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The effect of taxonomic 
classification by full‑length 16S 
rRNA sequencing with a synthetic 
long‑read technology
Jinuk Jeong1,8, Kyeongeui Yun2,8, Seyoung Mun1,3, Won‑Hyong Chung4, Song‑Yi Choi5, 
Young‑do Nam4,7, Mi Young Lim4, Chang Pyo Hong2, ChanHyeok Park2, Yong Ju Ahn2* & 
Kyudong Han3,6*

Characterizing the microbial communities inhabiting specimens is one of the primary objectives of 
microbiome studies. A short‑read sequencing platform for reading partial regions of the 16S rRNA 
gene is most commonly used by reducing the cost burden of next‑generation sequencing (NGS), but 
misclassification at the species level due to its length being too short to consider sequence similarity 
remains a challenge. Loop Genomics recently proposed a new 16S full‑length‑based synthetic 
long‑read sequencing technology (sFL16S). We compared a 16S full‑length‑based synthetic long‑
read (sFL16S) and V3‑V4 short‑read (V3V4) methods using 24 human GUT microbiota samples. Our 
comparison analyses of sFL16S and V3V4 sequencing data showed that they were highly similar at 
all classification resolutions except the species level. At the species level, we confirmed that sFL16S 
showed better resolutions than V3V4 in analyses of alpha‑diversity, relative abundance frequency and 
identification accuracy. Furthermore, we demonstrated that sFL16S could overcome the microbial 
misidentification caused by different sequence similarity in each 16S variable region through 
comparison the identification accuracy of Bifidobacterium, Bacteroides, and Alistipes strains classified 
from both methods. Therefore, this study suggests that the new sFL16S method is a suitable tool to 
overcome the weakness of the V3V4 method.

�e microbiota is the total microbial complex containing the wide variety of bacterial species and is found eve-
rywhere, from humans (e.g., the microbiota inhabiting animal intestines) to natural  environments1. Recently, 
studies regarding the human GUT microbiota have been conducted worldwide, and many, such as the human 
microbiome project (HMP), have shown that the human GUT microbiota are strongly related to the develop-
ment of various  diseases2,3. �erefore, characterizing the diversity and composition of the microbial communities 
inhabiting specimen is one of the primary objectives of current microbial  studies4–6. �ere have historically been 
many challenges regarding the e�cient analysis of microbial communities due to the impossibility of identifying 
those that cannot be cultured, and microbial identi�cation analysis was previously limited to culture-dependent 
sequencing methods based on Sanger sequencing  technology7,8. However, with the recent rapid development of 
the next-generation sequencing (NGS) technology, metagenome sequencing is becoming a powerful approach to 
understanding the complex microbial communities in the human GUT 9. In metagenomic sequencing, the nine 
hypervariable regions (V1–V9) of 16S rRNA gene are frequently used for determining of the bacterial taxonomy 
such as genera or species in the diverse microbial  population10.
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�e Pyrosequencing-based Roche 454 GS-FLX used in early metagenome studies, despite its new paradigm 
for microbial research, was discontinued due to some issues, including high base-calling errors and sequenc-
ing cost  di�erences11. Currently, the second-generation sequencing platforms are being utilized for microbial 
diversity analysis by reading a single or combination of the hypervariable regions (e.g., V1V2, V3V4, V4, and 
V5V6 regions on the 16S rRNA gene)12–14. In general, high-throughput short-read sequencing of the 16S rRNA 
gene amplicon based on the Illumina MiSeq 2 × 300 bp platform (Illumina, USA) speci�cally targets the V3–V4 
hypervariable region of the nine variable regions. It is widely used for various metagenome studies by reducing 
the high-cost burden of  NGS15. However, this short read amplicon-based platform is not only vulnerable to 
the identi�cation bias due to the potential chimeric sequences produced during PCR ampli�cation for library 
construction, but also is limited to microbial classi�cation at the genus level according to a commonly used 16S 
rRNA gene-based microbial taxonomy database. �erefore, the amplicon method of the partial variable region 
(V3–V4) is limited for strains with high similarity at the species  level16. Recently, rapid technical improvement in 
third-generation sequencing platforms, such as PacBio Single-Molecule Long-Read Sequencing (Paci�c Biosys-
tems, USA) allow the reading of sequences with an average length of 10–20  kb17. Circular consensus sequencing 
of PacBio allows amplicon sequences to be recovered with excellent  quality18. However, challenges include the 
high economic cost of metagenomics analysis, which requires large amounts of samples and specimens.

In microbiome studies, this long-read sequencing technology has led to changes in the analysis of complex 
microbial communities by solving the identi�cation accuracy problem that occurs when reading the partial 
hypervariable region of the 16S rRNA  gene19–22. However, this platform generates read data with lower nucleo-
tide accuracy than the Illumina platform (~ 15% compared to ~ 0.1% for Illumina) due to random base-calling 
errors that occur during multiple times sequencing of the same  region23. Interestingly, Loop Genomics recently 
has developed a new 16S full-length-based synthetic long-read sequencing technology (sFL16S) that enables 
long-read sequencing by utilizing an existing Illumina short-read sequencer combined with a unique molecule 
barcoding technology. �is sFL16S technology can be applied to reading the whole variable regions of 16S rRNA 
gene (V1–V9) to identify the microbial communities in metagenome studies. �rough the barcoding technol-
ogy, fragmented short-reads containing the same barcode are assembled into a single full-length 16S rRNA 
gene using computational linked-de novo assembly. Compared to taxonomy classi�cation using only a limited 
variable region of the 16S rRNA gene, sFL16S provides high quality base-resolution and accurately classi�es 
species and sometimes potential strain levels by reducing false positives. In addition, this synthetic long-read is 
reconstructed using the short-reads with high base accuracy (~ 99.9%) generated by the Illumina sequencer to 
compensate for missed variant calls due to nucleotide accuracy errors in the single-molecule long-read technol-
ogy (Loop Genomics, USA).

In this study, we benchmarked the general 16S rRNA amplicon (V3–V4) sequencing methods and the new 16S 
full-length-based synthetic long-read (sFL16S) technology for evaluation of the bacterial classi�cation e�ciency 
according to 16S amplicon regions. �e diversity scores were estimated higher for the 16S full-sequence readings 
than those of the V3–V4 sequence readings. Moreover, we con�rmed that the sFL16S technology de�ned more 
bacterial taxa at the species level. Additionally, we showed that 16S full-length sequencing had higher taxonomic 
accuracy than the 16S partial region when aligned with the bacterial 16S dataset of sequences extracted from 
public databases. �erefore, our comparative metagenomic approach con�rmed that reading the full-length 16S 
rRNA gene sequence could have better classi�cation resolution in the metagenome study. We also demonstrated 
that the new metagenome sequencing technology was an appropriate tool to overcome the misclassi�cation issue 
that was di�cult to de�ne correct microbial taxonomy at the species level.

Results
Experimental workflow and data processing. We collected human fecal samples from three healthy 
adults (two men and one woman). To verify the signi�cance of the results, 24 specimens were prepared by 
dividing each sample into eight identical sampling tubes. We con�rmed the integrity (e.g., DNA degradation, 
concentration, and purity) of the extracted microbial genomic DNA by considering the extraction of high-
quality metagenomic DNA may a�ect its accurate microbial  quanti�cation24. In the case of the LoopSeq 16S 
Microbiome SSC 24-Plex kit, it consisted of a multiplex work�ow that pools at least 24 samples into a single 
tube per sequencing run, thus, we performed the 16S V3–V4 amplicon sequencing procedure with the same 
samples. To compare bacterial classi�cation accuracy of both methods based on V3V4 amplicon short-read 
sequencing (Illumina V3–V4) and new 16S full-length-based synthetic long-read sequencing (sFL16S; Loop 
Genomics V1–V9), we successfully constructed each sequencing library using the gDNA samples, and high-
throughput metagenome sequencing was performed (Fig. 1a–c). As a result of metagenome sequencing, the 
average demultiplexed reads and synthetic long-reads count generated by the V3V4 and sFL16S were 75,077 and 
36,792, respectively, and the average short-reads count assembled per each 16S molecule of the sFL16S was 1,329 
(Fig. 1d; Supplementary Table S1). �e amplicon sequence variant (ASV) taxonomy number of the two di�er-
ent 16S metagenomic sequencing methods (V3V4 and sFL16S) that classi�ed with > 70% (default) con�dence 
threshold about the sequence alignment with the SILVA reference database was 623 and 1,041, respectively, and 
these were �ltered to 616 and 1,041 bacteria features, respectively. We estimated that the sFL16S classi�ed ASV 
taxonomy more than V3V4 amplicon method because the su�cient read-length was used to classify the bacte-
rial taxonomy (Table 1, Supplementary Table S2). 

Alpha‑diversity analysis in human GUT microbiota. To compare the richness and evenness of the 
human GUT microbiota classi�ed from the two di�erent methods, we estimated the alpha-diversity that was 
quanti�ed by Observed_OTUs, Chao1, Shannon, Simpson, and Pielou_e alpha-diversity indices (Fig. 2; Table 2; 
Supplementary Table S3). In these results, we observed that all estimated alpha-diversity index values calculated 



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:1727  | https://doi.org/10.1038/s41598-020-80826-9

www.nature.com/scientificreports/

were signi�cantly higher in (richness and evenness) the sFL16S method. Considering the result of the Kruskal–
Wallis non-parametric test comparing the estimates of alpha-diversity between the two methods (V3V4 and 
sFL16S) according to the read length, the sFL16S method had a high-diversity score because it could de�ne 
di�erent bacterial strains with similar sequences. In other words, we con�rmed that the number of di�erent 
reads clustered according to the sequence similarity were fewer sFL16S method than for the V3V4 method. 
In a previous study, Klemetsen et al. have noted that di�erent variable regions and sequence lengths of the 16S 
rRNA gene will a�ect the microbial pro�le di�erently by taxonomic rank and phylogenetic  group25. �erefore, 
we determined that the di�erences of sequence similarity on the 16S rRNA variable regions covered according 
to the read-length a�ected the diversity value calculation estimating their abundance.

Comparison of bacterial classification frequency at the taxonomic rank. To support the argu-
ment that the length of sequencing read covering the 16S rRNA gene could in�uence the classi�cation of dif-
ferent bacterial strains, we separated the de�ned taxon by each taxonomic rank and compared their quantity. 

Figure 1.  Technical introduction and analysis work�ow for a new 16S full-length-based synthetic long-read 
(sFL16S) technology. Using 24 fecal samples obtained from three healthy adults, we performed metagenomic 
analysis and aimed to evaluate an e�cient method for microbiome screening and bacterial classi�cation by 
benchmarking two techniques. (a) �e experimental and analytical work�ow of two di�erent approaches in the 
metagenomic analysis of human GUT microbiota. (b) Schematic diagram of the target regions of 16S amplicon 
library construction for the V3V4 and sFL16S, respectively. For typical 16S amplicon sequencing, the analysis 
was conducted using the V3V4 variable region. While the short-read targets the V3V4 region, the sFL16S based 
synthetic long-read targets all variable regions (V1–V9). �e high-accurate unique barcoded short-reads (150 
PE colored pink), generated from the Illumina Nova-seq were used in the de novo assembly analysis using the 
UMI tool. (c) Density plot for bp length distribution of synthetic long-read sequencing data. (d) Bar plot for the 
average number of assembled short-reads each 16S molecule in each sample we used. �e X-axis indicates the 
octuplicate data for each individual.

Table 1.  ASVs’ count for microbial community analysis of two di�erent metagenome sequencing method. a C 
con�dence threshold.

Range

Un�ltered 
count [n]

Bacteria 
�ltered count 
[n]

Un�ltered count 
[%]

Bacteria �ltered 
count [%]

V34 sFL16S V34 sFL16S V34 sFL16S V34 sFL16S

Ca < 0.7 2 0 0 0 0.32 0 0 0

0.7 ≤ C ≤ 0.8 84 106 80 106 13.44 10.18 12.99 10.18

0.8 ≤ C ≤ 0.9 76 114 73 114 12.16 10.95 11.85 10.95

0.9 ≤ C 463 821 463 821 74.08 78.87 75.16 78.87
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�e bacterial quantity at each taxonomic rank was visualized by a Venn-diagram which showing the unique and 
shared taxon between the two methods, and each chart illustrated the distribution of the bacterial taxon which 
was �ltered duplicated taxon name (Fig. 3a). Most of the taxon de�ned by the sFL16S method from phylum to 
genus level were included in the classi�cation results by the V3V4 method. Although 54 bacterial taxa were only 
detected by the V3V4 method at the genus level, the frequency was su�ciently low that their total proportion in 
the V3V4 genus was only 0.1% (Supplementary Table S4). We assumed that the paired-end V3V4 short-reads 
had a classi�cation bias down to the genus level compared to the sFL16S synthetic long-reads, which were syn-
thesized through the de novo assembly using short-reads. �e reason is that the length of the V3V4 reads was 
not enough to correctly de�ne the genus corresponding to some reads with unclear sequence accuracy. �ere-
fore, we con�rmed that only 100 distinct bacterial species were detected by the sFL16S method compared to the 
V3V4 method at the species level. �e 100 distinct taxa found only in the sFL16S accounted for 24% of its total 
171 taxa (relative classi�cation abundance). In contrast, 74 distinct taxa found only in the V3V4 made up 9% of 
its total 145 taxa. �e distinct taxa detected in the V3V4 were, thus, excessively compartmentalized, resulting in 
a large number of taxa. �is results suggested that there is a better advantage to considering 16S full-length to 
de�ne bacterial taxon at the species level.

Next, we used the classi�cation con�dence value in the Supplementary Table S2 to compare the reliability in 
the number of shared bacterial taxa shown in the Venn-diagram chart at each taxonomic rank (Fig. 3b). For an 
accurate comparison, bacterial strains belonging to the four major phyla (Bacteriodetes, Firmicutes, Actinobacte-
ria, and Proteobacteria) classi�ed in both methods were selected. As a result, we found a signi�cant di�erence at 
the species level wherein most shared strains classi�ed by the sFL16S method had nearly 1.00 con�dence values 
(average 0.96) compared to the V3V4 method, which had 0.87 average con�dence value. In this respect, these 

Figure 2.  Comparison of average alpha-diversity scores between two di�erent 16S sequencing methods. Box 
plots show the average alpha-diversity scores of both sequencing methods, which were measured by using (a) 
Observed_OTUs, (b) Chao 1, (c) Shannon, (d) Simpson, and (e) Pielou_e indices. Estimation of ASV richness 
and evenness using the number of observed OTUs (a) (Kruskal–Wallis H-test, H = 1.08, P = 0.29), Chao 1 
(H = 0.0001, P = 0.99), Shannon diversity index (H = 27.43, P = 1.62*10–7), Simpson (H = 17.17, P = 3.4*10–5), and 
Pielou_e (H = 28.74, P = 8.27*10–8) are shown. �e red and blue boxes indicate average alpha-diversity of V3V4 
and sFL16S, respectively. �e asterisk (*) represents the p-value of the statistical test (*** < 0.0001). Detailed 
information for this result is in Table 2.

Table 2.  Alpha-diversity statistics using Kruskal–Wallis test of two di�erent sequencing methods. a SD 
Standard deviation.

Alpha diversity index Kruskal;H Kruskal; p V34_Mean V34_SDa sFL16S_Mean sFL16S_SD

Obserbed_OTUS 1.0850 0.2975 132.4583 34.3853 145.7500 33.4901

Chao 1 0.0001 0.9918 146.4551 42.9086 147.5010 35.0318

Shannon 27.4303 1.63E−07 5.0520 0.3343 5.8669 0.3942

Simpson 17.1773 3.4E−05 0.9289 0.0170 0.9565 0.0226

Pielou_e 28.7415 8.27E−08 0.7218 0.0274 0.8208 0.0428
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comparison results showed that the 16S full-length sequencing method could classify more bacterial taxa with 
higher con�dence value at the species level than the 16S partial-variable region sequencing method.

Relative bacterial abundance in human GUT microbiota. To con�rm that the taxonomic pro�les 
were dependent on the 16S read length, relative abundance analysis at each taxonomic rank compared the com-
position and proportion of the classi�ed bacterial taxa corresponding to data showed in each Venn-diagram 
chart (Fig. 4; Supplementary Fig. S1; Supplementary Table S4). First, we inspected the phyla composition and 

Figure 3.  Comparison of bacterial taxonomy classi�cation according to two di�erent 16S amplicon regions. (a) 
�e Venn-diagram is divided into two di�erent methods (red: V3-V4 amplicon and blue: sFL16S) and shows 
the number of a classi�ed bacterial taxon at the phylum to species level. (b) �e heatmap shows the frequency of 
the only identi�ed taxa in both methods drawn by each taxonomic rank, in order. �e bacterial taxon belonging 
to the four major phyla (Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria), to the species, showing 
the con�dence score of each taxon. �e darkness of the color is proportional to the con�dence score’s value, as 
shown in the color bar.

Figure 4.  Relative abundance of human GUT microbiota identi�ed from V3V4 and sFL16S methods 
(phylum, genus, and species). Relative abundance bar plots represent the bacterial composition in human GUT 
microbiota at the phylum, genus, and species levels, identi�ed from V3V4 and sFL16S methods, respectively. 
Each legend box shows the top 10 classi�ed bacterial taxa among the whole proportion.
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proportion of both methods to verify the appropriate classi�cation about the human GUT microbiota. �e Bac-
teroidetes and Firmicutes were shown to be dominant in both methods. Based on previous studies that the level 
of GUT microbiota phylum in healthy humans is dominated by the Bacteroidetes and Firmicutes strains, these 
results showed to show appropriate bacterial classi�cation in human fecal  samples26–28. Next, we observed the 
composition and proportion of the bacterial taxa classi�ed according to all taxonomic rank, determining the 
bacterial de�nition between the two di�erent methods. �ere was no signi�cant di�erence between the com-
position and proportion at the phylum to the family level in both methods. Although V3V4 assigned more of 
54 distinct bacterial taxa at the genus level, as suggested above, we found that the proportions were very sparse. 
However, sFL16S showed a more diverse composition of the bacterial strains than V3V4 at the species level. 
To con�rm the incorrect de�nition of bacterial taxa names at the species level, we compared the proportion of 
unclear taxa names such as ‘uncultured bacteria’ and ‘Human gut’ within the distinct taxa assigned in each of 
the two methods. Of the 100 distinct taxa found only in sFL16S, 48 belongs to unclear taxa with a proportion of 
34% (relative classi�cation abundance). In contrast, of the 74 distinct taxa found only in the V3V4, 40 belongs to 
unclear taxa, with a proportion of 98% (Supplementary Fig. S2). Using the same approach, we con�rmed that the 
comparison of inter-individual classi�cation data at the species level also showed the similar patterns (Supple-
mentary Fig. S3). Based on these results, since the sFL16S reads cover the all 16S hypervariable regions and reads 
almost the entire 16S rRNA sequence, the sFL16S method could distinctly assign the di�erent bacterial taxa with 
similar sequences at the species level compared to the short-read sequencing method. Furthermore, these results 
supported a comparison of the classi�cation resolution di�erences between the two di�erent methods at the 
species level shown in Fig. 3a. Additionally, we con�rmed that the bacterial species de�ned as indicators related 
to human health such as Phascolarctobacterium faecium, Roseburia intestinalis, Fusobacterium varium, Faecali-
bacterium prausnitzii, and Akkermansia muciniphila were also included in the list of bacterial taxa independently 
pro�led on the sFL16S  method29–33.

Verification of misclassification according to 16S read length and sequence similarity. To con-
�rm the premise that 16S read length and sequence similarity could lead to misclassi�cation between di�erent 
bacterial species, we performed phylogeny analysis of selected bacterial strains distributed in the Bi�dobacte-
rium, Bacteroides, and Alistipes genera. �e phylogenetic tree was analyzed according to the sequence similarity 
based on the distance matrix calculated by the multiple sequence alignment (MSA) to the reference sequence 
in the SILVA 138v database. First, we performed a phylogeny analysis on the Bi�dobacterium strains, which was 
di�cult to de�ne accurately at the species level due to the high-GC content of genomic DNA and the sequence 
similarity of some 16S variable regions being from 92 to 99% (Fig. 5)34–37. As shown in Fig. 5, the Bi�dobacterium 
strains de�ned by sFL16S showed a high sequence matching rate with the SILVA DB compared to V3V4, and the 
strains de�ned in V3V4 were located in an outlier from the reference database. In this phylogenetic tree, SILVA 
DB connected to sFL16S_ASV879 was assigned as the ‘Uncultured Bacterium’ corresponding to the accession 
number GQ898761.1 using the BLASTn search by “bit-score”, which was measured by sequence similarity only 
and did not depend on query sequence length and database size. On the other hand, we con�rmed that this 
SILVA DB was de�ned the sFL16S_ASV879 as the ‘Bi�dobacterium adolescentis’ when applying the percent 
identity calculated for the similarity with the query sequence (Fig. 5a). Additionally, we could also con�rm that 
the eight V3V4 ASVs de�ned as the ‘Bi�dobacterium_unde�ned’ were not accurately assigned at the species 
level due to the sequence variations caused by errors generating incorrect mapping in the �ood of many V3V4 
amplicon reads, and the shorter sequence length compared to the full length required to determine the species 
(Fig. 5b)1. Similarly, we performed the phylogenetic analysis on the Bacteroides and Alistipes phylotypes, which 
were measured high classi�cation frequencies among the bacterial species classi�ed by the sFL16S (Supplemen-
tary Fig. S4). We found no signi�cant di�erences in these phylogeny analyses compared to Fig. 5 results, except 
that we de�ned several bacterial species from the V3V4. �erefore, we veri�ed through the phylogenetic analy-
sis of bacterial species distributed in three genera that the sequence similarity considered according to the 16S 
amplicon regions could a�ect the misclassi�cation for bacterial species.

Cross‑check taxonomy profiling using NCBI Bacterial Genome Database. To cross-check the 
taxonomic pro�ling accuracy of the two di�erent methods, we matched the ASV taxonomy classi�ed from 
the SILVA 138v database with the extracted 16S rRNA sequences in the NCBI microbial genome sequences 
(approximately 40 K Genomes) (Fig. 6; Table 3; Supplementary Table S5). As a result, we propose that the ASV 
taxonomic classi�cations with a high concordance rate of nearly 100% were more distributed in sFL16S than in 
V3V4, and that the average concordance rate for the V3V4 ASV taxonomic classi�cation was signi�cantly lower 
at the species level compared to the genus level. Additionally, we found several cases to understand the mismatch 
results of some sFL16S ASV taxonomy at the genus and species level. �e most discovered case of these reasons 
was the di�erence in taxonomy nomenclature form for the same taxon. For example, we con�rmed that the 
strains divided into the Escherichia and Shigella in the NCBI DB were classi�ed as Escherichia-Shigella in the 
SILVA DB. We also found a case where the Lacnoclostridium, named in the SILVA DB, was most o�en described 
as Clostridium in the NCBI DB. Another reason is that unspeci�c terms, such as ‘metagenome’ and ‘human_gut’ 
included in some ASV taxonomy were not found in the NCBI DB. Taken together, we could conclude that the 
mismatch of some sFL16S ASV taxonomy was not due to misclassi�cation by the base-calling error. In contrast, 
we presumed that the discrepancy of some V3V4 ASV taxonomy was due to the di�culty in accurately de�ning 
di�erent bacterial species with speci�c-sequences in the other hypervariable regions. �erefore, our �ndings 
suggested that the new sFS16S showed high-accuracy for bacterial variant-calling at the species level, as it cov-
ered the sequences of all hypervariable regions on the 16S rRNA gene. 
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Discussion
Since the Human Genome Project, projects such as HMP and MetaHIT consortium have been undertaken to 
identify important associations between microorganisms and  diseases2,38–40. �e projects have revealed that 
various human diseases are closely related to symbiotic microbes, especially intestinal micro�ora. In this regard, 
various studies have been conducted indicating that dysbiosis, which refers to an imbalance of intestinal micro-
�ora, is associated with the various human  disease41–43. Recently, the development of the NGS technologies and 
reductions in sequencing costs have contributed to the metagenome pro�ling that could de�ne unculturable 
 microorganisms44,45. To interpret the complex community within these human GUT micro�ora, it is important 
to correctly de�ne the taxonomy of the microbial  strains46–48. �e 16S rRNA gene, which is well-conserved 
evolutionarily in the bacterial genome and contains hypervariable regions (V1-V9), is a powerful tool used for 
microbial taxonomy  pro�ling49. However, although the NGS sequencer commonly used for metagenome stud-
ies has the advantage of generating NGS data for multiple samples at once, it cannot read the entire 16S rRNA 
gene sequence (~ 1.5 kb) due to the short-length reading approach (up to 300 bp)50–52. To compensate for this 
problem, 16S amplicons targeting the partially variable regions (V1V2, V3V4, V4, V5V6, etc.) of the 16S rRNA 
gene are now widely used in the metagenome studies to de�ne various microbial  strains12–14. Although these 
amplicon sequences can be applied to con�rm the overall microbial composition, some bacterial strains might 
not be accurately assigned at the species level due to the sequence similarity of the variable  regions53,54. For this 
reason, many researchers point out that to accurately de�ne microbial strains with similar taxonomy, sequence 
similarity should be analyzed by reading the entire 16S rRNA sequence, including all variable regions rather 
than the partial variable  regions55–57.

In this study, we are the �rst to verify the advantages and e�ciency of the 16S full-sequence reading in the 
metagenome study via a novel 16S full-length-based synthetic long-read sequencing technique (sFL16S). �is 
synthetic long-reads has a high sequence accuracy of the reconstructed 16S molecules. �e unique molecular 
barcode short-reads generated by the Illumina sequencer were used for the de novo assembly (Loop Genomics, 
USA). �e unique barcode tag on each short-read indicating the origin of a typical 16S rDNA molecule is identi-
�ed with the Unique Molecular Identi�ers (UMIs) processing tool. In this regard, we assessed that this sFL16S 
technique is bene�cial in classifying the correct microbial taxonomy by distinguishing between sequence similari-
ties. Here, we compared alpha-diversity estimates using each ASV denoising data generated on the general V3V4 

Figure 5.  Phylogenetic tree analysis based on distance matrix calculated by multiple sequence alignment 
(MSA). (a) Neighbor-joining phylogenetic tree analysis of the Bi�dobacterium strains identi�ed in both 
methods. �e 16S reference sequences were obtained from the SILVA 138v non-redundant ribosomal RNA 
gene database. �e pink, orange, and green boxes indicate the clustered ASVs by Bi�dobacterium species. (b) 
MSA with the reference sequence for the Bi�dobacterium strains and ASVs identi�ed from V3V4 and sFL16S. 
�e alignment analysis was performed by the IUB multiple alignment matrix with options (transition weight 
0.50; delay-divergent cuto� 30%) using MEGA X so�ware. �e MSA results visualized using the NCBI Multiple 
Sequence Alignment Viewer 1.16.1v.
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method and the new sFL16S method. �e relative bacterial beta-diversity between samples was not considered 
because in-silico analysis estimated the average richness and evenness of the bacterial sequence generated on 
both methods. As a result of measuring the diversity estimates based on sequencing read length, we con�rmed 
that both the richness and evenness score were calculated higher in the synthetic long-read sequencing method 
than the V3V4 method. �is result could be interpreted that the frequency of estimation for the di�erent strains 
was high because the number of bacterial sequences clustered according to similarity was small when measuring 
alpha-diversity in 16S full-sequence reads. When comparing the relative abundance of the bacterial taxonomy 
classi�ed from two di�erent metagenomic sequencing methods, it was found that the classi�cation frequency 
at the species level was higher in sFL16S than in V3V4. Although the V3V4 method assigned 54 more unique 
genera at the genus level, the proportion was only 0.1%. Comparing the relative bacterial composition at the 
species level between the V3V4 and sFL16S methods, the V3V4 method was found to have a higher frequency 
of classi�ed taxa containing unspeci�c terms, such as ‘Uncultured’ and ‘Human gut’ than the sFL16S method. 
�ese results indicated that using the V3V4 method, involves reading partial hypervariable regions, it was dif-
�cult to accurately assign the bacterial taxa at the species level. Comparing the distribution of con�dence score 
for bacterial species that are commonly classi�ed in both methods, we observed that taxa with score values close 
to 1.00 were mostly distributed on the sFL16S method. In this respect, we determined that the base-accuracy 
of synthetic long-reads was similar to that of the reference sequence database. Here, we veri�ed that the dif-
ference in sequence similarity according to the amplicon region used in the taxa de�nition a�ected bacterial 
misclassi�cation through phylogeny tree analysis using the MSA method. While the V3V4 ASV taxonomy was 

Figure 6.  Comparison of taxonomy matching accuracy for V3V4 and sFL16S on NCBI Bacterial Genome 
Database. Violin plots represent matching rates that result from taxonomy matching analysis in the NCBI 
Bacterial Genome Database (40 K bacterial and archaeal genomes), according to taxonomic rank (genus and 
species). Using the NCBI reference 16S sequence data, we conducted the BLAST search to determine the 
matching rate with the ASV taxonomy data in two di�erent methods. �e y-axis indicates the percentiles 
of the taxonomy matching rate. �e violin plots are �lled in red (le�) and blue (right) for V3V4 and sFL16S 
data, respectively. �e boxes indicate the mean value (black bold horizontal line), percentiles of the taxonomy 
matching rate distribution. �e upper and low whiskers indicate the maximum and the minimum value of the 
taxonomy matching rate, respectively. �e shaded area surrounding the boxes on each side indicate the ASV 
frequency of the taxonomy matching rate.

Table 3.  Comparison of the taxon matching rate with NCBI bacterial genome database.

16S rRNA gene Genus level Species level

V3V4

Matching 419 0.761818 283 0.514545 69 0.125455

Mismatching 131 0.238182 267 0.485455 481 0.874545

sFL16S

Matching 925 0.898931 619 0.601555 348 0.338192

Mismatching 104 0.101069 410 0.398445 681 0.661808
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placed on an outlier in the SILVA reference taxonomy of the phylogeny tree, the sFL16S was included in the 
inlier. �rough these phylogeny tree analyses, the MSA results suggested that it is possible to accurately de�ne 
taxa at the species level because the results are derived based on high-similarity scores according to the distance 
matrix with the reference database. In addition, our classi�cation data were compared to the matching rates in 
the NCBI Bacterial Genome Database to cross-check the classi�cation accuracy at the genus and species levels 
of bacterial taxa classi�ed by the two di�erent methods. �e bacterial genera and species classi�ed in the sFL16S 
method had higher matching rates with the NCBI DB than the V3V4 method, and most mismatching indicated 
in the sFL16S taxon were due to di�erences in the taxonomy nomenclature between the SILVA and the NCBI 
DBs. �ese results showed that the misclassi�cation of the sFL16S at the species level was not just due to the 
incorrect taxa de�nitions by base-calling errors. In contrast, the mismatching shown in V3V4 was mostly due 
to incorrect classi�cations of di�erent strains. We assumed that the sequence length considered in V3V4 was 
too short to distinguish between di�erent bacterial species with sequence similarity.

In summary, we applied two di�erent metagenomic sequencing methods to compare the e�ect on the bacte-
rial pro�ling e�ciency following di�erent 16S hypervariable region readings. We propose that reading the 16S 
full-sequence could reduce false-positive results on the bacterial classi�cation caused by sequence similarity 
and might have more advantages in the bacterial diversity analysis. In addition, we suggest that the new sFL16S 
method is a suitable tool to overcome the weakness of the short-read based-method where it is di�cult to de�ne 
accurate microbial taxonomy at the species level.

Materials and methods
Microbial genomic DNA extraction from the human stools. Total microbial metagenomic DNA 
from each sample was extracted using the QIAamp DNA microbiome kit (Qiagen, Germany) and the experi-
ment was carried out in accordance with the protocol of the DNA extraction kit. �e quality of the extracted 
gDNA was checked using a Bioanalyzer (Agilent 2100, USA) equipment at the Center for Bio-medical Engineer-
ing Core Facility (Dankook University, South Korea) and stored at 4 °C until the following process.

Illumina library construction and sequencing. A total of 24 16S V3–V4 amplicon libraries (eight 
libraries preps per each participant) were prepared according to the Illumina metagenomic sequencing library 
construction work�ow. �e Illumina platform targeted an area containing the V3-V4 hypervariable region of the 
bacterial 16S rRNA gene. PCR ampli�cation of the target region was performed using the KAPA HiFi Hot Start 
Ready Mix (2X) (Roche, Mannheim, Germany). For this purpose, a pair of amplicon primers recommended by 
Illumina were used. A�er the PCR ampli�cation, the PCR products were puri�ed using the AMPure XP beads 
(Beckman Coulter, USA). In order to introduce the multiplexing indexes and Illumina sequencing adapters, 
additional PCR ampli�cation was conducted using the Nextera XT Index Kit (Illumina, USA). �e PCR prod-
uct was then puri�ed once again using the AMPure XP beads. A�er the library construction, the metagenomic 
sequencing was performed using the paired-end 2 × 300 bp Illumina MiSeq protocol (Illumina MiSeq, USA)15.

Loop genomics library construction and sequencing. A total of 24 16S full-length based metagen-
omics sequencing library (eight libraries preps per each participant) were constructed with 10  ng of gDNA 
extracted from each human stool sample according to the LoopSeq 16S Microbiome SSC 24-Plex kit (Loop 
Genomics, San Jose, CA, USA) protocol supplied by the Loop Genomics manufacturer. �e LoopSeq protocol 
uses unique molecular barcoding labeling of individual 16S rRNA genes. �is unique molecular barcode is 
evenly distributed throughout the gene and leads to fragmentation of the 16S rRNA gene. �e barcoded 16S 
rRNA gene fragment sequences enable sequencing by short-reads on an Illumina sequencing platform, with 
subsequent reconstruction of the full-length 16S rRNA genes. �erefore, all hypervariable regions (V1–V9) 
can be identi�ed and analyzed because the entire 16S rRNA gene is sequenced. �e libraries were read on an 
Illumina NovaSeq 6000 sequencer (Illumina, San Diego, CA, USA), using a paired-end 2 × 150 bp reading sys-
tem. Coverage was 200–250 million paired-end reads per library of 24 samples. �e short-read raw data were 
collected in real-time on Illumina’s BaseSpace, which generates FASTQ �le and then were uploaded to the Loop 
Genomics unique analytic  pipeline58.

Loop genomics 16S full‑length preprocessing. �e sequencing raw data (2 × 150  bp PE, NovaSeq, 
Illumina) were transferred to the Loop Genomics unique barcode identi�er cloud. It is a data analysis pipeline 
that is used for the low-quality base trimming, the unique sample barcode demultiplexing, and synthetic long-
read reconstruction. �e demultiplexing and synthetic long-read reconstruction is a process that enables the 
de novo assembly to the full-length 16S long-read data a�er rearranging the short-leads tagged with the same 
unique barcode.

16S metagenomic data analysis. Bacterial 16S rRNA sequencing data of the two di�erent metagenom-
ics sequencing methods were analyzed using QIIME2 next-generation microbiome bioinformatics pipeline for 
comparative metagenomics study. All raw input data were transformed in the form of QIIME2 artifacts (.qza 
format), which contain information about the data types and sources for the downstream processing. From raw 
sequences data, the amplicon sequence variants (ASVs) were obtained using the Divisive Amplicon Denoising 
Algorithm 2 (DADA2) within QIIME 2 plugin, which detects and corrects amplicon errors and �lters out the 
potential base error and chimeric sequences (Supplementary Table S1)59,60. �e 16S full-length sequences, which 
are pre-processed data from Loop Genomics, were �ltered, trimming and dereplicating, and then DADA2 (R 
1.14.1v) was applied. �e representative sequences, which were generated a�er denoising were used to assign 
bacterial taxonomy using a sklearn-based Naive Bayes classi�er trained on the SILVA v138 99% 16S full-length 
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database. �e Relative classi�cation frequency table represented di�erential abundance tests at speci�c taxo-
nomic levels was created using collapse and feature-table within the QIIME2 plugins (Supplementary Table S2). 
�e "diversity" QIIME2 plugin was used to estimate alpha-diversity measurements and plots using R bioinfor-
matics packages. �is microbial diversity analysis pipeline was designed to use the ASVs table (a higher-reso-
lution analog than the traditional OTU table) of the ASVs picking step as necessary input data. Analyzing the 
di�erences in species richness and evenness scores considering with the sampling depth was measured using the 
Observed_OTUs, Chao1, Shannon, Simpson, and Pielou_e alpha-diversity indices (Supplementary Table S3). 
Each index estimate of both sequencing methods was compared on the basis of di�erent 16S rRNA gene length 
(V3–V4 vs. 16S full-length) using the Kruskal–Wallis test (a non-parametric version of ANOVA). In addition, 
a di�erence of relative abundance between the two methods was analyzed by comparing the average bacterial 
proportion and composition investigated in each taxonomic ranking. To compare the bacterial classi�cation 
accuracy of the two methods, we constructed and analyzed a phylogenetic tree generated with sequence inputs 
for the three bacterial strains (Bi�dobacterium, Alistipes, and Bacteroides strains) selected on the classi�cation 
table at the genus- and species level based on the multiple sequence alignment (MSA) with the SILVA 138v 
database. �e MSA was performed by the IUB DNA weight matrix (transition weight 0.50; delay-divergent 
cuto� 30%) in the MEGA X genetic analysis  so�ware61, and the phylogeny trees were illustrated by applying the 
distance matrix (UPGMA; Neighbor-joining, bootstrap 2000; minimum evolution) based on the MSA results. 
�e bacterial taxon was selected as strains having high sequence similarity between similar species or measuring 
high proportions on the taxonomy classi�cation table. �is tree analysis was performed to determine whether 
how similarly the sFL16S and V3–V4 taxonomy classi�cations were to the reference database given the sequence 
similarity according to the di�erent amplicon regions. Additionally, the bacterial classi�cation accuracy accord-
ing to the di�erent amplicon regions was cross-checked by comparing the taxonomy matching rate of each ASV 
taxonomy and NCBI bacterial reference genome database (about 40 K genomes) at the genus and species level. 
�e ASV taxonomy was �ltered using the blast-hit tool based on 97% sequence alignment identity (minimum 
criteria for dividing the species in the microbial genomes). �e plot was visualized using the R bioinformatics 
package.

Human experiments. Human stool samples were collected from three healthy adults using the NBgen-
GUT NP self-collection tube (Noble Biosciences, Republic of Korea). To con�rm the signi�cance of the results, 
a total of 24 samples were prepared by dividing the fecal specimens taken from each participant into eight iden-
tical sampling tubes. And then, all collected fecal samples were stored at − 80 °C. �e prior informed consents 
for human experiment were obtained from all subjects before the study began. All participants did not a�ect 
microbial communities, such as taking medication from a week before the study began. �e human experiment 
in this study (stool samples collection) was approved by the ethics committee of �eragen Bio (�eragen Bio, 
Republic of Korea) Internal Review Board (IRB numbers 700062-20180905-JR-005-01). All methods applied to 
the human experiment of this study were carried out in accordance with the guidelines and regulations of the 
declaration of Helsinki.
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