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The effect of surface roughness on the adhesion of elastic solids
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We study the influence of surface roughness on the adhesion of elastic solids. Most real surfaces
have roughness on many different length scales, and this fact is taken into account in our analysis.
We consider in detail the case when the surface roughness can be described as a self-affine fractal,
and show that when the fractal dimensionD f.2.5, the adhesion force may vanish, or be at least
strongly reduced. We consider the block-substrate pull-off force as a function of roughness, and find
a partial detachment transition preceding a full detachment one. The theory is in good qualitative
agreement with experimental data. ©2001 American Institute of Physics.
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I. INTRODUCTION

Even a highly polished surface has surface roughnes
many different length scales. When two bodies with nom
nally flat surfaces are brought into contact, the area of
contact will usually only be a small fraction of the nomin
contact area. We can visualize the contact regions as s
areas where asperities from one solid are squeezed ag
asperities of the other solid; depending on the conditions
asperities may deform elastically or plastically.

How large is the area ofreal contact between a solid
block and the substrate? This fundamental question has
tremely important practical implications. For example, it d
termines the contact resistivity and the heat transfer betw
the solids. It is also of direct importance for sliding friction1

e.g., the rubber friction between a tire and a road surface,
it has a major influence on the adhesive force between
solid blocks in direct contact. One of us has develope
theory of contact mechanics,2 valid for randomly rough~e.g.,
self-affine fractal! surfaces, but neglecting adhesion. Adh
sion is particularly important for elastically soft solids, e.
rubber or gelatine, where it may pull the two solids in dire
contact over the whole nominal contact area.

In this paper we discuss adhesion for randomly rou
surfaces. We first calculate the block-substrate pull-off fo
under the assumption that there is complete contact in
nominal contact area. We assume that the substrate su
has roughness on many different length scales, and con
in detail the case where the surfaces are self-affine fra
We also study pull-off when only partial contact occurs
the nominal contact area.

The influence of surface roughness on the adhesion
tween rubber~or any other elastic solid! and a hard substrat
has been studied in a classic paper by Fuller and Tab3

a!Electronic mail: b.persson@fz-juelich.de
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They found that already a relative small surface roughn
can completely remove the adhesion. In order to underst
the experimental data they developed a very simple mo
based on the assumption of surface roughness on a s
length scale. In this model the rough surface is modeled
asperities all of the same radius of curvature and with heig
following a Gaussian distribution. The overall contact for
was obtained by applying the contact theory of Johns
Kendall, and Roberts4 ~JKR! to each individual asperity. The
theory predicts that the pull-off force, expressed as a frac
of the maximum value, depends upon a single parame
which may be regarded as representing the statistically a
aged competition between the compressive forces exerte
the higher asperities trying to pry the surfaces apart and
adhesive forces between the lower asperities trying to h
the surfaces together. We believe that this picture of adhe
developed by Tabor and Fuller would be correctif the sur-
faces had roughness on a single length scale as assum
their study. However, when roughness occurs on many
ferent length scales, a qualitatively new picture emerges~see
the following!, where, e.g., the adhesion force may even v
ish ~or at least be strongly reduced!, if the rough surface can
be described as a self-affine fractal with fractal dimens
D f.2.5. We also note that the formalism used by Fuller a
Tabor is only valid at ‘‘high’’ surface roughness, where th
area of real contact~and the adhesion force! is very small.
The present theory, on the other hand, is particularly accu
for ‘‘small’’ surface roughness, where the area of real cont
equals the nominal contact area.

II. QUALITATIVE DISCUSSION

Assume that a uniform stresss acts within a circular
area ~radius R! centered at a pointP on the surface of a
semi-infinite elastic body with elastic modulusE, see Fig. 1.
This will give rise to a perpendicular displacementu of P by
7 © 2001 American Institute of Physics
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a distance which is easy to calculate using continuum
chanics:u/R's/E. This result can also be derived from
simple dimensional arguments. First, note thatu must be
proportional tos since the displacement field is linearly r
lated to the stress field. However, the only other quantity
the problem with the same dimension as the stresss is the
elastic modulusE sou must be proportional tos/E. SinceR
is in turn the only quantity with the dimension of length w
get at onceu;(s/E)R. Thus, if h andl represent perpen
dicular and parallel roughness length scales, respectiv
then if h/l's/E, the perpendicular pressures will be just
large enough to deform the rubber to make contact with
substrate everywhere.

Let us now consider the role of the rubber–substr
adhesion interaction. When the rubber deforms and fills o
surface cavity of the substrate, an elastic energyUel'Elh2

will be stored in the rubber. Now, if this elastic energy
smaller than the gain in adhesion energyUad'2Dgl2,
where2Dg is the local change of surface free energy up
contact due to the rubber–substrate interaction~which usu-
ally is mainly of the van der Waals type!, then ~even in the
absence of the loadFN! the rubber will deformspontane-
ously to fill out the substrate cavities. The conditionUel5
2Uad givesh/l'(Dg/El)1/2. For example, for very rough
surfaces withh/l'1, and with parameters typical of rubbe
E51 MPa and Dg53 meV/Å2, the adhesion interaction
will be able to deform the rubber and completely fill out t
cavities if l,0.1mm. For very smooth surfacesh/l;0.01
or smaller, so that the rubber will be able to follow the s
face roughness profile up to the length scalel;1 mm or
longer.

The above-mentioned discussion assumes roughnes
a single length scalel. But the surfaces or real solids hav
roughness on a wide distribution of length scales. Assu
for example, a self-affine fractal surface. In this case
statistical properties of the surface are invariant under
transformation

x→xz, z→zzH,

wherex5(x,y) is the two-dimensional position vector in th
surface plane, and where 0,H,1. This implies that ifha is
the amplitude of the surface roughness on the length s
la , then the amplitudeh of the surface roughness on th
length scalel will be of order

h'ha~l/la!H.

A necessary condition for adhesional-induced complete c
tact on the length scalel is thatEad.Eel , i.e., Dgl.Eh2,
which gives

FIG. 1. A uniform stresss, acting within a circular area~radiusR! on the
surface of a semi-infinite elastic medium, gives rise to a displacementu.
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Dgl.Eha
2S l

la
D 2H

or

S l

la
D 2H21

,
Dgla

Eha
2 . ~1!

Assume first thatH.1/2. In this case, ifla,l we get
(l/la)2H21.1, and condition ~1! gives Dgla /Eha

2.1.
Thus, adhesion will be important on any length scalela

,l. In particular, ifl is the long-distance cutoff lengthl0

in the self-affine fractal distribution, thencomplete contact
will occur at the interface. More generally, ifl5Eh2/Dg
,l0 , the contact consists of a set of disconnected con
regions of linear sizel; in each such region perfect conta
occurs.

Consider now insteadH,1/2. In this case, ifla,l we
get (l/la)2H21,1, and condition~1! no longer guarantee
that Dgla /Eha

2.1. In fact, it is easy to show that at sho
enough length scalela , Dgla /Eha

2,1. Thus, without a
short-distance cutoff,adhesion and the area of real conta
will vanish. Hence, in spite of the fact that the contact at fi
may seems to be perfect on large scales~sinceDgl.Eh2!,
there is, in fact, no contact at all sinceDgla,Eha

2 holds at
short enough length scalela . In reality, a finite short-
distance cutoff will always occur, but this case requires
more detailed study~see Sec. III!. Also, in the above-
mentioned analysis we have neglected that the area of
contact depends onh ~i.e., it is of orderl2 only whenh/l
!1!. A more accurate analysis follows.

III. INTERFACIAL ELASTIC AND ADHESION
ENERGIES FOR ROUGH SURFACES

Assume that a flat rubber surface is in contact with
rough surface of a hard solid. Assume that because of
rubber–substrate adhesion interaction, the rubber defo
elastically and makes contact with the substrate everywh
see Fig. 2.

Let us calculate the difference in free energy between
rubber block in contact with the substrate and the noncon
case. Letz5h(x) denote the height of the rough surfac
above a flat reference plane~chosen so that̂h&50). Assume
first that the rubber is in direct contact with the substrate o
the whole nominal contact area. The surface adhesion en
is assumed proportional to the contact area so that

Uad52DgE d2x@11~¹h~x!!2#1/2

FIG. 2. The adhesion interaction pulls the rubber into complete contact
the rough substrate surface.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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'2DgFA01
1

2 E d2x~¹h!2G , ~2!

where we have assumedu¹hu!1. Now, using

h~x!5E d2qh~q!eiq"x

we get

E d2x~¹h!25E d2xE d2q d2q8~2q"q8!

3^h~q!h~q8!& ei (q1q8)"x

5~2p!2E d2q q2^h~q!h~2q!&

5A0E d2q q2C~q!, ~3!

where the surface roughness power spectrum is

C~q!5
1

~2p!2 E d2x^h~x!h~0!&e2 iq"x, ~4!

where^ ¯ & stands for ensemble average. Thus, using E
~2! and ~3!:

Uad'2A0DgF11
1

2 E d2q q2C~q!G . ~5!

Next, let us calculate the elastic energy stored in
deformation field in the vicinity of the interface. Letuz(x) be
the normal displacement field of the surface of the ela
solid. We get

Uel'2
1

2 E d2x^uz~x!sz~x!&

52
~2p!2

2 E d2q^uz~q!sz~2q!&. ~6!

Next, we know that5

uz~q!5Mzz~q!sz~q!, ~7!

where

Mzz~q!52
2~12n2!

Eq
, ~8!

E being the elastic modulus andn the Poisson ratio. If we
assume that complete contact occurs between the solids,
uz5h(x) and from Eqs.~4! and ~6!–~8!,

Uel'2
~2p!2

2 E d2q^uz~q!uz~2q!&@Mzz~2q!#21

5
A0E

4~12n2!
E d2q qC~q!. ~9!

The change in the free energy when the rubber bl
moves in contact with the substrate is given by the sum
Eqs.~5! and ~9!:

Uel1Uad52DgeffA0 ,

where
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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Dgeff5DgF11pE
q0

q1
dq q3C~q!

2
pE

2~12n2!Dg E
q0

q1
dq q2C~q!G . ~10!

The above-given theory is valid for surfaces with arb
trary random roughness, but will now be applied to se
affine fractal surfaces. It has been found that many ‘‘natur
surfaces, e.g., surfaces of many materials generated by
ture, can be approximately described as self-affine surfa
over a rather wide roughness size region. A self-affine fra
surface has the property that if we make a scale change
is appropriately different along the two directions, paral
and perpendicular, then the surface does not change
morphology.6 Recent studies have shown that even asp
road tracks~of interest for rubber friction! are ~approxi-
mately! self-affine fractal, with an upper cutoff lengthl0

52p/q0 of order of a few millimeters.7 For a self affine
fractal surface:6,8 C(q)50 for q,q0 , while for q.q0 :

C~q!5
H

2p S h0

q0
D 2S q

q0
D 22(H11)

, ~11!

whereH532D f ~where the fractal dimension 2,D f,3!,
and whereq0 is the lower cutoff wave vector, andh0 is
determined by the rms roughness amplitude,^h2&5h0

2/2. We
note thatC(q) can be measured directly, using many diffe
ent methods, e.g., using stylus instruments or opt
instruments.9

Substituting Eq.~11! in Eq. ~10! gives

Dgeff

Dg
511

1

2
~q0h0!2g~H !2

Eh0
2q0

4~12n2!Dg
f ~H !, ~12!

where

f ~H !5
H

122H F S q1

q0
D 122H

21G ,
g~H !5

H

2~12H ! F S q1

q0
D 2(12H)

21G .
If we introduce the lengthd54(12n2)Dg/E, then Eq.~12!
takes the form

Dgeff

Dg
511~q0h0!2S 1

2
g~H !2

1

q0d
f ~H ! D . ~13!

In Fig. 3 we showf (H) andg(H) as a function ofH. Note
that the present theory is valid only if (q0h0)2g(H)/2,1,
otherwise the expansion of the square-root function in
~2! is invalid.

Let us emphasize that the present theory is strictly va
only for purely elastic solids; many real solids~e.g., most
polymers!10 behave in a viscoelastic manner, and in the
casesDg may be much larger than in the adiabatic limit, a
the theory presented in this paper is no longer valid. V
coelastic effects may be particularly important for rough s
faces, where, during pull off, the roughness introduces fl
tuating forces with a wide distribution of frequencies. T
same effect operates during sliding as described in a re
work on rubber friction.11
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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Consider first an elastically very soft solid, e.g., jelly.
this case, usingE'104 Pa andDg'3 meV/Å2, we getd
'10mm, and since typicallyq052p/l0;(10mm)21 and
g(H)@ f (H), we expectDgeff.Dg. Thus, for an~elastically!
very soft solid the adhesion force may increase upon rou
ening the substrate surface. This effect has been obse
experimentally for rubber in contact with a hard, rou
substrate,12,13 and the present theory explains under exac
what conditions that will occur~see the following!.

Note that if the conditiong(H)/2. f (H)/(q0d) is satis-
fied, the adhesion force~for small enoughh0! will increase
with increasing amplitudeh0 of the surface roughness. W
may define a critical elasticityEc such that ifE,Ec , Dgeff

increases with increasingh0 , while it decreases ifE.Ec .
Ec is determined by the conditiong(H)/25 f (H)/(q0d),
which gives

Ec52~12n2!Dgq0g~H !/ f ~H !.

This expression forEc depends on the nature of the surfa
roughness via the cutoff wave vectorq0 and the fractal ex-
ponentH532D f . These quantities can be obtained fro
measurements of the surface roughness power spectraC(q).
Such measurements have not been performed for any o
systems for which the dependence of the adhesion on
roughness amplitudeh0 has been studied. Howeve
measurements9 of C(q) for similar surfaces as those used
the adhesion experiments have shown that typicallyH'0.8
and l052p/q0'100mm. For H'0.8, Fig. 3 gives
g(H)/ f (H);100 and with the measured~for rubber in con-

FIG. 3. The functionsf (H) andg(H) are defined in the text.
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tact with most hard solids! Dg'3 meV/Å2 we get Ec

'1 MPa. This is in very good agreement with experimen
observations. Thus, Briggs and Briscoe12 observed a strong
roughness-induced increase in the pull-off force for rub
with the elastic modulusE50.06 MPa, but a negligible in-
crease whenE50.5 MPa. Similarly, Fuller and Roberts13 ob-
served an increase in the pull-off force for rubbers withE
50.4, 0.14, and 0.07 MPa, but a continuous decrease
rubbers withE51.5 and 3.2 MPa. It would be extremel
interesting to perform a detailed test of the theory for s
faces for which the surface roughness power spectraC(q)
has been measured.

According to Eq.~13!, the roughness-induced contribu
tion to Dgeff scales as;h0

2. This scaling is exact for the
contribution from elastic deformations~as long as complete
contact occurs!, but is only valid for small enoughh0 for the
adhesion contribution. For largeh0 the expansion in Eq.~2!
is invalid, and one obtains instead

Uad'2DgE d2xu¹h~x!u,

which varies linearly withh0 . Thus, for large enoughh0 the
~negative! contribution to Dgeff from the elastic deforma-
tions will always dominate, and this explains why the pu
off force always decreases for large enoughh0 , even when
the elastic modulus of the rubber is very small.12,13 In fact,
we can derive an expression forDgeff which is approxi-
mately valid also for largeh0 , as follows: Let us write Eq.
~2! as~see Appendix B for the derivation of the exact resu!

Uad52DgA0^@11~¹h~x!!2#1/2&

'2DgA0@11^~¹h~x!!2&#1/2,

where

^~¹h~x!!2&5
1

A0
E d2x~¹h~x!!252pE

q0

q1
dq q3C~q!.

Thus, for a self-affine fractal surface Eq.~13! is replaced
with

Dgeff

Dg
'@11~q0h0!2g~H !#1/22~q0h0!2

1

q0d
f ~H !. ~14a!

If we denotej5h0q0g1/2 then Eq.~14a! becomes

Dgeff

Dg
5~11j2!1/22

E

2Ec
j2. ~14b!

This function is shown in Fig. 4 forEc /E51 and 2~dashed
lines!. The solid lines in Fig. 4 are obtained using the ex
result derived in Appendix B@see Eq.~B2!#. If we assume
that the pull-off force is proportional toDgeff @as expected
for a rubber ball, see Eq.~21!#, we obtain theh0 dependence
of the pull-off force shown in Fig. 4, which is in good qual
tative agreement with experiment.13

If it would be possible to prepare surfaces with differe
roughness amplitudeh0 but constantq0 ~and H!, then it is
easy to prove from Eq.~14b! that the maximum ofDgeff as a
function of h0 is
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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~Dgeff!max5
Dg

2 S E

Ec
1

Ec

E D .

The maximum occurs forh05hc :

q0hc5g21/2F S Ec

E D 2

21G1/2

.

Thus if, e.g.,Ec /E'10, the maximal pull-off force should
be ;5 times larger than for perfectly smooth surfaces. T
type of enhancement ofDgeff has been deduced from rollin
friction experiments13 using very soft rubbers~with E
'0.07 MPa!, but the interpretation of the data is complicat
by the fact that the rubber is not perfectly elastic, but rat
exhibit ~rate-dependent! viscoelastic properties.

For most ‘‘normal’’ solids, Dg'Ea, where a is an
atomic distance~of order;1 Å! andE the elastic modulus
Thus, d;a;1 Å and typically 1/q0d;105 so that the~re-
pulsive! energy stored in the elastic deformation field in t
solids at the interface, and proportional tof (H), largely
overcomes the increase in adhesion energy derived from
roughness induced increase in the contact area, describe
the term (q0h0)2g(H)/2.

Let us note the following very important fact. Many so
ids respond in an elastic manner when exposed to rapid
formations, but flow plastically on long enough time scal
This is clearly the case for non-cross-linked glassy polym
but it is also to some extent the case for rubbers with cr
links. The latter materials behave as relative hard so
when exposed to high-frequency perturbations, while th
deform as soft solids when exposed to low-frequency per
bations. Thus, when such a solid is squeezed rapidly aga
a substrate with roughness on many different length scale
large amount of elastic energy may initially be stored in
local ~asperity induced! deformation field at the interface
However, if the system is left alone~in the compressed state!
for some time, the local stress distribution at the interfa
will decrease~or relax, because of thermal excitation ov
the barriers!, while the area of real contact simultaneous
increases. This will result in an increasing adhesion bo

FIG. 4. The effective change in surface energy as a function of the dim
sionless parameterh0q0g1/2 for Ec /E51 and 2. The solid lines are obtaine
using the exact result given by Eq.~B2!, while the dashed lines are obtaine
using the approximation~14b!.
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between the solids, and a decrease in the elastic deforma
energy stored in the solids: both effects will tend to increa
of the pull-off force.~Note: The elastic energy stored at th
interface during the compression phase is almost enti
given back during slow pull-off.! Since we use a frequenc
independent elastic modulus, such time-dependent eff
are, of course, not taken into account in the analysis p
sented previously.

The interfacial free energy is a sum of the adhesive p
Uad, which is proportional to the area of real contact, and
elastic energyUel stored in the strain field at the interface. A
long asDU5Uad1Uel,0, a finite pull-off force will be nec-
essary in order to separate the bodies. When the amplitud
the surface roughness increases,DU will in general increase
and when it reaches zero, the pull-off force vanishes. S
pose now that an elastic slab has been formed between
solids from a liquid ‘‘glue layer,’’ which has transformed t
the solid state after some hardening time. For example, m
glues consist of polymers which originally are liquid, an
slowly harden, e.g., via the formation of cross bridges. In t
case, if the original liquid wets the solid surfaces, it m
penetrate into all surface irregularities and make intim
contact with the solid walls, and only thereafter harden to
solid state. Ideally, this will result in a solid elastic slab
perfect contact with the solid walls, andwithout any interfa-
cial elastic energy stored in the system, i.e., withUel50. ~In
practice, shrinkage stresses may develop in the glue la
which will lower the strength of the adhesive joint.! Thus the
last term in the expression forDgeff vanishes, andDgeff will
increase with increasing surface roughness in proportion
the surface area. This will result in an increase in the pull-
force, but finally the bond breaking may occur inside t
glue film itself,14 rather than at the interface between the g
film and the solid walls~see Fig. 5!; from here on no
strengthening of the adhesive bond will result from furth
roughening of the confining solid walls.

Thus, the fundamental advantage of using liquidli
glues ~which harden after some solidification time!, com-
pared to pressure-sensitive adhesives which consist of
solid elastic (E'104– 105 Pa) films, and which develop tac
only when squeezed between the solid surfaces, is that in
former case no elastic deformation energy is stored at
interface ~which would be given back during the remov
process and hence reduce the strength of the adhesive b!,
while this may be the case for the latter type of adhesi
unless the interfacial stress distribution is able to relax
ward the stress-free state~which requires the absence o
cross links, or such a low concentration of cross links t
‘‘thick’’ liquidlike polymer layers occur at the interfaces!.

If we define

n-

FIG. 5. When the interaction between the ‘‘glue’’ film and the substrate
‘‘strong,’’ the separation may involve internal rupture of the glue film rath
than detachment at the interface.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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a5~q0h0!2g~H !/2, ~15!

u5
Eh0

2q0

4~12n2!Dg
, ~16!

then Eq.~12! takes the form

Dgeff5Dg~11a2u f ~H !!. ~17!

In what follows we will assumea!1 and neglect thea term
in Eq. ~17!. Note that without a low-distance cutoff~i.e.,
q1 /q05`!, f (H)5` for H<1/2 and it is clear that in this
limiting case no adhesive interaction will occurindependent
of the magnitude ofDg. ~This statement is only strictly true
as long as the attractive interaction responsible forDg is
assumed to have zero spatial extent.! The physical reason is
that in this case the elastic energy stored in the deforma
fields in the solids will always be larger than the adhes
energy which is proportional toDg. Note that for the impor-
tant caseH'1/2, and ifa!1, Eq. ~17! gives

Dgeff'DgF12
1

2
u lnS q1

q0
D G , ~18!

which ~for q1 /q0@1! is rather insensitive to the actual ma
nitude ofq1 /q0 .

In the above-mentioned study we have compared
free energies for the case of complete contact between
rubber and the substrate, with the case when no contac
cur. In reality, for large enough surface roughness the
energy may be minimal for partial contact. Indeed, the
perimental results of Fuller and Tabor3 suggest this to be the
case~see Sec. IV!, and in Sec. V we will consider this case
greater detail.

IV. CONTACT MECHANICS WITH ADHESION:
COMPLETE CONTACT

We consider the simplest possible case, namely a rec
gular elastic block with flat surfaces, in contact with a nom
nally flat substrate surface. Assume that the block ha
height Lz5L and the bottom surface areaA05LxLy . As-
sume that the upper surface of the block is camped in
perpendicular direction@indicated by the thin~rigid! black
slab in Fig. 5#, and pulled vertically with the forceFN . We
assume that the bond between the block and the subs
breaks via the propagation of an interfacial crack, which m
nucleate either~a! at the periphery of the contact area, or~b!
at some point inside the contact area~see Fig. 6!. In the
following we will make the simplifying assumption that th
stress in the block far away from the crack is uniaxial,
would be the case if the elastic film would be able to slide
the parallel direction. Thus, if the upper clamped surface
moved upwards with the distanceu, then the elastic energ
stored in the block ~in the absence of the crack! is
A0LE(u/L)2/2. Thus, assuming zero surface roughness,
write the potential energy for the system as~see Fig. 6!

U52FNu1
1

2
A0LES u

L D 2

2A0Dg.

Minimizing this expression with respect tou gives
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FN5A0Eu/L. ~19!

Now, considerFN.0. The block–substrate bond clearly ca
not break if the elastic energy stored in the block is sma
than the surface energyA0Dg created when the block–
substrate bond is broken. We expect the bond between
block and the substrate to break when the elastic energy
comes equal to the surface energy, i.e.,

1

2
A0LES u

L D 2

5A0Dg

or

u5S 2DgL

E D 1/2

and the pull-off forceFN5Fc @from Eq. ~19!#:

Fc5A0S 2DgE

L D 1/2

. ~20!

The above-used condition to determine the adhesion fo
Fc , namely that the elastic energy stored in the block equ
the created surface energy, is only valid if the strain field
the block is constant~which is the case in the present simp
geometry, but not in more complex geometries, e.g., whe
ball is squeezed against a flat substrate!. In general, this con-
dition must be replaced with the condition thatU is station-
ary as the contact area is varied, i.e.,]U/]A050. We note
that the present theory of adhesion is really a Griffith cal
lation in fracture mechanics.15

The free energy minimization calculation performed p
viously can be extended to more complicated systems.
example, when an elastic sphere~radius R0! is in contact
with a substrate, the pull-off force becomes~see Appendix A!

Fc5~3p/2!R0Dg. ~21!

This result was first derived by Sperling16 and ~indepen-
dently! by Johnson, Kendall, and Roberts.4 Kendall has re-
ported similar results for other geometries of interest.17

FIG. 6. The block–substrate bond is broken by a crack propagating~a! from
the periphery of the contact area, or~b! by a crack which has nucleate
somewhere in the contact area, e.g., at an imperfection.~c! Definition of the
displacementu.
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Consider now the same problems as previously, but
sume that the substrate surface has roughness describ
the functionz5h(x). We now study how the adhesion forc
is reduced from the ideal value~20! or ~21! as the amplitude
of the surface roughness is increased. Let us first assume
the adhesive interaction is so strong that the elastic solid
contact with the substrate everywhere. In this case we
still use result~20!, but with Dg replaced byDgeff as given
by Eq. ~13!. Thus if a!1 we get for a rectangular block i
contact with a nominally flat substrate:

Fc5~Fc!max@12u f ~H !#1/2, ~22!

where (Fc)max is given by Eq.~20!. Similarly, for an elastic
sphere in contact with a nominally flat substrate

Fc5~Fc!max@12u f ~H !#, ~23!

where (Fc)max is given by Eq.~21!. Note thatFc→0 as
u f (H)→1; whenu f (H)51 the elastic energy stored in th
deformation field at the interface equals the surface ene
DgA ~whereA is the area of real contact!, and no ‘‘external’’
energy is necessary in order to break the block–subs
bond. Whenu f (H).1, the elastic energy stored at the inte
face is larger than the gain in surface energy which wo
result from the direct contact between the block and the s
strate; this state is stable only if the solids are squee
against each other with an external force.

In Fig. 7 we compare the present theory with the expe
mental results of Fuller and Tabor for several glass surfa
with different surface roughness rms amplitude.~We assume
here, and in what follows, that the roughness parameterH

FIG. 7. The pull-off force,Fc , in units of the maximum pull-off force, as a
function of the surface roughness amplitudeh0 . The solid and dashed line
are theoretical curves for a spherical ball and for a rectangular block
spectively, assuming complete contact in the nominal contact area~see the
text!. The circles are experimental data from Ref. 3, and the dotted-da
line is a guide to the eye.

FIG. 8. For ‘‘large’’ surface roughness the free energy is minimal~when
FN50! for partial rubber–substrate contact, rather than for complete c
tact.
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andq0 are the same for all the different surfaces.! The solid
and dashed lines are theoretical curves for a spherical
and for a rectangular block, respectively, assuming comp
contact in the nominal contact area. The agreement betw
theory and experiment is good for small rms roughness
ues, h0 /hmax,0.2 ~where hmax is the h0 value for which
u f (H)51, i.e.,hmax52@(12n2)Dg/Eq0f(H)#1/2!, but for large
h0 the experimental pull-off force falls somewhat below t
theoretical prediction. This may be due to the fact that
‘‘large’’ surface roughness the free energy is minimal~when
FN50! for partial rubber–substrate contact, rather than
complete contact~or zero contact!, as assumed previously
see Fig. 8.

In fact, for surface roughness on a single length sc
e.g.,z5h0 cos(q0x), it is easy to convince oneself that the
will be a discontinuousdetachment transitionfrom complete
contact to partial contact~Fig. 9! when the pull-off force~or
the amplitude of the roughnessh0! is increased. This can b
seen directly if we consider a very narrow detached regio
the bottom of a valley as in Fig. 10. We can treat the d
tached region as a crack of widthb. As is well known in that
case15 the stress at the crack edges will be proportional
(b/r )1/2, where r is the distance away from a crack edg
Thus, the local stress at a crack tip will increase with t
width b of the crack, so that after nucleation the crack w
expand to a finite size. Thus partial detachment on a sin
length scale is a first-order transition. We have performe
preliminary study18 @for a cos(q0x) profile# which shows that
on increasing the pull-off force~or increasingh0 at vanishing
external force! the system first ‘‘flips’’ from a state with com

e-

ed

-

FIG. 9. The detachment transition~schematic!. For small surface roughness
complete contact occurs in the nominal contact area~top!, while for large
surface roughness there is a jump to partial contact~bottom!.

FIG. 10. When the amplitudeh0 of the surface roughness, or the pull-o
force FN , is increased beyond a critical value, a discontinuous detachm
transition takes place from a state of complete contact to partial contact.
transition can be considered as resulting from the nucleation of a crack a
bottom of the valley, followed by rapid expansion of the crack until
reaches a width of order;l/2.
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plete contact to another ‘‘asperity contact’’ state~Fig. 8!
where the width of the contact region is less thanl/2 as
indicated in Fig. 9~bottom!.

Real surfaces do, of course, exhibit roughness on m
different length scales, and the relation between the pull
force and the center of mass displacement is therefore li
to be continuous for most systems of practical interest. N
ertheless, during pull-off rapid flip events may take part
the interface, where the solids first undergo local detachm
in the valleys of the roughness profile, followed at lar
enough pull-off force by complete detachment, the aspe
contact areas detaching the last. Because of the long-r
nature of the elastic interaction, one may expect a coop
tive behavior of the detachment process, where detachm
in one local area may induce detachment in other interfa
surface areas. Fuller and Roberts13 have studied the line o
peeling~crack edge! during pull off ~see also Ref. 19!. For
smooth surfaces the line is straight and peeling occurs
formly. Roughening the counterface makes the line incre
ingly irregular, and peeling is intermittent, involving sho
sections of the front at a time. This mode of behavior in
cates variation in the strength of the adhesion over the c
tact area as a result of the irregularly fluctuating surfa
roughness. The exact nature of the detachment process
its possible collective behavior represents an interes
problem for future studies.

Fuller and Tabor performed experiments with three d
ferent rubbers with very different elastic modulusE. The
dependence of the adhesion on the magnitude ofE is in good
agreement with the above-presented theoretical predictio

V. CONTACT MECHANICS WITH ADHESION:
PARTIAL CONTACT

We will now show that the discrepancy between theo
and experiment forh0 /hmax.0.2 in Fig. 7 is due to rubber–
substrate detachment, which reduces the area of real co
and the pull-off force for large surface roughness. We assu
again that the rough surface is a self-affine fractal with a lo
distance cut-offl052p/q0 . We will refer to the ‘‘asperi-
ties’’ on the length scalel0 as the macroasperities. The ma
roasperities are covered by shorter wavelength rough
down to the lower cutoff lengthl152p/q1 . We assume the
contact between the rubber and the substrate to involve ju
fraction of the macroasperities. We will refer to a conta
region between a macroasperity and the substrate as the
perity contact area.’’ We now make the basic assumption
the rubber is in direct contact with the substrate in the as
ity contact areas and we will take into account the sho
wavelength surface roughness simply by using the effec
Dgeff introduced previously, where, however, the surfa
roughness on the length scale;l0 , which now is treated
explicitly, has been removed from the surface roughness
file when calculatingDgeff .

20 Thus, the present problem re
duces to the study of Fuller and Tabor, except that we m
replaceDg with Dgeff . SinceDgeff→0 asu f (H)→1 it is
still true that the pull-off force vanishes whenu f (H)51.
However the pull-off force before detachment will not be t
same.
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Let us consider the case of a rectangular block in con
with a rough substrate. The potential energy for the sys
is:

U52FNu1
1

2
A0LES u2v

L D 2

1V~v !, ~24!

whereu andv are the~lateral averaged! displacements of the
upper and lower surface of the block~see Fig. 11!, and the
block–substrate asperity interaction energy is

V5n0A0E
zc

`

dzf~z!Uasp~z2v !. ~25!

n0 is the concentration of macroasperities,Uasp the interac-
tion energy between a substrate asperity and the ela
block, andzc is the smallest asperity height for which block
substrate contact occurs. The asperity height distribu
f(z) is assumed to be Gaussian so that21

f~z!5~ph0
2!21/2e2(z/h0)2

. ~26!

The radiusr of an asperity contact region can be related
the compressionh5z2v via ~during pull-off, h,0! ~see
Appendix A and Ref. 4!

h̄5 r̄ 22~2r̄ !1/2. ~27!

Here r 5aRr̄ and h5a2Rh̄, where a5(pDgeff /E*R)1/3

~where Dgeff5Dg@12uf(H)#!, defines the dimensionles
quantitiesr̄ and h̄. The energy@see Eq.~A11!#

Uasp5E* R3a5~ 8
15r̄

51 r̄ 22 4
3r̄

3~2r̄ !1/2!. ~28!

Substituting Eqs.~26! and ~28! in Eq. ~25! and definingz
5a2Rz̄ gives

V5n0A0E
z̄c

`

d z̄a2R~ph0
2!21/2e2 z̄2(a2R/h0)2

3E* R3a5S 8

15
r̄ 51 r̄ 22

4

3
r̄ 3~2r̄ !1/2D . ~29!

Now, let us change integration variable, fromz̄ to r̄ . Using
z̄5h̄1v/a2R and Eq.~27! gives

dz̄5dr̄@2r̄ 2~2r̄ !21/2#.

Thus,

FIG. 11. Definition of the displacementsu andv.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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V5n0A0E
r̄ c

`

dr̄@2r̄ 2~2r̄ !21/2#a2R~ph0
2!21/2

3e2[ r̄ 22(2r̄ )1/21v/a2R] 2(a2R/h0)2

3E* R3a5~ 8
15 r̄ 51 r̄ 22 4

3 r̄ 3~2r̄ !1/2!. ~30!

We must now determiner̄ c . Under conditions of increasing
negative load, separation of the surfaces occur w
dF/dh50 which impliesr̄ c5(9/8)1/3. However, under con-
dition of increasing displacement, stable equilibrium preva
until dF/dh5`, which implies r̄ c51/2 ~see Appendix A!.
This latter condition is relevant in the present case. Note

Q5
a2R

h0
5S pDgeffR

1/2

E* h0
3/2 D 2/3

'S p

4 D 2/3

u22/3@12u f ~H !#2/3, ~31!

where we have assumed that 1/R'q0
2h0 . If we denote r̄

5x for simplicity, then Eq.~30! gives

V52n0A0DgeffRh0V̄~u,v/h0!, ~32a!

V̄5ApQ2E
1/2

`

dx@2x2~2x!21/2#e2[Q(x22(2x)1/2)1v/h0] 2

3~ 8
15 x51x22 4

3 x3~2x!1/2!. ~32b!

Minimizing Eq. ~24! with respect tou gives

FN5A0E~u2v !/L. ~33!

Similarly, minimization with respect tov gives

A0E
v2u

L
1

dV

dv
50.

Using Eq.~33! this gives

FN5
dV

dv
. ~34!

Note thatFN only depends onu and v/h0 . In Fig. 11 we
show F̄N5h0dV̄(u,v/h0)/dv as a function ofv/h0 for u
50.3 and 0.6@and with f (H)51#. Fuller and Tabor3 deter-
mined the pull-off force from curves such as in Fig. 12
the conditiondFN /dv50. However, this is usually not th
correct condition: If the elastic energy in the block becom
equal to the interfacial energyA0Dgeff before the condition
dFN /dv50 is satisfied, then the pull-off force will be dete
mined byUel52Uad. The latter condition is relevant if the
size of the block is large enough~see the following!, which
will be assumed to be the case in what follows.

The pull-off force is determined by the condition that t
elastic energy stored in the system is just large enoug
break the attractive block–substrate bond. This gives

1

2
A0LES u2v

L D 2

1V~v !50,

or, using Eq.~33!,
Downloaded 21 Dec 2006 to 134.94.122.39. Redistribution subject to AIP
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1

2
A0LES Fc

A0ED 2

1V~v !50. ~35!

Using Eqs.~32a!, ~35!, and (Rh0n0)1/2'(n0 /q0
2)1/2'1/2p

gives

Fc'A0S 2DgeffE

L D 1/2 1

2p
@V̄~u,v/h0!#1/2,

or, comparing to Eq.~20!,

Fc'~Fc!max@12u f ~H !#1/2@V̄~u,v/h0!#1/2/2p. ~36!

Using Eqs.~34! ~with FN5Fc! and ~36! gives an equation
for v/h0 . Now, sinceFc;L21/2, in the limit of largeL, Fc

will be very small and we can obtain the relevantv/h0 to be
used inV̄(u,v/h0) in Eq. ~36! by puttingFN50 in Eq.~34!,
i.e., dV/dv50. In Fig. 13~dashed line! we show the result-

FIG. 12. The normalized forceF̄N5h0 dV̄(u,v/h0)/dv as a function of the
displacementv ~in units of h0! of the bottom surface of the block. Foru
50.3 and 0.6, and withf (H)51.

FIG. 13. Solid line: The relation between the pull-off force and the roug
ness amplitude, assuming complete contact between the ball and the
strate in the nominal contact area. Dashed line: The relation betweenFc and
h0 for partial contact forf (H)51.0. Points are the same experimental da
as Fig. 7.
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ing pull-off force as a function ofh0 . Note that there are no
fitting parameters in the theory, and that the calculation is
good agreement with the experimental trend, especially n
hmax. In fact, the present model calculation is only va
when the asperity contact area is very small compared tol2

~only then is the JKR theory valid!, i.e., the theory holds
strictly only for h0 close to~but below! hmax. Thus, it is not
surprising that the experimental reduction in the pull-
force for h0 well below hmax is somewhat larger than pre
dicted by the theory. Nonetheless, the overall qualitat
form of detachment-induced pull-off force reduction is
good agreement with the experimental data.

Let us close this section by discussing the two alter
tive pull-off conditions~a! dFN /dv50 and~b! Uel52Uad

~or, more generally,]U tot /]A050). Condition~a! corresponds
to a uniform~over the nominal contact area! detachment of
the block–substrate asperity contact areas, while~b! corre-
sponds to crack propagation, either from the periphery of
nominal contact area, or from some point~crack nucleation
center! inside the contact area. As stated earlier, if the blo
is big enough, case~b! will correspond to the smallest pull
off force, and will hence prevail.

VI. DISCUSSION

Consider an elastic block on a substrate. When the th
nessL5Lz of the block increases~but we assumeLx@Lz

andLy@Lz!, the pull-off stressFc /A0 decreases as;L21/2,
see Eq.~20!. Thus, for largeL the ~average! perpendicular
stress at the block–substrate interface will be very small~this
is the reason why glue films should be very thin in order
give a maximal pull-off force22!, and the magnitude of the
surface roughness alone will determine whether the ela
media is in complete contact with the substrate or only
partial contact.~The same is true if instead of a block, a
elastic ball is in contact with the substrate. In this case
average stress in the contact area at pull-off decrease
R0

21/3, with increasing radiusR0 of the ball.! Of course,
stress concentration will occur at the crack tip, so that par
detachment may occur in a small region around the crack
even if complete contact occurs far away from the tip ins
the contact region, see Fig. 14. In the latter case, even if
crack propagates slowly, at the crack tip rapid flip eve
may occur as the individual block–substrate asperity con
areas are broken. This may lead to large energy dissipa
as the elastic energy stored in the elongated bridges is
during the rapid flip events, and under those circumstan
the pull-off force will be much larger than predicted by E

FIG. 14. The transition from complete contact to detached area may inv
a region of partial detachment, called the ‘‘process zone.’’
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~20! @or Eq. ~22!#. These rapid flips clearly did not play an
major role in the experiments of Fuller and Tabor, but
occur in many practical applications involving glues. Usua
the standard theory of crack motion can be used to treat th
more complicated cases, butDg must now be replaced by
the strain energy release rateG, which is the energy neede
to propagate the crack by one unit area. When only rev
ible processes occur at the crack tip~no rapid flip processes!,
G5Dg ~or Dgeff for rough surfaces! but if cavity formation
and fibrillar structures occur,G may be 1000 times~or more!
larger thanDg. The topic of designing glues exhibiting larg
G is of great practical importance.

The region in space where the block–substrate deta
ment occurs at a crack edge is usually called the crack ‘‘p
cess zone’’~see Fig. 14!. In some extreme cases the width
this zone may become comparable to~or larger than! the
width Lx ~or Ly) of the nominal contact region. In this case
is no longer correct~or useful! to think about the block–
substrate bond breaking as involving crack propagation. T
seems to be the case for many practical glues. The theore
treatment of these cases cannot be based on the theo
crack motion, but involves new physics, such as the mic
scopic site of cavitation~i.e., the question whether the nucle
ation occurs right at the interface or in the bulk of the gl
film!, the concentration and spatial distribution of cavitie
and the evolution from cavities to fibrilar structures. The
processes have been intensively studied recently for a
probe geometry,23 where a block with a nominal flat surfac
is squeezed against a flat substrate covered by a thin~usually
L'100mm! polymer film acting as a pressure-sensitive a
hesive. After a short contact time the block is removed w
a constant pull-off velocity, and the relation between t
strain and stress is studied as function of time, while sn
shot pictures show the geometrical evolution of the adhes
film. It is found that very soft adhesive undergoes cavitat
and fibrillation processes when subjected to a tensile str
A slight degree of cross linking is beneficial for the stabili
of the fibrils, but excessive cross linking can lead to a p
mature failure of the fibrils, therefore significantly reducin
the adhesion energy.

The voids first nucleate in the region which was la
brought in contact with the probe and thereafter relativ
homogeneously over the whole contact area. Nucleation
take place near the maxima in the pull-off force. The cavit
usually nucleate at the probe/film interface. The fact t
nucleation occurs fairly homogeneously has been interpre
to imply that the negative hydrostatic pressure is fairly h
mogeneous under the probe surface. We do believe th
indeed correct, but only after the nucleation of the cavit
has started~see the following!.

Experiments with probe surfaces exhibiting different s
face roughness have shown that even when cavitation
stringing occur, the pull-off force increased significant
when going from rough probe surfaces to smooth one23

This is in accordance with the theory presented earlier.
multaneously, there appeared a striking difference in
morphology of the de-bonding area. Thus, only the rou
probe ~1.2 mm rms roughness! gave a significant fibrilar
structure. The other probe surfaces~,0.1mm rms rough-

ve
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ness! did not evolve into a fibrilar structure so that, in th
end, the adhesion energies~the energy to separate the pro
from the substrate! were all quite comparable.

Let us discuss the process of cavity formation. Let
consider a thin polymer film~thicknessL! between two flat
rigid surfaces. If the polymer is considered as fully inco
pressible, then the pressurep in the film is approximately14,23

p5pext2EeS r 0
22r 2

L2 D , ~37!

wherepext is the external pressure,e5DL/L is the strain and
r 0 is the radius of the circular contact region. The avera
pressurep̄5pext2Eer 0

2/2L2. It is interesting to note that this
pressure distribution is similar to that for an incompressi
fluid ~e.g., a polymer melt without cross links! ~see, e.g.,
Ref. 1!:

p5pext23mėS r 0
22r 2

L2 D , ~38!

wherem is the viscosity andė5L̇/L. In fact, for a periodic
oscillating strain,ė52 ive, and defining the complex elas
tic modulusE(v)52 ivm, Eq. ~38! takes the same form a
Eq. ~37! except for a factor of 3. For a ‘‘nearly’’ incompress
ible material, say with the Poisson ration50.49, the pres-
sure distribution becomes much flatter.23 However, the bulk
modulus of polymers is of order 1010Pa, while the elastic
modulusE'104 Pa ~typical for pressure-sensitive adhesiv
at low deformation rate! so that 0.52n'1026; under these
conditions the pressure distribution in the polymer film w
deviate negligibly from that calculated under the assump
of an perfectly incompressible material. We must theref
ask why the macroscopic cavities occur uniformly in t
contact area, in spite of the very nonuniform pressure dis
bution @Eq. ~37!# which occurs before the nucleation. W
believe that the explanation of this puzzle may be related
detachment, as follows.

First, note that the typical maximal~average! pressure in
a pull-off experiment23 is of order 0.4 MPa. Using Eq.~37!
with L5100mm, r 051 cm ~so that r 0 /L'100!, and E
51042105 Pa gives the true straine'1023 corresponding
to the displacementDL5eL'0.1mm. Now, the rms surface
roughness of the probe surface was approximately 1mm.
Thus, it is clear that if a low concentration of microscop
local detachments occurs at the interface when the stres
increased~see Fig. 9!, then this will locally reduce the stres
in the contact region. If we assume some characteristic st
~‘‘yield stress’’! in order to induce a local detachment, th
detached areas will be distributed in such a way~see Fig. 15!
that a nearly uniform stress may arise in the contact reg

FIG. 15. The external forceFN induce detached areas. The concentration
detached areas is highest in the center of the contact region, wher
tensile stress would be highest in the absence of the detached areas.~Sche-
matic.!
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even before any macroscopic detached regions~cavities! can
be observed. As the strain is increased further, some of
microscopic detached areas will grow into macroscopic ca
ties. Hence, when the strain becomes so large~say 0.3! that
~macroscopic! cavities can be observed it is clear that th
must be more or less uniformly distributed in the conta
area. This picture is consistent with the experimental ob
vation that the cavitation stress is directly related to th
shear modulus rather than their bulk modulus.24

Another mechanism which will also contribute towa
making the stress in the contact area uniform has rece
been suggested by Creton:22 The negative pressure at th
interface will deform the solid walls in such a way~see Fig.
16! as to make the tensile stress more uniform in the con
area. It is easy to show that this effect is important also
elastically stiff materials such as steel. Thus if a const
pressure acts within a circular regionr ,r 0 on a semi-infinite
elastic media, it will result in a displacementu of the center
of the circular region given by~see Sec. II! u'(p/E)r 0 .
Using the typical valuesr 051 cm andp51 MPa, and as-
suming steel walls so thatE'1011Pa givesu'0.1mm,
which is just of the right order of magnitude in order to giv
a strong reduction in the pressure at the center of the con
region ~see the previous discussion!. Thus the substrate
bending must be taken into account in any accurate dis
sion of the pressure distribution in the polymer film durin
pull-off. We note that this effect is very similar to the defo
mations occurring during separation of two bodies squee
together in a liquid, where cavity formation~in the liquid!,25

and elastic deformation of the solid walls have been
served, and also studied theoretically using elastohydro
namics.

Finally, let us comment on the influence of~small! con-
tamination particles~e.g., dust! on adhesion. It is generally
believed that dusty rubber surfaces provide bad adhes
Now, while this is true in most practical situations, one c
imagine cases where it is not true. First, note that the ad
sion between two smooth, clean~identical! rubber surfaces is
in general very good~see Fig. 17!. Now, if a monolayer~or
less! of small particles is deposited between the rubber s
faces, this may lead to an even larger pull-off force than
the clean rubber surfaces. This follows from the fact that
particle–rubber adhesion may be stronger than the rubb
rubber adhesion@the van der Waals force is proportional
the polarizability, which is usually larger for hard~heavy!
solids~e.g., rock! than for rubbers#. However, if a bilayer~or
more! of particles occurs between two rubber surfaces, n
ligible adhesion is observed, as the separation now occu
the particle–particle interface. Similarly, a monolayer of p

f
theFIG. 16. Elastic deformation of the substrate walls during pull-off.~Sche-
matic.!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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ticles at the interface between a hard solid and rubber
result in negligible adhesion.

VII. SUMMARY AND CONCLUSION

We have studied the influence of surface roughness
the adhesion of elastic solids. Most real surfaces have rou
ness on many different length scales, and this fact has b
taken into account in our study. We have considered in de
the case when the surface roughness can be described
self-affine fractal, and shown that when the fractal dimens
D f.2.5, the adhesion force may be strongly reduced.
studied the behavior of the block–substrate pull-off force
a function of roughness. For single scale roughness we fi
partial detachment transition before full detachment. Fina
we studied the full detachment transition for the self-affi
fractal surface, and found that total detachment is charac
ized by exactly the same parameteru as in the simpler theory
of Fuller and Tabor. The partial detachment which occ
before full detachment, however, results in a very substan
reduction in the pull-off force prior to full detachment. Th
is in good qualitative agreement with experimental data.

FIG. 17. The influence of small particles~e.g., dust! on adhesion.~a! The
adhesion between two smooth, clean~identical! rubber surfaces, or a rubbe
surface and a smooth hard substrate, is in general very good.~b! A mono-
layer ~or less! of small particles between two rubber surfaces may lead
pull-off force which is even larger than for the clean rubber surfaces~see the
text!. ~c! A bilayer ~or more! of particles between two rubber surfaces resu
in negligible adhesion. Similarly, a monolayer of particles at the interf
between a hard solid and rubber results in negligible adhesion.
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APPENDIX A

In this appendix we present, for the reader’s co
venience, a short derivation of the JKR theory. Consider
elastic sphere~radius R! in contact with a rigid flat solid
surface~see Fig. 18!.

We assume that there is an attractive interaction betw
the two solids so that the sphere deforms elastically at
interface forming a ‘‘neck’’ as indicated in the Fig. 18. Letr 0

be the radius of the~circular! contact area and assume th
h!R, whereR2h is the separation between the center
the sphere and the substrate~see Fig. 18!. In order for the
deformed elastic sphere to take the shape indicated in
18, the surface of the sphere must displace as indicated
the arrows in Fig. 18 and given by the relation

uz5h2R~12cosu!.

a

e

FIG. 18. A rubber ball squeezed against a flat rigid substrate.
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But sinceR sinu5r we get

cosu5@12~r /R!2#1/2'12r 2/2R2

and thus

uz'hS 12
r 2

2hRD , ~A1!

which is valid for 0,r ,r 0 . Let us now determine the pres
sure distribution which gives rise to the displacement~A1!.
Sinceh!R ~and r 0!R! we can determine the pressure d
tribution under the assumption that the surface of the sph
is locally flat. Using the theory of elasticity, it has bee
shown that when the surface of a semi-infinite elastic soli
exposed to the pressure

s5s0S 12
r 2

r 0
2D 21/2

1s1S 12
r 2

r 0
2D 1/2

~A2!

for r ,r 0 , and zero otherwise, then the elastic deformat
field ~for r ,r 0! becomes~see, e.g., Ref. 26!

uz5
pr 0

E* Fs01
1

2
s1S 12

r 2

2r 0
2D G , ~A3!

whereE* 5E/(12n2). Comparing Eq.~A3! with Eq. ~A1!
gives

s05
E*

p S h

r 0
2

r 0

R D , ~A4!

s15
E*

p

2r 0

R
. ~A5!

Let us calculate the elastic energy stored in the deforma
field in the elastic sphere in the vicinity of the substrate. T
can be obtained using the general formula

Uel5
1

2 E d2xs~x!uz~x!, ~A6!

where the integral is over the surface arear ,r 0 . Substitut-
ing Eqs.~A2! and ~A3! in Eq. ~A6! gives

Uel5phE
0

r 0
dr r Fs0S 12

r 2

r 0
2D 21/2

1s1S 12
r 2

r 0
2D 1/2G

3S 12
r 2

2hRD .

If we introducej512r 2/r 0
2 we get

Uel5
phr0

2

2 E
0

1

dj~s0j21/21s1j1/2!F12
r 0

2

2hR
~12j!G

5
phr0

2

2 F S 22
r 0

2

hRD S s01
s1

3 D1
r 0

2

hRS s0

3
1

s1

5 D G . ~A7!

Substituting Eqs.~A4! and~A5! in Eq. ~A7! gives after some
simplifications

Uel5E* S h2r 02
2

3

hr0
3

R
1

1

5

r 0
5

R2D .

In order to determine the radiusr 0 of the contact area, we
must minimize the total energy under the constraint that
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h5const. The total energy is given by the elastic energy p
the change in the surface energy,2Dgpr 0

2, so that

U tot5E* S h2r 02
2

3

hr0
3

R
1

1

5

r 0
5

R2D 2Dgpr 0
2.

Let us introduce dimensionless variables. If we definea

5(pDg/E* R)1/3 and introducer 05aRr̄0 and h5a2Rh̄
then the total energy takes the form

U tot5E* R3a5~ h̄2r̄ 02 2
3h̄r̄ 0

31 1
5r̄ 0

52 r̄ 0
2!. ~A8!

The forceF is given by

F52
]U tot

]h
52

1

a2R

]U tot

]h̄

5E* R2a3S 2h̄r̄ 02
2

3
r̄ 0

3D . ~A9!

The condition]U tot /]r̄050 takes the form

~ h̄2 r̄ 0
2!252r̄ 0

with the solutions

h̄5 r̄ 0
26~2r̄ 0!1/2. ~A10!

The two 6 solutions correspond to different total energie
and the correct solution is the one which minimizes the to
energy. Substituting Eq.~A10! in Eq. ~A8! gives

U tot5E* R3a5~ 8
15r̄ 0

51 r̄ 0
26 4

3r̄ 0
3~2r̄ 0!1/2!. ~A11!

Thus the minus sign solution gives the lowest energy.
Under conditions of increasing negative load, separat

of the surfaces occurs whendF/dh50 or, equivalently,
dF/dr050. Using Eqs.~A9! and ~A10! this gives r̄ 05 r̄ c

5(9/8)1/3 and the pull-off forceF52(3p/2)RDg. How-
ever, under condition of increasing displacement, stable e
librium prevails untildF/dh5`, which impliesdh/dr50
and from Eq.~A10!, r̄ c51/2.

APPENDIX B

In this appendix we present a more accurate treatmen
the averaging of the surface energy term. First note that

^@11~¹h!2#1/2&5E d2w^d~w2¹h!&~11w2!1/2

5
1

~2p!2 E d2wE d2k^eik"(w2¹h)&

3~11w2!1/2

5
1

~2p!2 E d2wE d2keik"w^e2 ik"¹h&

3~11w2!1/2.

If we assume, as is usually done, thath(x) is a Gaussian
random variable, then
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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^e2 ik"¹h&5 K expF2 ik"E d2qh~q!~ iq!eiq"xG L
5expF1

2 K S E d2qh~q!~k"q!eiq"xD 2L G
5expF2

1

4
k2E d2q q2C~q!G .

If we denote

a5E d2q q2C~q!,

then

^@11~¹h!2#1/2&5
1

~2p!2 E d2wE d2keik"w

3expS 2
1

4
ak2D ~11w2!1/2

5
1

pa E d2w~11w2!1/2e2w2/a

5
2

a E
0

`

dw w~11w2!1/2e2w2/a. ~B1!

If we write x5w2/a, Eq. ~B1! gives

^@11~¹h!2#1/2&5E
0

`

dx~11ax!1/2e2x.

For a self-affine fractal surface we have~see Sec. III! a
5(q0h0)2g(H) and denotingj5q0h0g1/2 gives

Dgeff

Dg
5E

0

`

dx~11j2x!1/2e2x2
E

2Ec
j2. ~B2!

To quadratic order inj, the formulas~B2! and~14b! give the
same result. In the limitE/Ec!1, only j@1 is of interest,
and Eq.~B2! reduces to

Dgeff

Dg
'jE

0

`

dx x1/2e2x2
E

2Ec
j2

5S p

4 D 1/2

j2
E

2Ec
j2 ~B3!

to be compared with

Dgeff

Dg
'j2

E

2Ec
j2 ~B4!

as obtained~in the limit j@1! from the approximate formula
~14b!. From Eq.~B3!, Dgeff /Dg is maximal for

q0hc5S p

4 D 1/2

g21/2
Ec

E
'0.89g21/2

Ec

E
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and

~Dgeff!max5
p

8

Ec

E
Dg'0.39

Ec

E
Dg.

The prefactors 0.89 and 0.39 in the exact theory should
compared with the prediction 1 and 0.5, which follows fro
the simpler theory@Eqs.~14b! and ~B4!#.
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7M. Klüppel and G. Heinrich, Rubber Chem. Technol.73, 578 ~2000!.
8M. V. Berry and Z. V. Lewis, Proc. R. Soc. London, Ser. A370, 459
~1980!.

9T. R. Thomas,Rough Surfaces, 2nd ed.~Imperial College Press, London
1999!.

10A. Chiche, P. Pareige, and C. Creton, C. R. Acad. Sci., Ser. IV2000, 1197.
11B. N. J. Persson, J. Chem. Phys.~in press!.
12G. A. D. Briggs and B. J. Briscoe, J. Phys. D10, 2453~1977!.
13K. N. G. Fuller and A. D. Roberts, J. Phys. D14, 221 ~1981!.
14P. Tordjeman, E. Papon, and J-J. Villenave, J. Chem. Phys.113, 10712

~2000!; C. Gay and L. Leibler, Phys. Rev. Lett.82, 936 ~1999!; A. Zosel,
J. Adhes.34, 201~1991!; I. Chikina and C. Gay, Phys. Rev. Lett.85, 4546
~2000!; C. Gay and L. Leibler, Phys. Today Nov. 1999, p. 48.

15See, e.g., L. B. Freund,Dynamics Fracture Mechanics~Cambridge Uni-
versity Press, New York, 1990!.

16G. Sperling, Ph.D. thesis, Karlsruhe Technical University, 1964.
17K. Kendall, J. Phys. D4, 1186~1971!; 6, 1782~1973!; 8, 115~1975!. See

also the beautiful review article of K. Kendall, Contemp. Phys.21, 277
~1980!.

18B. N. J. Persson~unpublished!.
19A. N. Gent and R. P. Petrich, Proc. R. Soc. London, Ser. A310, 433

~1969!; M. Barquins, B. Khandani, and D. Maugis, C. R. Acad. Sci., S
II: Mec., Phys., Chim., Sci. Terre Univers.303, 1517~1986!; C. Derail, A.
Allal, G. Marin, and Ph. Tordjeman, J. Adhes.61, 123 ~1997!; L.
Benyahia, C. Verdier, and J.-M. Piau,ibid. 62, 45 ~1997!.

20The decomposition of the roughness profile into ‘‘macroasperities’’ a
shorter wavelength roughness is, of course, not unique. A rigorous t
ment should be built on the formalism presented in Sec. III but with
inclusion of detachments.

21J. A. Greenwood, inFundamentals of Friction, Macroscopic and Micro
scopic Processes, edited by I. L. Singer and H. M. Pollack~Kluwer, Dor-
drecht, 1992!. See also, J. A. Greenwood and J. B. P. Williamson, Proc
Soc. London, Ser. A295, 300~1966!; J. F. Archard,ibid. 243, 190~1957!;
K. L. Johnson,Contact Mechanics~Cambridge University Press, Cam
bridge, 1985!.

22The argument that thin glue layers give a stronger bond is only valid if
crack process zone is smaller than the thickness of the glue film. If
condition is not valid, thicker films may give the optimum adhesion.
practice glue layers below 15–20mm are seldom used~C. Creton, private
communication!.

23H. Lakrout, P. Sergot, and C. Creton, J. Adhes.69, 307 ~1999!.
24A. N. Gent and C. Wang, J. Mater. Sci.26, 3392 ~1991!; A. N. Gent,

Rubber Chem. Technol.67, 549 ~1994!.
25Y. L. Chen and J. Israelachvili, Science252, 1157~1991!.
26K. L. Johnson,Contact Mechanics~Cambridge University Press, Cam

bridge, 1985!.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp


