, if h and l represent perpen-
dicular and parallel roughness length scales, respectively,
then if h/l's/E , the perpendicular pressure s will be just
large enough to deform the rubber to make contact with the
substrate everywhere.

Let us now consider the role of the rubber–substrate
adhesion interaction. When the rubber deforms and fills out a
surface cavity of the substrate, an elastic energy Uel'Elh2

will be stored in the rubber. Now, if this elastic energy is
smaller than the gain in adhesion energy Uad'2Dgl2,
where 2Dg is the local change of surface free energy upon
contact due to the rubber–substrate interaction ~which usu-
ally is mainly of the van der Waals type!, then ~even in the
absence of the load FN! the rubber will deform spontane-

ously to fill out the substrate cavities. The condition Uel5

2Uad gives h/l'(Dg/El)1/2. For example, for very rough
surfaces with h/l'1, and with parameters typical of rubber
E51 MPa and Dg53 meV/Å2, the adhesion interaction
will be able to deform the rubber and completely fill out the
cavities if l,0.1 mm. For very smooth surfaces h/l;0.01
or smaller, so that the rubber will be able to follow the sur-
face roughness profile up to the length scale l;1 mm or
longer.

The above-mentioned discussion assumes roughness on
a single length scale l. But the surfaces or real solids have
roughness on a wide distribution of length scales. Assume,
for example, a self-affine fractal surface. In this case the
statistical properties of the surface are invariant under the
transformation

x→xz , z→zzH,

where x5(x ,y) is the two-dimensional position vector in the
surface plane, and where 0,H,1. This implies that if ha is
the amplitude of the surface roughness on the length scale
la , then the amplitude h of the surface roughness on the
length scale l will be of order

h'ha~l/la!H.

A necessary condition for adhesional-induced complete con-
tact on the length scale l is that Ead.Eel , i.e., Dgl.Eh2,
which gives

Dgl.Eha
2S l

la
D 2H

or

S l

la
D 2H21

,

Dgla

Eha
2 . ~1!

Assume first that H.1/2. In this case, if la,l we get
(l/la)2H21

.1, and condition ~1! gives Dgla /Eha
2
.1.

Thus, adhesion will be important on any length scale la

,l . In particular, if l is the long-distance cutoff length l0
in the self-affine fractal distribution, then complete contact

will occur at the interface. More generally, if l5Eh2/Dg
,l0 , the contact consists of a set of disconnected contact
regions of linear size l; in each such region perfect contact
occurs.

Consider now instead H,1/2. In this case, if la,l we
get (l/la)2H21

,1, and condition ~1! no longer guarantees
that Dgla /Eha

2
.1. In fact, it is easy to show that at short

enough length scale la , Dgla /Eha
2
,1. Thus, without a

short-distance cutoff, adhesion and the area of real contact

will vanish. Hence, in spite of the fact that the contact at first
may seems to be perfect on large scales ~since Dgl.Eh2!,
there is, in fact, no contact at all since Dgla,Eha

2 holds at
short enough length scale la . In reality, a finite short-
distance cutoff will always occur, but this case requires a
more detailed study ~see Sec. III!. Also, in the above-
mentioned analysis we have neglected that the area of real
contact depends on h ~i.e., it is of order l2 only when h/l
!1!. A more accurate analysis follows.

III. INTERFACIAL ELASTIC AND ADHESION
ENERGIES FOR ROUGH SURFACES

Assume that a flat rubber surface is in contact with the
rough surface of a hard solid. Assume that because of the
rubber–substrate adhesion interaction, the rubber deforms
elastically and makes contact with the substrate everywhere,
see Fig. 2.

Let us calculate the difference in free energy between the
rubber block in contact with the substrate and the noncontact
case. Let z5h(x) denote the height of the rough surface
above a flat reference plane ~chosen so that ^h&50). Assume
first that the rubber is in direct contact with the substrate over
the whole nominal contact area. The surface adhesion energy
is assumed proportional to the contact area so that

Uad52DgE d2x@11~¹h~x!!2#1/2

FIG. 1. A uniform stress s, acting within a circular area ~radius R! on the
surface of a semi-infinite elastic medium, gives rise to a displacement u . FIG. 2. The adhesion interaction pulls the rubber into complete contact with

the rough substrate surface.
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'2DgFA01

1

2 E d2x~¹h !2G , ~2!

where we have assumed u¹hu!1. Now, using

h~x!5E d2qh~q!e iq"x

we get

E d2x~¹h !2
5E d2xE d2q d2q8~2q"q8!

3^h~q!h~q8!& e i(q1q8)"x

5~2p !2E d2q q2^h~q!h~2q!&

5A0E d2q q2C~q !, ~3!

where the surface roughness power spectrum is

C~q !5

1

~2p !2 E d2x^h~x!h~0!&e2iq"x, ~4!

where ^ ¯ & stands for ensemble average. Thus, using Eqs.
~2! and ~3!:

Uad'2A0DgF11

1

2 E d2q q2C~q !G . ~5!

Next, let us calculate the elastic energy stored in the
deformation field in the vicinity of the interface. Let uz(x) be
the normal displacement field of the surface of the elastic
solid. We get

Uel'2

1

2 E d2x^uz~x!sz~x!&

52

~2p !2

2 E d2q^uz~q!sz~2q!&. ~6!

Next, we know that5

uz~q!5M zz~q!sz~q!, ~7!

where

M zz~q!52

2~12n2!

Eq
, ~8!

E being the elastic modulus and n the Poisson ratio. If we
assume that complete contact occurs between the solids, then
uz5h(x) and from Eqs. ~4! and ~6!–~8!,

Uel'2

~2p !2

2 E d2q^uz~q!uz~2q!&@M zz~2q!#21

5

A0E

4~12n2!
E d2q qC~q !. ~9!

The change in the free energy when the rubber block
moves in contact with the substrate is given by the sum of
Eqs. ~5! and ~9!:

Uel1Uad52DgeffA0 ,

where

Dgeff5DgF11pE
q0

q1
dq q3C~q !

2

pE

2~12n2!Dg
E

q0

q1
dq q2C~q !G . ~10!

The above-given theory is valid for surfaces with arbi-
trary random roughness, but will now be applied to self-
affine fractal surfaces. It has been found that many ‘‘natural’’
surfaces, e.g., surfaces of many materials generated by frac-
ture, can be approximately described as self-affine surfaces
over a rather wide roughness size region. A self-affine fractal
surface has the property that if we make a scale change that
is appropriately different along the two directions, parallel
and perpendicular, then the surface does not change its
morphology.6 Recent studies have shown that even asphalt
road tracks ~of interest for rubber friction! are ~approxi-
mately! self-affine fractal, with an upper cutoff length l0
52p/q0 of order of a few millimeters.7 For a self affine
fractal surface:6,8 C(q)50 for q,q0 , while for q.q0 :

C~q !5

H

2p
S h0

q0
D 2S q

q0
D 22(H11)

, ~11!

where H532D f ~where the fractal dimension 2,D f,3!,
and where q0 is the lower cutoff wave vector, and h0 is
determined by the rms roughness amplitude, ^h2&5h0

2/2. We
note that C(q) can be measured directly, using many differ-
ent methods, e.g., using stylus instruments or optical
instruments.9

Substituting Eq. ~11! in Eq. ~10! gives

Dgeff

Dg
511

1

2
~q0h0!2g~H !2

Eh0
2q0

4~12n2!Dg
f ~H !, ~12!

where

f ~H !5

H

122H
F S q1

q0
D 122H

21G ,

g~H !5

H

2~12H !
F S q1

q0
D 2(12H)

21G .

If we introduce the length d54(12n2)Dg/E , then Eq. ~12!
takes the form

Dgeff

Dg
511~q0h0!2S 1

2
g~H !2

1

q0d
f ~H ! D . ~13!

In Fig. 3 we show f (H) and g(H) as a function of H . Note
that the present theory is valid only if (q0h0)2g(H)/2,1,
otherwise the expansion of the square-root function in Eq.
~2! is invalid.

Let us emphasize that the present theory is strictly valid
only for purely elastic solids; many real solids ~e.g., most
polymers!10 behave in a viscoelastic manner, and in these
cases Dg may be much larger than in the adiabatic limit, and
the theory presented in this paper is no longer valid. Vis-
coelastic effects may be particularly important for rough sur-
faces, where, during pull off, the roughness introduces fluc-
tuating forces with a wide distribution of frequencies. The
same effect operates during sliding as described in a recent
work on rubber friction.11
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Consider first an elastically very soft solid, e.g., jelly. In
this case, using E'104 Pa and Dg'3 meV/Å2, we get d
'10 mm, and since typically q052p/l0;(10 mm)21 and
g(H)@ f (H), we expect Dgeff.Dg. Thus, for an ~elastically!
very soft solid the adhesion force may increase upon rough-
ening the substrate surface. This effect has been observed
experimentally for rubber in contact with a hard, rough
substrate,12,13 and the present theory explains under exactly
what conditions that will occur ~see the following!.

Note that if the condition g(H)/2. f (H)/(q0d) is satis-
fied, the adhesion force ~for small enough h0! will increase
with increasing amplitude h0 of the surface roughness. We
may define a critical elasticity Ec such that if E,Ec , Dgeff
increases with increasing h0 , while it decreases if E.Ec .
Ec is determined by the condition g(H)/25 f (H)/(q0d),
which gives

Ec52~12n2!Dgq0g~H !/ f ~H !.

This expression for Ec depends on the nature of the surface
roughness via the cutoff wave vector q0 and the fractal ex-
ponent H532D f . These quantities can be obtained from
measurements of the surface roughness power spectra C(q).
Such measurements have not been performed for any of the
systems for which the dependence of the adhesion on the
roughness amplitude h0 has been studied. However,
measurements9 of C(q) for similar surfaces as those used in
the adhesion experiments have shown that typically H'0.8
and l052p/q0'100 mm. For H'0.8, Fig. 3 gives
g(H)/ f (H);100 and with the measured ~for rubber in con-

tact with most hard solids! Dg'3 meV/Å2 we get Ec

'1 MPa. This is in very good agreement with experimental
observations. Thus, Briggs and Briscoe12 observed a strong
roughness-induced increase in the pull-off force for rubber
with the elastic modulus E50.06 MPa, but a negligible in-
crease when E50.5 MPa. Similarly, Fuller and Roberts13 ob-
served an increase in the pull-off force for rubbers with E

50.4, 0.14, and 0.07 MPa, but a continuous decrease for
rubbers with E51.5 and 3.2 MPa. It would be extremely
interesting to perform a detailed test of the theory for sur-
faces for which the surface roughness power spectra C(q)
has been measured.

According to Eq. ~13!, the roughness-induced contribu-
tion to Dgeff scales as ;h0

2. This scaling is exact for the
contribution from elastic deformations ~as long as complete
contact occurs!, but is only valid for small enough h0 for the
adhesion contribution. For large h0 the expansion in Eq. ~2!
is invalid, and one obtains instead

Uad'2DgE d2xu¹h~x!u,

which varies linearly with h0 . Thus, for large enough h0 the
~negative! contribution to Dgeff from the elastic deforma-
tions will always dominate, and this explains why the pull-
off force always decreases for large enough h0 , even when
the elastic modulus of the rubber is very small.12,13 In fact,
we can derive an expression for Dgeff which is approxi-
mately valid also for large h0 , as follows: Let us write Eq.
~2! as ~see Appendix B for the derivation of the exact result!

Uad52DgA0^@11~¹h~x!!2#1/2&

'2DgA0@11^~¹h~x!!2&#1/2,

where

^~¹h~x!!2&5

1

A0
E d2x~¹h~x!!2

52pE
q0

q1
dq q3C~q !.

Thus, for a self-affine fractal surface Eq. ~13! is replaced
with

Dgeff

Dg
'@11~q0h0!2g~H !#1/2

2~q0h0!2
1

q0d
f ~H !. ~14a!

If we denote j5h0q0g1/2 then Eq. ~14a! becomes

Dgeff

Dg
5~11j2!1/2

2

E

2Ec

j2. ~14b!

This function is shown in Fig. 4 for Ec /E51 and 2 ~dashed
lines!. The solid lines in Fig. 4 are obtained using the exact
result derived in Appendix B @see Eq. ~B2!#. If we assume
that the pull-off force is proportional to Dgeff @as expected
for a rubber ball, see Eq. ~21!#, we obtain the h0 dependence
of the pull-off force shown in Fig. 4, which is in good quali-
tative agreement with experiment.13

If it would be possible to prepare surfaces with different
roughness amplitude h0 but constant q0 ~and H!, then it is
easy to prove from Eq. ~14b! that the maximum of Dgeff as a
function of h0 is

FIG. 3. The functions f (H) and g(H) are defined in the text.
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~Dgeff!max5
Dg

2 S E

Ec

1

Ec

E
D .

The maximum occurs for h05hc :

q0hc5g21/2F S Ec

E
D 2

21G1/2

.

Thus if, e.g., Ec /E'10, the maximal pull-off force should
be ;5 times larger than for perfectly smooth surfaces. This
type of enhancement of Dgeff has been deduced from rolling
friction experiments13 using very soft rubbers ~with E

'0.07 MPa!, but the interpretation of the data is complicated
by the fact that the rubber is not perfectly elastic, but rather
exhibit ~rate-dependent! viscoelastic properties.

For most ‘‘normal’’ solids, Dg'Ea , where a is an
atomic distance ~of order ;1 Å! and E the elastic modulus.
Thus, d;a;1 Å and typically 1/q0d;105 so that the ~re-
pulsive! energy stored in the elastic deformation field in the
solids at the interface, and proportional to f (H), largely
overcomes the increase in adhesion energy derived from the
roughness induced increase in the contact area, described by
the term (q0h0)2g(H)/2.

Let us note the following very important fact. Many sol-
ids respond in an elastic manner when exposed to rapid de-
formations, but flow plastically on long enough time scales.
This is clearly the case for non-cross-linked glassy polymers,
but it is also to some extent the case for rubbers with cross
links. The latter materials behave as relative hard solids
when exposed to high-frequency perturbations, while they
deform as soft solids when exposed to low-frequency pertur-
bations. Thus, when such a solid is squeezed rapidly against
a substrate with roughness on many different length scales, a
large amount of elastic energy may initially be stored in the
local ~asperity induced! deformation field at the interface.
However, if the system is left alone ~in the compressed state!
for some time, the local stress distribution at the interface
will decrease ~or relax, because of thermal excitation over
the barriers!, while the area of real contact simultaneously
increases. This will result in an increasing adhesion bond

between the solids, and a decrease in the elastic deformation
energy stored in the solids: both effects will tend to increase
of the pull-off force. ~Note: The elastic energy stored at the
interface during the compression phase is almost entirely
given back during slow pull-off.! Since we use a frequency
independent elastic modulus, such time-dependent effects
are, of course, not taken into account in the analysis pre-
sented previously.

The interfacial free energy is a sum of the adhesive part
Uad , which is proportional to the area of real contact, and the
elastic energy Uel stored in the strain field at the interface. As
long as DU5Uad1Uel,0, a finite pull-off force will be nec-
essary in order to separate the bodies. When the amplitude of
the surface roughness increases, DU will in general increase
and when it reaches zero, the pull-off force vanishes. Sup-
pose now that an elastic slab has been formed between two
solids from a liquid ‘‘glue layer,’’ which has transformed to
the solid state after some hardening time. For example, many
glues consist of polymers which originally are liquid, and
slowly harden, e.g., via the formation of cross bridges. In this
case, if the original liquid wets the solid surfaces, it may
penetrate into all surface irregularities and make intimate
contact with the solid walls, and only thereafter harden to the
solid state. Ideally, this will result in a solid elastic slab in
perfect contact with the solid walls, and without any interfa-

cial elastic energy stored in the system, i.e., with Uel50. ~In
practice, shrinkage stresses may develop in the glue layer,
which will lower the strength of the adhesive joint.! Thus the
last term in the expression for Dgeff vanishes, and Dgeff will
increase with increasing surface roughness in proportion to
the surface area. This will result in an increase in the pull-off
force, but finally the bond breaking may occur inside the
glue film itself,14 rather than at the interface between the glue
film and the solid walls ~see Fig. 5!; from here on no
strengthening of the adhesive bond will result from further
roughening of the confining solid walls.

Thus, the fundamental advantage of using liquidlike
glues ~which harden after some solidification time!, com-
pared to pressure-sensitive adhesives which consist of thin
solid elastic (E'104 – 105 Pa) films, and which develop tack
only when squeezed between the solid surfaces, is that in the
former case no elastic deformation energy is stored at the
interface ~which would be given back during the removal
process and hence reduce the strength of the adhesive bond!,
while this may be the case for the latter type of adhesive,
unless the interfacial stress distribution is able to relax to-
ward the stress-free state ~which requires the absence of
cross links, or such a low concentration of cross links that
‘‘thick’’ liquidlike polymer layers occur at the interfaces!.

If we define

FIG. 4. The effective change in surface energy as a function of the dimen-
sionless parameter h0q0g1/2 for Ec /E51 and 2. The solid lines are obtained
using the exact result given by Eq. ~B2!, while the dashed lines are obtained
using the approximation ~14b!.

FIG. 5. When the interaction between the ‘‘glue’’ film and the substrate is
‘‘strong,’’ the separation may involve internal rupture of the glue film rather
than detachment at the interface.
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a5~q0h0!2g~H !/2, ~15!

u5

Eh0
2q0

4~12n2!Dg
, ~16!

then Eq. ~12! takes the form

Dgeff5Dg~11a2u f ~H !!. ~17!

In what follows we will assume a!1 and neglect the a term
in Eq. ~17!. Note that without a low-distance cutoff ~i.e.,
q1 /q05`!, f (H)5` for H<1/2 and it is clear that in this
limiting case no adhesive interaction will occur independent

of the magnitude of Dg . ~This statement is only strictly true
as long as the attractive interaction responsible for Dg is
assumed to have zero spatial extent.! The physical reason is
that in this case the elastic energy stored in the deformation
fields in the solids will always be larger than the adhesion
energy which is proportional to Dg . Note that for the impor-
tant case H'1/2, and if a!1, Eq. ~17! gives

Dgeff'DgF12

1

2
u lnS q1

q0
D G , ~18!

which ~for q1 /q0@1! is rather insensitive to the actual mag-
nitude of q1 /q0 .

In the above-mentioned study we have compared the
free energies for the case of complete contact between the
rubber and the substrate, with the case when no contact oc-
cur. In reality, for large enough surface roughness the free
energy may be minimal for partial contact. Indeed, the ex-
perimental results of Fuller and Tabor3 suggest this to be the
case ~see Sec. IV!, and in Sec. V we will consider this case in
greater detail.

IV. CONTACT MECHANICS WITH ADHESION:
COMPLETE CONTACT

We consider the simplest possible case, namely a rectan-
gular elastic block with flat surfaces, in contact with a nomi-
nally flat substrate surface. Assume that the block has a
height Lz5L and the bottom surface area A05LxLy . As-
sume that the upper surface of the block is camped in the
perpendicular direction @indicated by the thin ~rigid! black
slab in Fig. 5#, and pulled vertically with the force FN . We
assume that the bond between the block and the substrate
breaks via the propagation of an interfacial crack, which may
nucleate either ~a! at the periphery of the contact area, or ~b!
at some point inside the contact area ~see Fig. 6!. In the
following we will make the simplifying assumption that the
stress in the block far away from the crack is uniaxial, as
would be the case if the elastic film would be able to slide in
the parallel direction. Thus, if the upper clamped surface is
moved upwards with the distance u , then the elastic energy
stored in the block ~in the absence of the crack! is
A0LE(u/L)2/2. Thus, assuming zero surface roughness, we
write the potential energy for the system as ~see Fig. 6!

U52FNu1

1

2
A0LES u

L
D 2

2A0Dg .

Minimizing this expression with respect to u gives

FN5A0Eu/L . ~19!

Now, consider FN.0. The block–substrate bond clearly can-
not break if the elastic energy stored in the block is smaller
than the surface energy A0Dg created when the block–
substrate bond is broken. We expect the bond between the
block and the substrate to break when the elastic energy be-
comes equal to the surface energy, i.e.,

1

2
A0LES u

L
D 2

5A0Dg

or

u5S 2DgL

E
D 1/2

and the pull-off force FN5Fc @from Eq. ~19!#:

Fc5A0S 2DgE

L
D 1/2

. ~20!

The above-used condition to determine the adhesion force
Fc , namely that the elastic energy stored in the block equals
the created surface energy, is only valid if the strain field in
the block is constant ~which is the case in the present simple
geometry, but not in more complex geometries, e.g., when a
ball is squeezed against a flat substrate!. In general, this con-
dition must be replaced with the condition that U is station-
ary as the contact area is varied, i.e., ]U/]A050. We note
that the present theory of adhesion is really a Griffith calcu-
lation in fracture mechanics.15

The free energy minimization calculation performed pre-
viously can be extended to more complicated systems. For
example, when an elastic sphere ~radius R0! is in contact
with a substrate, the pull-off force becomes ~see Appendix A!

Fc5~3p/2!R0Dg . ~21!

This result was first derived by Sperling16 and ~indepen-
dently! by Johnson, Kendall, and Roberts.4 Kendall has re-
ported similar results for other geometries of interest.17

FIG. 6. The block–substrate bond is broken by a crack propagating ~a! from
the periphery of the contact area, or ~b! by a crack which has nucleated
somewhere in the contact area, e.g., at an imperfection. ~c! Definition of the
displacement u .
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Consider now the same problems as previously, but as-
sume that the substrate surface has roughness described by
the function z5h(x). We now study how the adhesion force
is reduced from the ideal value ~20! or ~21! as the amplitude
of the surface roughness is increased. Let us first assume that
the adhesive interaction is so strong that the elastic solid is in
contact with the substrate everywhere. In this case we can
still use result ~20!, but with Dg replaced by Dgeff as given
by Eq. ~13!. Thus if a!1 we get for a rectangular block in
contact with a nominally flat substrate:

Fc5~Fc!max@12u f ~H !#1/2, ~22!

where (Fc)max is given by Eq. ~20!. Similarly, for an elastic
sphere in contact with a nominally flat substrate

Fc5~Fc!max@12u f ~H !# , ~23!

where (Fc)max is given by Eq. ~21!. Note that Fc→0 as
u f (H)→1; when u f (H)51 the elastic energy stored in the
deformation field at the interface equals the surface energy
DgA ~where A is the area of real contact!, and no ‘‘external’’
energy is necessary in order to break the block–substrate
bond. When u f (H).1, the elastic energy stored at the inter-
face is larger than the gain in surface energy which would
result from the direct contact between the block and the sub-
strate; this state is stable only if the solids are squeezed
against each other with an external force.

In Fig. 7 we compare the present theory with the experi-
mental results of Fuller and Tabor for several glass surfaces
with different surface roughness rms amplitude. ~We assume
here, and in what follows, that the roughness parameters H

and q0 are the same for all the different surfaces.! The solid
and dashed lines are theoretical curves for a spherical ball
and for a rectangular block, respectively, assuming complete
contact in the nominal contact area. The agreement between
theory and experiment is good for small rms roughness val-
ues, h0 /hmax,0.2 ~where hmax is the h0 value for which
u f (H)51, i.e., hmax52@(12n2)Dg/Eq0f(H)#1/2!, but for large
h0 the experimental pull-off force falls somewhat below the
theoretical prediction. This may be due to the fact that for
‘‘large’’ surface roughness the free energy is minimal ~when
FN50! for partial rubber–substrate contact, rather than for
complete contact ~or zero contact!, as assumed previously,
see Fig. 8.

In fact, for surface roughness on a single length scale,
e.g., z5h0 cos(q0x), it is easy to convince oneself that there
will be a discontinuous detachment transition from complete
contact to partial contact ~Fig. 9! when the pull-off force ~or
the amplitude of the roughness h0! is increased. This can be
seen directly if we consider a very narrow detached region at
the bottom of a valley as in Fig. 10. We can treat the de-
tached region as a crack of width b . As is well known in that
case15 the stress at the crack edges will be proportional to
(b/r)1/2, where r is the distance away from a crack edge.
Thus, the local stress at a crack tip will increase with the
width b of the crack, so that after nucleation the crack will
expand to a finite size. Thus partial detachment on a single
length scale is a first-order transition. We have performed a
preliminary study18 @for a cos(q0x) profile# which shows that
on increasing the pull-off force ~or increasing h0 at vanishing
external force! the system first ‘‘flips’’ from a state with com-

FIG. 7. The pull-off force, Fc , in units of the maximum pull-off force, as a
function of the surface roughness amplitude h0 . The solid and dashed lines
are theoretical curves for a spherical ball and for a rectangular block, re-
spectively, assuming complete contact in the nominal contact area ~see the
text!. The circles are experimental data from Ref. 3, and the dotted-dashed
line is a guide to the eye.

FIG. 8. For ‘‘large’’ surface roughness the free energy is minimal ~when
FN50! for partial rubber–substrate contact, rather than for complete con-
tact.

FIG. 9. The detachment transition ~schematic!. For small surface roughness,
complete contact occurs in the nominal contact area ~top!, while for large
surface roughness there is a jump to partial contact ~bottom!.

FIG. 10. When the amplitude h0 of the surface roughness, or the pull-off
force FN , is increased beyond a critical value, a discontinuous detachment
transition takes place from a state of complete contact to partial contact. The
transition can be considered as resulting from the nucleation of a crack at the
bottom of the valley, followed by rapid expansion of the crack until it
reaches a width of order ;l/2.
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plete contact to another ‘‘asperity contact’’ state ~Fig. 8!
where the width of the contact region is less than l/2 as
indicated in Fig. 9 ~bottom!.

Real surfaces do, of course, exhibit roughness on many
different length scales, and the relation between the pull-off
force and the center of mass displacement is therefore likely
to be continuous for most systems of practical interest. Nev-
ertheless, during pull-off rapid flip events may take part at
the interface, where the solids first undergo local detachment
in the valleys of the roughness profile, followed at large
enough pull-off force by complete detachment, the asperity
contact areas detaching the last. Because of the long-range
nature of the elastic interaction, one may expect a coopera-
tive behavior of the detachment process, where detachment
in one local area may induce detachment in other interfacial
surface areas. Fuller and Roberts13 have studied the line of
peeling ~crack edge! during pull off ~see also Ref. 19!. For
smooth surfaces the line is straight and peeling occurs uni-
formly. Roughening the counterface makes the line increas-
ingly irregular, and peeling is intermittent, involving short
sections of the front at a time. This mode of behavior indi-
cates variation in the strength of the adhesion over the con-
tact area as a result of the irregularly fluctuating surface
roughness. The exact nature of the detachment process and
its possible collective behavior represents an interesting
problem for future studies.

Fuller and Tabor performed experiments with three dif-
ferent rubbers with very different elastic modulus E . The
dependence of the adhesion on the magnitude of E is in good
agreement with the above-presented theoretical predictions.

V. CONTACT MECHANICS WITH ADHESION:
PARTIAL CONTACT

We will now show that the discrepancy between theory
and experiment for h0 /hmax.0.2 in Fig. 7 is due to rubber–
substrate detachment, which reduces the area of real contact
and the pull-off force for large surface roughness. We assume
again that the rough surface is a self-affine fractal with a long
distance cut-off l052p/q0 . We will refer to the ‘‘asperi-
ties’’ on the length scale l0 as the macroasperities. The mac-
roasperities are covered by shorter wavelength roughness
down to the lower cutoff length l152p/q1 . We assume the
contact between the rubber and the substrate to involve just a
fraction of the macroasperities. We will refer to a contact
region between a macroasperity and the substrate as the ‘‘as-
perity contact area.’’ We now make the basic assumption that
the rubber is in direct contact with the substrate in the asper-
ity contact areas and we will take into account the short-
wavelength surface roughness simply by using the effective
Dgeff introduced previously, where, however, the surface
roughness on the length scale ;l0 , which now is treated
explicitly, has been removed from the surface roughness pro-
file when calculating Dgeff .20 Thus, the present problem re-
duces to the study of Fuller and Tabor, except that we must
replace Dg with Dgeff . Since Dgeff→0 as u f (H)→1 it is
still true that the pull-off force vanishes when u f (H)51.
However the pull-off force before detachment will not be the
same.

Let us consider the case of a rectangular block in contact
with a rough substrate. The potential energy for the system
is:

U52FNu1

1

2
A0LES u2v

L
D 2

1V~v !, ~24!

where u and v are the ~lateral averaged! displacements of the
upper and lower surface of the block ~see Fig. 11!, and the
block–substrate asperity interaction energy is

V5n0A0E
zc

`

dz f~z !Uasp~z2v !. ~25!

n0 is the concentration of macroasperities, Uasp the interac-
tion energy between a substrate asperity and the elastic
block, and zc is the smallest asperity height for which block–
substrate contact occurs. The asperity height distribution
f(z) is assumed to be Gaussian so that21

f~z !5~ph0
2!21/2e2(z/h0)2

. ~26!

The radius r of an asperity contact region can be related to
the compression h5z2v via ~during pull-off, h,0! ~see
Appendix A and Ref. 4!

h̄5 r̄2
2~2 r̄ !1/2. ~27!

Here r5aRr̄ and h5a2Rh̄ , where a5(pDgeff /E*R)1/3

~where Dgeff5Dg@12uf(H)#!, defines the dimensionless
quantities r̄ and h̄ . The energy @see Eq. ~A11!#

Uasp5E*R3a5~ 8
15r̄5

1 r̄2
2

4
3r̄3~2 r̄ !1/2!. ~28!

Substituting Eqs. ~26! and ~28! in Eq. ~25! and defining z

5a2Rz̄ gives

V5n0A0E
z̄c

`

d z̄a2R~ph0
2!21/2e2 z̄2(a2R/h0)2

3E*R3a5S 8

15
r̄5

1 r̄2
2

4

3
r̄3~2 r̄ !1/2D . ~29!

Now, let us change integration variable, from z̄ to r̄ . Using
z̄5 h̄1v/a2R and Eq. ~27! gives

dz̄5dr̄@2 r̄2~2 r̄ !21/2# .

Thus,

FIG. 11. Definition of the displacements u and v .

5604 J. Chem. Phys., Vol. 115, No. 12, 22 September 2001 B. N. J. Persson and E. Tosatti

Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



V5n0A0E
r̄c

`

dr̄@2 r̄2~2 r̄ !21/2#a2R~ph0
2!21/2

3e2[ r̄2
2(2 r̄)1/2

1v/a2R]2(a2R/h0)2

3E*R3a5~ 8
15 r̄5

1 r̄2
2

4
3 r̄3~2 r̄ !1/2!. ~30!

We must now determine r̄c . Under conditions of increasing
negative load, separation of the surfaces occur when
dF/dh50 which implies r̄c5(9/8)1/3. However, under con-
dition of increasing displacement, stable equilibrium prevails
until dF/dh5` , which implies r̄c51/2 ~see Appendix A!.
This latter condition is relevant in the present case. Note that

Q5

a2R

h0
5S pDgeffR

1/2

E*h0
3/2 D 2/3

'S p

4 D 2/3

u22/3@12u f ~H !#2/3, ~31!

where we have assumed that 1/R'q0
2h0 . If we denote r̄

5x for simplicity, then Eq. ~30! gives

V52n0A0DgeffRh0V̄~u ,v/h0!, ~32a!

V̄5ApQ2E
1/2

`

dx@2x2~2x !21/2#e2[Q(x2
2(2x)1/2)1v/h0]2

3~ 8
15 x5

1x2
2

4
3 x3~2x !1/2!. ~32b!

Minimizing Eq. ~24! with respect to u gives

FN5A0E~u2v !/L . ~33!

Similarly, minimization with respect to v gives

A0E
v2u

L
1

dV

dv

50.

Using Eq. ~33! this gives

FN5

dV

dv

. ~34!

Note that FN only depends on u and v/h0 . In Fig. 11 we
show F̄N5h0dV̄(u ,v/h0)/dv as a function of v/h0 for u
50.3 and 0.6 @and with f (H)51#. Fuller and Tabor3 deter-
mined the pull-off force from curves such as in Fig. 12 by
the condition dFN /dv50. However, this is usually not the
correct condition: If the elastic energy in the block becomes
equal to the interfacial energy A0Dgeff before the condition
dFN /dv50 is satisfied, then the pull-off force will be deter-
mined by Uel52Uad . The latter condition is relevant if the
size of the block is large enough ~see the following!, which
will be assumed to be the case in what follows.

The pull-off force is determined by the condition that the
elastic energy stored in the system is just large enough to
break the attractive block–substrate bond. This gives

1

2
A0LES u2v

L
D 2

1V~v !50,

or, using Eq. ~33!,

1

2
A0LES Fc

A0E
D 2

1V~v !50. ~35!

Using Eqs. ~32a!, ~35!, and (Rh0n0)1/2'(n0 /q0
2)1/2'1/2p

gives

Fc'A0S 2DgeffE

L
D 1/2 1

2p
@ V̄~u ,v/h0!#1/2,

or, comparing to Eq. ~20!,

Fc'~Fc!max@12u f ~H !#1/2@ V̄~u ,v/h0!#1/2/2p . ~36!

Using Eqs. ~34! ~with FN5Fc! and ~36! gives an equation
for v/h0 . Now, since Fc;L21/2, in the limit of large L , Fc

will be very small and we can obtain the relevant v/h0 to be
used in V̄(u ,v/h0) in Eq. ~36! by putting FN50 in Eq. ~34!,
i.e., dV/dv50. In Fig. 13 ~dashed line! we show the result-

FIG. 12. The normalized force F̄N5h0 dV̄(u ,v/h0)/dv as a function of the
displacement v ~in units of h0! of the bottom surface of the block. For u
50.3 and 0.6, and with f (H)51.

FIG. 13. Solid line: The relation between the pull-off force and the rough-
ness amplitude, assuming complete contact between the ball and the sub-
strate in the nominal contact area. Dashed line: The relation between Fc and
h0 for partial contact for f (H)51.0. Points are the same experimental data
as Fig. 7.
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ing pull-off force as a function of h0 . Note that there are no
fitting parameters in the theory, and that the calculation is in
good agreement with the experimental trend, especially near
hmax . In fact, the present model calculation is only valid
when the asperity contact area is very small compared to l2

~only then is the JKR theory valid!, i.e., the theory holds
strictly only for h0 close to ~but below! hmax . Thus, it is not
surprising that the experimental reduction in the pull-off
force for h0 well below hmax is somewhat larger than pre-
dicted by the theory. Nonetheless, the overall qualitative
form of detachment-induced pull-off force reduction is in
good agreement with the experimental data.

Let us close this section by discussing the two alterna-
tive pull-off conditions ~a! dFN /dv50 and ~b! Uel52Uad
~or, more generally, ]U tot /]A050). Condition ~a! corresponds
to a uniform ~over the nominal contact area! detachment of
the block–substrate asperity contact areas, while ~b! corre-
sponds to crack propagation, either from the periphery of the
nominal contact area, or from some point ~crack nucleation
center! inside the contact area. As stated earlier, if the block
is big enough, case ~b! will correspond to the smallest pull-
off force, and will hence prevail.

VI. DISCUSSION

Consider an elastic block on a substrate. When the thick-
ness L5Lz of the block increases ~but we assume Lx@Lz

and Ly@Lz!, the pull-off stress Fc /A0 decreases as ;L21/2,
see Eq. ~20!. Thus, for large L the ~average! perpendicular
stress at the block–substrate interface will be very small ~this
is the reason why glue films should be very thin in order to
give a maximal pull-off force22!, and the magnitude of the
surface roughness alone will determine whether the elastic
media is in complete contact with the substrate or only in
partial contact. ~The same is true if instead of a block, an
elastic ball is in contact with the substrate. In this case the
average stress in the contact area at pull-off decreases as
R0

21/3 , with increasing radius R0 of the ball.! Of course,
stress concentration will occur at the crack tip, so that partial
detachment may occur in a small region around the crack tip,
even if complete contact occurs far away from the tip inside
the contact region, see Fig. 14. In the latter case, even if the
crack propagates slowly, at the crack tip rapid flip events
may occur as the individual block–substrate asperity contact
areas are broken. This may lead to large energy dissipation,
as the elastic energy stored in the elongated bridges is lost
during the rapid flip events, and under those circumstances
the pull-off force will be much larger than predicted by Eq.

~20! @or Eq. ~22!#. These rapid flips clearly did not play any
major role in the experiments of Fuller and Tabor, but do
occur in many practical applications involving glues. Usually
the standard theory of crack motion can be used to treat these
more complicated cases, but Dg must now be replaced by
the strain energy release rate G , which is the energy needed
to propagate the crack by one unit area. When only revers-
ible processes occur at the crack tip ~no rapid flip processes!,
G5Dg ~or Dgeff for rough surfaces! but if cavity formation
and fibrillar structures occur, G may be 1000 times ~or more!

larger than Dg . The topic of designing glues exhibiting large
G is of great practical importance.

The region in space where the block–substrate detach-
ment occurs at a crack edge is usually called the crack ‘‘pro-
cess zone’’ ~see Fig. 14!. In some extreme cases the width of
this zone may become comparable to ~or larger than! the
width Lx ~or Ly) of the nominal contact region. In this case it
is no longer correct ~or useful! to think about the block–
substrate bond breaking as involving crack propagation. This
seems to be the case for many practical glues. The theoretical
treatment of these cases cannot be based on the theory of
crack motion, but involves new physics, such as the micro-
scopic site of cavitation ~i.e., the question whether the nucle-
ation occurs right at the interface or in the bulk of the glue
film!, the concentration and spatial distribution of cavities,
and the evolution from cavities to fibrilar structures. These
processes have been intensively studied recently for a flat
probe geometry,23 where a block with a nominal flat surface
is squeezed against a flat substrate covered by a thin ~usually
L'100 mm! polymer film acting as a pressure-sensitive ad-
hesive. After a short contact time the block is removed with
a constant pull-off velocity, and the relation between the
strain and stress is studied as function of time, while snap-
shot pictures show the geometrical evolution of the adhesive
film. It is found that very soft adhesive undergoes cavitation
and fibrillation processes when subjected to a tensile stress.
A slight degree of cross linking is beneficial for the stability
of the fibrils, but excessive cross linking can lead to a pre-
mature failure of the fibrils, therefore significantly reducing
the adhesion energy.

The voids first nucleate in the region which was last
brought in contact with the probe and thereafter relatively
homogeneously over the whole contact area. Nucleation will
take place near the maxima in the pull-off force. The cavities
usually nucleate at the probe/film interface. The fact that
nucleation occurs fairly homogeneously has been interpreted
to imply that the negative hydrostatic pressure is fairly ho-
mogeneous under the probe surface. We do believe this is
indeed correct, but only after the nucleation of the cavities
has started ~see the following!.

Experiments with probe surfaces exhibiting different sur-
face roughness have shown that even when cavitation and
stringing occur, the pull-off force increased significantly
when going from rough probe surfaces to smooth ones.23

This is in accordance with the theory presented earlier. Si-
multaneously, there appeared a striking difference in the
morphology of the de-bonding area. Thus, only the rough
probe ~1.2 mm rms roughness! gave a significant fibrilar
structure. The other probe surfaces ~,0.1 mm rms rough-

FIG. 14. The transition from complete contact to detached area may involve
a region of partial detachment, called the ‘‘process zone.’’
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ness! did not evolve into a fibrilar structure so that, in the
end, the adhesion energies ~the energy to separate the probe
from the substrate! were all quite comparable.

Let us discuss the process of cavity formation. Let us
consider a thin polymer film ~thickness L! between two flat
rigid surfaces. If the polymer is considered as fully incom-
pressible, then the pressure p in the film is approximately14,23

p5pext2EeS r0
2
2r2

L2 D , ~37!

where pext is the external pressure, e5DL/L is the strain and
r0 is the radius of the circular contact region. The average
pressure p̄5pext2Eer0

2/2L2. It is interesting to note that this
pressure distribution is similar to that for an incompressible
fluid ~e.g., a polymer melt without cross links! ~see, e.g.,
Ref. 1!:

p5pext23mėS r0
2
2r2

L2 D , ~38!

where m is the viscosity and ė5L̇/L . In fact, for a periodic
oscillating strain, ė52ive , and defining the complex elas-
tic modulus E(v)52ivm , Eq. ~38! takes the same form as
Eq. ~37! except for a factor of 3. For a ‘‘nearly’’ incompress-
ible material, say with the Poisson ratio n50.49, the pres-
sure distribution becomes much flatter.23 However, the bulk
modulus of polymers is of order 1010 Pa, while the elastic
modulus E'104 Pa ~typical for pressure-sensitive adhesives
at low deformation rate! so that 0.52n'1026; under these
conditions the pressure distribution in the polymer film will
deviate negligibly from that calculated under the assumption
of an perfectly incompressible material. We must therefore
ask why the macroscopic cavities occur uniformly in the
contact area, in spite of the very nonuniform pressure distri-
bution @Eq. ~37!# which occurs before the nucleation. We
believe that the explanation of this puzzle may be related to
detachment, as follows.

First, note that the typical maximal ~average! pressure in
a pull-off experiment23 is of order 0.4 MPa. Using Eq. ~37!
with L5100 mm, r051 cm ~so that r0 /L'100!, and E

5104
2105 Pa gives the true strain e'1023 corresponding

to the displacement DL5eL'0.1 mm. Now, the rms surface
roughness of the probe surface was approximately 1 mm.
Thus, it is clear that if a low concentration of microscopic
local detachments occurs at the interface when the stress is

increased ~see Fig. 9!, then this will locally reduce the stress
in the contact region. If we assume some characteristic stress
~‘‘yield stress’’! in order to induce a local detachment, the
detached areas will be distributed in such a way ~see Fig. 15!
that a nearly uniform stress may arise in the contact region

even before any macroscopic detached regions ~cavities! can
be observed. As the strain is increased further, some of the
microscopic detached areas will grow into macroscopic cavi-
ties. Hence, when the strain becomes so large ~say 0.3! that
~macroscopic! cavities can be observed it is clear that they
must be more or less uniformly distributed in the contact
area. This picture is consistent with the experimental obser-
vation that the cavitation stress is directly related to their
shear modulus rather than their bulk modulus.24

Another mechanism which will also contribute toward
making the stress in the contact area uniform has recently
been suggested by Creton:22 The negative pressure at the
interface will deform the solid walls in such a way ~see Fig.
16! as to make the tensile stress more uniform in the contact
area. It is easy to show that this effect is important also for
elastically stiff materials such as steel. Thus if a constant
pressure acts within a circular region r,r0 on a semi-infinite
elastic media, it will result in a displacement u of the center
of the circular region given by ~see Sec. II! u'(p/E)r0 .
Using the typical values r051 cm and p51 MPa, and as-
suming steel walls so that E'1011 Pa gives u'0.1 mm,
which is just of the right order of magnitude in order to give
a strong reduction in the pressure at the center of the contact
region ~see the previous discussion!. Thus the substrate
bending must be taken into account in any accurate discus-
sion of the pressure distribution in the polymer film during
pull-off. We note that this effect is very similar to the defor-
mations occurring during separation of two bodies squeezed
together in a liquid, where cavity formation ~in the liquid!,25

and elastic deformation of the solid walls have been ob-
served, and also studied theoretically using elastohydrody-
namics.

Finally, let us comment on the influence of ~small! con-
tamination particles ~e.g., dust! on adhesion. It is generally
believed that dusty rubber surfaces provide bad adhesion.
Now, while this is true in most practical situations, one can
imagine cases where it is not true. First, note that the adhe-
sion between two smooth, clean ~identical! rubber surfaces is
in general very good ~see Fig. 17!. Now, if a monolayer ~or
less! of small particles is deposited between the rubber sur-
faces, this may lead to an even larger pull-off force than for
the clean rubber surfaces. This follows from the fact that the
particle–rubber adhesion may be stronger than the rubber–
rubber adhesion @the van der Waals force is proportional to
the polarizability, which is usually larger for hard ~heavy!
solids ~e.g., rock! than for rubbers#. However, if a bilayer ~or
more! of particles occurs between two rubber surfaces, neg-
ligible adhesion is observed, as the separation now occurs at
the particle–particle interface. Similarly, a monolayer of par-

FIG. 15. The external force FN induce detached areas. The concentration of
detached areas is highest in the center of the contact region, where the
tensile stress would be highest in the absence of the detached areas. ~Sche-
matic.!

FIG. 16. Elastic deformation of the substrate walls during pull-off. ~Sche-
matic.!
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ticles at the interface between a hard solid and rubber will
result in negligible adhesion.

VII. SUMMARY AND CONCLUSION

We have studied the influence of surface roughness on
the adhesion of elastic solids. Most real surfaces have rough-
ness on many different length scales, and this fact has been
taken into account in our study. We have considered in detail
the case when the surface roughness can be described by a
self-affine fractal, and shown that when the fractal dimension
D f.2.5, the adhesion force may be strongly reduced. We
studied the behavior of the block–substrate pull-off force as
a function of roughness. For single scale roughness we find a
partial detachment transition before full detachment. Finally
we studied the full detachment transition for the self-affine
fractal surface, and found that total detachment is character-
ized by exactly the same parameter u as in the simpler theory
of Fuller and Tabor. The partial detachment which occurs
before full detachment, however, results in a very substantial
reduction in the pull-off force prior to full detachment. That
is in good qualitative agreement with experimental data.
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APPENDIX A

In this appendix we present, for the reader’s con-
venience, a short derivation of the JKR theory. Consider an
elastic sphere ~radius R! in contact with a rigid flat solid
surface ~see Fig. 18!.

We assume that there is an attractive interaction between
the two solids so that the sphere deforms elastically at the
interface forming a ‘‘neck’’ as indicated in the Fig. 18. Let r0
be the radius of the ~circular! contact area and assume that
h!R , where R2h is the separation between the center of
the sphere and the substrate ~see Fig. 18!. In order for the
deformed elastic sphere to take the shape indicated in Fig.
18, the surface of the sphere must displace as indicated by
the arrows in Fig. 18 and given by the relation

uz5h2R~12cos u !.

FIG. 17. The influence of small particles ~e.g., dust! on adhesion. ~a! The
adhesion between two smooth, clean ~identical! rubber surfaces, or a rubber
surface and a smooth hard substrate, is in general very good. ~b! A mono-
layer ~or less! of small particles between two rubber surfaces may lead to a
pull-off force which is even larger than for the clean rubber surfaces ~see the
text!. ~c! A bilayer ~or more! of particles between two rubber surfaces results
in negligible adhesion. Similarly, a monolayer of particles at the interface
between a hard solid and rubber results in negligible adhesion.

FIG. 18. A rubber ball squeezed against a flat rigid substrate.
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But since R sin u5r we get

cos u5@12~r/R !2#1/2'12r2/2R2

and thus

uz'hS 12

r2

2hR
D , ~A1!

which is valid for 0,r,r0 . Let us now determine the pres-
sure distribution which gives rise to the displacement ~A1!.
Since h!R ~and r0!R! we can determine the pressure dis-
tribution under the assumption that the surface of the sphere
is locally flat. Using the theory of elasticity, it has been
shown that when the surface of a semi-infinite elastic solid is
exposed to the pressure

s5s0S 12

r2

r0
2D 21/2

1s1S 12

r2

r0
2D 1/2

~A2!

for r,r0 , and zero otherwise, then the elastic deformation
field ~for r,r0! becomes ~see, e.g., Ref. 26!

uz5

pr0

E* Fs01

1

2
s1S 12

r2

2r0
2D G , ~A3!

where E*5E/(12n2). Comparing Eq. ~A3! with Eq. ~A1!
gives

s05

E*
p

S h

r0
2

r0

R
D , ~A4!

s15

E*
p

2r0

R
. ~A5!

Let us calculate the elastic energy stored in the deformation
field in the elastic sphere in the vicinity of the substrate. This
can be obtained using the general formula

Uel5
1

2 E d2xs~x!uz~x!, ~A6!

where the integral is over the surface area r,r0 . Substitut-
ing Eqs. ~A2! and ~A3! in Eq. ~A6! gives

Uel5phE
0

r0
dr rFs0S 12

r2

r0
2D 21/2

1s1S 12

r2

r0
2D 1/2G

3S 12

r2

2hR
D .

If we introduce j512r2/r0
2 we get

Uel5
phr0

2

2 E
0

1
dj~s0j21/2

1s1j1/2!F12

r0
2

2hR
~12j !G

5

phr0
2

2 F S 22

r0
2

hR
D S s01

s1

3 D1

r0
2

hR
S s0

3
1

s1

5 D G . ~A7!

Substituting Eqs. ~A4! and ~A5! in Eq. ~A7! gives after some
simplifications

Uel5E*S h2r02

2

3

hr0
3

R
1

1

5

r0
5

R2D .

In order to determine the radius r0 of the contact area, we
must minimize the total energy under the constraint that the

h5const. The total energy is given by the elastic energy plus
the change in the surface energy, 2Dgpr0

2, so that

U tot5E*S h2r02

2

3

hr0
3

R
1

1

5

r0
5

R2D 2Dgpr0
2.

Let us introduce dimensionless variables. If we define a

5(pDg/E*R)1/3 and introduce r05aRr̄0 and h5a2Rh̄

then the total energy takes the form

U tot5E*R3a5~ h̄2r̄02
2
3h̄ r̄0

3
1

1
5r̄0

5
2 r̄0

2!. ~A8!

The force F is given by

F52

]U tot

]h
52

1

a2R

]U tot

] h̄

5E*R2a3S 2 h̄ r̄02

2

3
r̄0

3D . ~A9!

The condition ]U tot /]r̄050 takes the form

~ h̄2 r̄0
2!2

52 r̄0

with the solutions

h̄5 r̄0
2
6~2 r̄0!1/2. ~A10!

The two 6 solutions correspond to different total energies,
and the correct solution is the one which minimizes the total
energy. Substituting Eq. ~A10! in Eq. ~A8! gives

U tot5E*R3a5~ 8
15r̄0

5
1 r̄0

2
6

4
3r̄0

3~2 r̄0!1/2!. ~A11!

Thus the minus sign solution gives the lowest energy.
Under conditions of increasing negative load, separation

of the surfaces occurs when dF/dh50 or, equivalently,
dF/dr050. Using Eqs. ~A9! and ~A10! this gives r̄05 r̄c

5(9/8)1/3 and the pull-off force F52(3p/2)RDg . How-
ever, under condition of increasing displacement, stable equi-
librium prevails until dF/dh5` , which implies dh/dr50
and from Eq. ~A10!, r̄c51/2.

APPENDIX B

In this appendix we present a more accurate treatment of
the averaging of the surface energy term. First note that

^@11~¹h !2#1/2&5E d2w^d~w2¹h !&~11w2!1/2

5

1

~2p !2 E d2wE d2k^e ik"(w2¹h)&

3~11w2!1/2

5

1

~2p !2 E d2wE d2ke ik"w^e2ik"¹h&

3~11w2!1/2.

If we assume, as is usually done, that h(x) is a Gaussian
random variable, then
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^e2ik"¹h&5 K expF2ik"E d2qh~q!~ iq!e iq"xG L
5expF1

2 K S E d2qh~q!~k"q!e iq"xD 2L G
5expF2

1

4
k2E d2q q2C~q !G .

If we denote

a5E d2q q2C~q !,

then

^@11~¹h !2#1/2&5

1

~2p !2 E d2wE d2ke ik"w

3expS 2

1

4
ak2D ~11w2!1/2

5

1

pa
E d2w~11w2!1/2e2w2/a

5

2

a
E

0

`

dw w~11w2!1/2e2w2/a. ~B1!

If we write x5w2/a , Eq. ~B1! gives

^@11~¹h !2#1/2&5E
0

`

dx~11ax !1/2e2x.

For a self-affine fractal surface we have ~see Sec. III! a
5(q0h0)2g(H) and denoting j5q0h0g1/2 gives

Dgeff

Dg
5E

0

`

dx~11j2x !1/2e2x
2

E

2Ec

j2. ~B2!

To quadratic order in j, the formulas ~B2! and ~14b! give the
same result. In the limit E/Ec!1, only j@1 is of interest,
and Eq. ~B2! reduces to

Dgeff

Dg
'jE

0

`

dx x1/2e2x
2

E

2Ec

j2

5S p

4 D 1/2

j2

E

2Ec

j2 ~B3!

to be compared with

Dgeff

Dg
'j2

E

2Ec

j2 ~B4!

as obtained ~in the limit j@1! from the approximate formula
~14b!. From Eq. ~B3!, Dgeff /Dg is maximal for

q0hc5S p

4 D 1/2

g21/2
Ec

E
'0.89g21/2

Ec

E

and

~Dgeff!max5
p

8

Ec

E
Dg'0.39

Ec

E
Dg .

The prefactors 0.89 and 0.39 in the exact theory should be
compared with the prediction 1 and 0.5, which follows from
the simpler theory @Eqs. ~14b! and ~B4!#.
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