
The Effect of Temperature on Anopheles Mosquito
Population Dynamics and the Potential for Malaria
Transmission
Lindsay M. Beck-Johnson1,2*, William A. Nelson3, Krijn P. Paaijmans1,4, Andrew F. Read1,2,4,5,

Matthew B. Thomas1,4, Ottar N. Bjørnstad1,2,4,5

1 Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America, 2 Department of Biology, The

Pennsylvania State University, University Park, Pennsylvania, United States of America, 3 Department of Biology, Queen’s University, Kingston, Ontario, Canada,

4 Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, United States of America, 5 Fogarty International Center, National

Institutes of Health, Bethesda, Maryland, United states of America

Abstract

The parasites that cause malaria depend on Anopheles mosquitoes for transmission; because of this, mosquito population
dynamics are a key determinant of malaria risk. Development and survival rates of both the Anopheles mosquitoes and the
Plasmodium parasites that cause malaria depend on temperature, making this a potential driver of mosquito population
dynamics and malaria transmission. We developed a temperature-dependent, stage-structured delayed differential equation
model to better understand how climate determines risk. Including the full mosquito life cycle in the model reveals that the
mosquito population abundance is more sensitive to temperature than previously thought because it is strongly influenced
by the dynamics of the juvenile mosquito stages whose vital rates are also temperature-dependent. Additionally, the model
predicts a peak in abundance of mosquitoes old enough to vector malaria at more accurate temperatures than previous
models. Our results point to the importance of incorporating detailed vector biology into models for predicting the risk for
vector borne diseases.
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Introduction

Mosquitoes are very efficient vectors of human diseases and are

responsible for transmitting some of the most devastating diseases

today. For many of these diseases, the age structure and

abundance of female adult mosquitoes are key in determining

the ability of a mosquito population to vector the disease

effectively; malaria is one such disease. Malaria is the most

prevalent human vector borne disease, with one half of the world

population living in areas where there is risk of infection [1].

Despite the widespread transmission it is still difficult to predict

future malaria intensity, particularly in the face of climate change.

Because the parasites that cause malaria are so strongly tied to

mosquitoes for transmission, malaria incidence will change as the

climate changes; however, it is still unclear and a matter of debate

how the change(s) in transmission will occur [2–10].

Mathematical models of malaria transmission have a long

history dating back a century [11]. The classic Ross-MacDonald

model has been particularly influential and assumptions made in

the model have, in various forms, been included in the majority of

malaria models that followed [12–14]. The focus of Ross-

MacDonald and many subsequent models is the human popula-

tion, assuming that there is a constant adult mosquito population

capable of transmitting parasites. The mosquito lifecycle is

generally ignored because eggs, larvae and pupae are not involved

in the transmission cycle. This is a useful simplification of the

system but unfortunately the results of these models do not predict

malaria intensity in most endemic regions [14]. There have been

exceptions to this generalization, with some models focusing on

the mosquito population, and/or the influence of environmental

drivers, such as temperature and rainfall [8,15–20]. Of these

models, the ones that explicitly include temperature predict a peak

in abundance of vectors at temperatures that are higher than those

observed to occur in conjunction with malaria transmission in the

field [54]. We propose that a disconnect exists between classic

model predictions and observed epidemiology that is caused by

mosquito population dynamics that depend on ambient environ-

mental conditions and are strongly influenced by juvenile stage

dynamics.

Malaria is caused by Plasmodium spp. protozoan parasites.

Female Anopheles mosquitoes pick up Plasmodium parasites in a

blood meal taken from an infectious person; blood is required in

order to develop eggs. The parasites then go though several

developmental stages before they migrate to the mosquito salivary

glands. Once in the salivary glands the parasites can be

transmitted to a susceptible human host when the mosquito takes
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another blood meal [21]. The time spent developing in the

mosquito is known as the extrinsic incubation period (EIP) and its

duration is determined by temperature [7,12,22].

Mosquitoes have four main life stages: egg, larva, pupa and

adult. The three juvenile stages, egg, larva and pupa, are aquatic.

Typically 1 to 10% of the eggs that are laid emerge as adult

mosquitoes [23–29]. The larval stage is the longest of the three

juvenile stages and is the only one that feeds. Previous studies

indicate that larvae experience the majority of the effects of

density-dependence [30,31]. Density-dependence is thought to

manifest in several different ways depending on species. Increased

larval mortality and decreased developmental speed are two of the

most commonly measured density-dependent effects on juveniles.

Because larval conditions determine adult characteristics, density

can play through into the adult stage by changing the number of

emerging adults and the size, fecundity and survival of adults

[30,32–34].

The EIP is often relatively long compared to the life expectancy

of mosquitoes. For this reason, the age structure of a given adult

mosquito population is a major determinant of that population’s

vectorial capacity (the ability of the population to transmit the

parasite). The common assumption is that only around 10% of the

adult population survives to the epidemiologically relevant age

[7,35]. It is unknown, however, what changes occur in the

proportion surviving in response to changes in juvenile population

makeup or temperature conditions, on which they are dependent.

Even a small shift in the adult age structure can have big

consequences in terms of the disease burden.

Both Anopheles and Plasmodium are sensitive to temperature.

Because mosquitoes are ectotherms, each life stage is dependent

on temperature in the developmental and mortality rates. The

blood meal-egg laying cycle, known as the gonotrophic cycle, in

adult females is also dependent on temperature. Interestingly, the

temperature-dependencies are not the same among the stages,

leading to nonlinearities in population responses to temperature

[2,33,36–38]. Additionally, the optimum temperature for parasite

growth does not necessarily correspond to the vector optimum.

The effects of temperature on mosquito life history and parasite

development have been acknowledged for many years; however,

these are rarely included in models used to predict malaria

transmission.

We developed a model that begins to take into account the

complex, nonlinear temperature relationships present throughout

the life cycle, as well as intra-stage competition among larvae. The

framework draws on a rich body of previous theory that has been

developed for modeling stage-structured invertebrate populations

[39–43]. The model is comprised of a set of temperature-

dependent delayed differential equations (DDE). Temperature is

included in all the developmental delays, egg-laying and mortality

rates. Using the model, we ask how temperature affects adult

mosquito age structure and population densities and thus the

potential for disease transmission. The combination of nonlinear

temperature-dependencies and within stage density-dependence

lead to non-intuitive dynamics that emphasize the potential

importance of including vector dynamics in future malaria models.

Additionally, the predicted age structure of the adult population

points to a greater influence of temperature and juvenile stages

than previously thought. Furthermore, our model predicts

estimates of the peak temperatures for malaria transmission at

temperatures that are more in line with the observed biology than

when the classic assumption of a static vector population is used.

The ability to predict a peak in potentially infectious mosquitoes

that lines up more closely with observed malaria incidence is an

important development because it allows for a better understand-

ing of the population drivers and dynamics.

Materials and Methods

Model
The framework of the stage-structured, temperature-dependent

delayed differential equation (DDE) model reflects details of the

mosquito lifecycle (Figure 1). The stage structuring corresponds to

the four main life stages in the mosquito life cycle (egg, larva, pupa,

and adult) and it allows us to incorporate stage specific life history

rates and processes. The stage durations, given by the delays (or

lags), are temperature-dependent and allow for biologically

realistic developmental times. The temperature-dependence in

the delays also allows for the stage duration to change with

changing temperatures. We assume that juvenile and adult

mosquitoes experience the same temperature. Egg-laying rate,

and mortality in all stages, are temperature-dependent, with the

larval stage experiencing extra mortality because of the effects of

density-dependence. By limiting the effects of density-dependence

to larval mortality, the delays present in the model become

dependent on temperature alone. The four state equations

corresponding to egg (E(t)), larva (L(t)), pupa (P(t)) and adult

(A(t)) are as follows:

dE(t)

dt
~RE(t){RL(t){dE(t)E(t) ð1Þ

dL(t)

dt
~RL(t){RP(t){dL(t)L(t) ð2Þ

dP(t)

dt
~RP(t){RA(t){dP(t)P(t) ð3Þ

dA(t)

dt
~RA(t){dA(t)A(t) ð4Þ

where Ri(t) (i~E,L,P, or A) is the recruitment or the flux of

individuals into or out of a state and di(t) represents the per capita,

stage-specific mortality rate. The recruitment into a stage is

dependent on the recruitment into the previous stage according to,

RE(t)~b(t)A(t) ð5Þ

RL(t)~RE(t{tE(t))SE(t)
hE(t)

hE t{tE(t)ð Þ ð6Þ

RP(t)~RL(t{tL(t))SL(t)
hL(t)

hL t{tL(t)ð Þ ð7Þ

RA(t)~RP(t{tP(t))SP(t)
hP(t)

hP t{tP(t)ð Þ ð8Þ

where, ti(t) is the duration of stage i at time t. The egg-laying rate

(the number of eggs per female per day) is given by b(t) and the

temperature-dependent, stage specific development rate is hi(t).
The length of the delay, ti(t), is determined by the temperature-
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dependent development rate hi(t) of stage i at time t. The

implication of temperature-dependent time delays in a model is

that when temperature changes, delays become variable, which

makes analysis more difficult. To alleviate this we re-scaled the

model to a physiological time scale so that the delays become fixed

[41,43]. The details of this transformation are presented in the

(Text S1 and Text S2). The ratio at the far right hand side of

equations 6–8 corrects for any changes in the speed of

development within a stage that occur because of any temperature

changes during the stage and allows for time varying delays. When

temperature is held constant, as in this application of the ratio, the

ratio is one and does not impact the recruitment [42]. For the full

derivation of this correction, see Nisbet and Gurney [42]. The

model works well for fluctuating temperatures and can be driven

with stylized or realistic temperature drivers; as a demonstration of

this we have included the predicted adult abundance trajectories

for a 10uC seasonal fluctuation (Figure S1). However, the

systematic exploration of temperature variability is beyond the

scope of the current study (see Beck-Johnson et al. in prep).

Si(t) represents the survival through stage i and expands as

follows,

SE(t)~exp {

ðt

t{tE (t)

dE(j)dj

 !
ð9Þ

SL(t)~exp {

ðt

t{tL(t)

dL(j)dj

 !
ð10Þ

SP(t)~exp {

ðt

t{tP(t)

dP(j)dj

 !
ð11Þ

SA(t)~exp {

ðt

t{tA(t)

dA(j)dj

 !
: ð12Þ

The stage-specific per capita mortality rate equations (di(t)) are

given by,

dE(t)~cEm3 exp
T(t){m4

m5

� �2
 !

ð13Þ

dL(t)~cLm3 exp
T(t){m4

m5

� �2

zsL(t)

 !
ð14Þ

dP(t)~cPm3 exp
T(t){m4

m5

� �2
 !

ð15Þ

dA(t)~m0 exp
T(t){m1

m2

� �4
 !

ð16Þ

where mj (j~0,1,2,3,4, or 5) is a scalar and ci (i~E,L, or P) is the

proportion of the juvenile life cycle that the eggs, larvae and pupae

take up respectively (see Text S1, for derivation). The extra

mortality experienced by the larvae because of density-depen-

dence is denoted by s. We assume that the larvae are the only

stage to experience density-dependent mortality. The Gaussian

(and squared Gaussian) functional forms for the temperature-

dependence were chosen to fit empirical patterns (see below).

Figure 1. Diagram of the model setup. Each stage experiences temperature-dependent, stage-specific mortality, di (i~E,L,P or A). Recruitment
into a stage i at time t is given by Ri and is also dependent on temperature. Density-dependent mortality is only experienced in the larval stage, s.
doi:10.1371/journal.pone.0079276.g001
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Parameterization and Data
All parameter values used in the model are based on data from

laboratory studies. The functional relationships used in the model

were fit to the data using nonlinear least squares optimization. The

data that we used to parameterize temperature-dependent

mortality rates in the juvenile mosquito stages come from two

studies by Bayoh and Lindsay [37,38]. They monitored mortality

at a range of constant temperatures using An. gambiae mosquitoes,

the main African malaria vector (Figure S2). The data suggest a

Gaussian dependence of mortality as expressed in equations 13–

15. The adult temperature-dependent mortality data also come

from a laboratory study on An. gambiae [36], in which mortality

rates are followed across a range of temperatures at several

humidities (Figure S2). For the purposes of our model, we used the

adult mortality data at 60% and 80% humidity, which are both

acceptable humidity levels for An. gambiae mosquitoes. The

functional form that fits adult mortality best is similar to the

juvenile stage except that it is raised to the fourth power instead of

squared, (equation 16). Parameter values are given in Table 1.

The data used to parameterize temperature-dependent devel-

opmental rates came from multiple laboratory studies on An.

gambiae sensu lato complied by Depinay et al. [17]. The adult

gonotrophic cycle rate, or egg development rate, was parameter-

ized with data from An. pseudopunctipennis across different constant

temperatures [44] (Figure S2). We fit a power function of the form

hi(t)~aiT(t)b ð17Þ

where hi(t) is the development rate through stage i (i = E, L, P, or

A). Further information on hi(t) is presented in the (Text S1).

Temperature is represented by T(t) and ai and b are parameters

empirically derived.

The data for parameterizing density-dependent larval mortality

came from a laboratory study on four species of mosquito

conducted at 27uC; we used data from An. stephensi (Figure S3)

[31]. Mosquitoes within the Anopheles genus appear to respond to

density in different ways, through a mixture of increased larval

mortality, slowed larval development and feedbacks on adult size,

fecundity and survival [30,31,33,34]. In this study we assume

increased larval density to increase per capita larval mortality; An.

stephensi appears to have a relatively strong response in larval

mortality to increased density when compared with the response in

An. gambiae [31]. The data about density-dependence in Anopheles is

not very comprehensive and therefore it is difficult to draw

conclusions about the type of functional response of the population

to increasing density. To that end, we tried several functional

forms of density-dependence in our model, including exponential,

linear, quadratic and log-linear. The exponential form was chosen

because it is the best fit to the data and results in mosquito

population abundances peaking in the mid-20uC range and larval

populations not growing larger than 2000 larvae per liter; these

latter two results are more in line with what is known about the

biology of these mosquitoes than the results from any of the other

functional forms of density-dependence. The exponential form is

incorporated in equation 14 (see Text S3, Figures S4, S5, S6, S7,

S8, S9, S10, and Tables S1, S2 for results assuming linear form of

density-dependence). There is evidence that there may be

interactions between temperature and density [45]; however, this

relationship has yet to be fully described and therefore can not be

incorporated into the model. In our model, we make the

simplifying assumption that temperature-dependent mortality is

the baseline mortality rate and that the mortality in the larval stage

resulting from density-dependence is additive.

The temperature-dependent relationship of the length of

parasitic EIP differs from that of the adult mosquito age structure,

making it more difficult to predict the temperature at which we

would expect to see a peak in mosquitoes that survive to the

epidemiologically relevant age. Assuming for simplicity that all

mosquitoes become infected as they enter the adult stage, we used

both the classic Detinova EIP prediction curve [2,46] and the

curve recently proposed by Paaijmans et al. [7], hereafter in this

paper referred to as the Paaijmans curve, to predict the number of

mosquitoes that potentially survive to infectiousness. In this study,

we are using the EIP predictions based on P. falciparum

development, because this is the most virulent of the human

parasites and the most prevalent in Africa. The Detinova curve

was proposed in 1962 and is based on a study of Plasmodium

development within An. maculipennis mosquitoes, a vector of

malaria found in Russia. This curve takes the form of a Blunck

hyperbola, predicting extremely long development at cool

temperatures and fast development at warm temperatures [46].

The Detinova equation is the temperature-dependent parasite

development function most used in mechanistic malaria models to

date (e.g., [4,20]). The Paaijmans curve is based on the

temperature-development function proposed by Briere et al.

[47], which also leads to long development times at cool

temperatures but also a slowing and eventual cessation of

development beyond the optimum temperature for development.

This curve is based on parasite development data from several

Table 1. Parameter Values.

Parameter Value Description Reference

b 1.726 fit exponent in development
rate function

[17]

aI 2.87e24 fit scalar in egg to adult
development rate function

[17]

r 0.156 egg-laying rate scalar E0aG

m0 8.86e22 fit scalar in adult mortality
rate function

[36]

m1 21.211 fit scalar in adult mortality
rate function

[36]

m2 14.852 fit scalar in adult mortality
rate function

[36]

m3 2.00e22 fit scalar in juvenile
mortality rate function

[37,38]

m4 23.00 fit scalar in juvenile
mortality rate function

[37,38]

m5 6.50 fit scalar in juvenile
mortality rate function

[37,38]

sexp 1.33e23 fit scalar in density-
dependent mortality
exponential function
(Larvae/Liter)

[31]

cE 6 estimate for the proportion
of time spent in egg stage

[17]

cL 3

2

estimate of the proportion
of time spent in larval stage

[17]

cP 6 estimate for the proportion
of time spent in pupal stage

[17]

aG 1.04e23 fit scalar in gonotrophic
cycle rate function

[44]

E0 150 number of eggs laid per
cycle by a single female
(observed range 50–300)

[58–60]

doi:10.1371/journal.pone.0079276.t001
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different Anopheles species [7] and takes the upper thermal limit of

P. falciparum parasites into account. This type of approach has been

widely used to explore the effect of temperature on a wide range of

ecological and evolutionary questions (e.g., [48–50]). These curves

differ most substantially at temperatures greater than 26–27uC,

which is the warmer end of the parasite development range.

We also compared the predictions our model makes about the

potentially infectious age class with predictions made using the

‘‘classic’’ model assumptions of a static, temperature-independent

adult mosquito population. For the classic model predictions, we

used the same assumptions about the potentially infectious age

group as presented above except that to predict survival to that

age, we used a constant adult mortality of 10% per day and

constant recruitment into the adult stage with no temperature-

dependence in either. Additionally, in order to make the

predictions comparable, we took the maximum adult recruitment

predicted by our model and used that as the recruitment

abundance across all temperatures. This assumption means that,

given the abundance of adult mosquitoes chosen, the prediction

curve will move up or down but the shape will remain the same.

To compare our model predictions with observations of

transmission intensity, we compared the number of potentially

infectious mosquitoes predicted by our model and those using

assumptions of a constant adult mosquito population to observed

entomological inoculation rates (EIR) from 14 African countries

complied by Mordecai et al. [54]. The EIR is the rate of infectious

bites on people and is determined by the following functional

relationship:

EIR~m � a � s ð18Þ

where m is the number of mosquitoes per host, a is the daily rate of

mosquito biting and s is the proportion of the mosquitoes which

have the Plasmodium parasites in their salivary glands. Mordecai et

al. [54] took EIR observations and matched them with mean

transmission-season temperature for each location in the data set,

so we can use these to compare our temperature-dependent

predictions with estimates of transmission across a range of

temperatures.

We ran simulations on the fully parameterized model from 16 to

40uC at one-degree increments, giving 25 different constant

temperature runs. This range of temperatures encompasses the

temperatures that are relevant for malaria transmission, with 16uC
being the lower developmental limit of the malaria parasite P.

falciparum and 40uC being the thermal death point of mosquitoes

[2]. The equilibrium at each temperature was examined to see if

the mosquito population was predicted to crash or persist through

time. The age structure of the adult population was determined

using both the recruitment into the adult stage at equilibrium for

each temperature and the adult survival. This was combined with

the Detinova and Paaijmans EIP prediction curves to determine

the abundance of potentially infectious mosquitoes at each

temperature. We ran a local sensitivity analysis looking at the

effect of changing each of the 12 parameters on adult recruitment,

adult and larval equilibrium abundance and the potentially

infectious adult populations using both the Paaijmans and

Detinova curves. The sensitivity of the model outputs was

calculated using

sensitivity~
Oj(1:05pi){Oj(0:95pi)

0:1Oj(pi)
ð19Þ

where, Oj is the model output j (j~ adult, or larval abundance or

adult recruitment or potentially infectious adult abundance

calculated using the Paaijmans or Detinova curves), and pi is the

parameter i (i~r, cE , cL, cP, aI , s, m0, m1, m2, m3, m4, or m5). The

sensitivity is the percent change in the model output in response to

a percentage change in the parameter [51].

Results

The model predicts that mosquito populations will persist (i.e.

have a population size greater than 1) from 17 to 33uC, which is in

line with the experimental data used to parameterize the model

[37,38]. From 17 to 19uC and from 27 to 33uC, mosquito

abundance dynamics were predicted to be stable. Between 20 and

26uC, the equilibrium point lost stability and the dynamics

followed small amplitude cycles, which are consistent with

oscillations seen in other DDE systems [52]. Across the

temperature range where populations persisted, the larval

equilibrium abundance was 20 to 50 fold the adult abundance

(Figure 2). The model predicts that the adult population will be 2.1

to 4.7% the size of the larval population, which is consistent with

empirical estimates of larval survival that range between 1 to 10%

[23–29]. In addition to numerical analysis, we also derived the

equilibria analytically. The non-trivial equilibria found by

analytical analysis of the model matched the numerical solutions

at those temperatures where populations converged on the

equilibrium point. Because the model is deterministic with a

single attractor, the results are not dependent on the initial

conditions.

The cycles displayed by the system from 20 to 26 C result from

over-compensatory density-dependence in the larval stage. At

these temperatures, the temperature-dependent mortality, which

we assume is the baseline mortality, is at its lowest point in both

juvenile and adult mosquitoes. Additionally, juvenile development

rate is slow to moderate through the range of temperatures in

question; this, in combination with low mortality, leads to a large

larval population. Density-dependent mortality then becomes very

strong and causes the observed over-compensatory crash. The

cycles are of such a small amplitude that it is unclear whether it

would be discernible in the face of variability in most natural time

series of mosquitoes. The cycle period is determined by the length

of the juvenile delay (egg to adult maturation time) and

corresponds to approximately twice the length of that delay

(Table S3). The cycle period is consistent with the dynamics of

many insect populations that experience larval competition [52].

Because the adults are the epidemiologically important subset of

the mosquito population, we explored the changes in this stage

across temperatures and in response to juvenile stage dynamics

through the adult recruitment. The juvenile stage mortality rate

data showed greater variability to temperature and stayed low over

a smaller temperature range than the adult mortality rates. The

data suggested that adult mosquito mortality rates did not change

much across the temperature range we are interested in, except at

the extremely warm temperatures (Figure S2). Daily adult survival

is therefore predicted by the model to be high for all temperatures

explored except those at the high end of the range. Interestingly,

we found adult abundance to be more sensitive to temperature

than one would predict based on the adult survivorship alone,

having a more defined peak and a sharp decrease in abundance at

cooler temperatures (Figure 2). The juvenile stage temperature

sensitivities impact recruitment into the adult stage, which made

the abundance of adults more temperature-dependent.

We explored the effects of temperature and juvenile stage

dynamics on adult age structure because it is an important

determinant of population vectorial capacity. The combination of

Temperature and Vectorial Capacity in Mosquitoes
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temperature-dependencies and intra-stage density-dependence in

the larval stage impacted recruitment into the adult stage, and

therefore the age structure, in nonlinear ways (Figure 3). The

number of mosquitoes emerging as adults was determined by the

egg-laying rate and the juvenile stage dynamics. However, because

there was no further feedback from the juvenile stages once

recruits were in the adult stage, the survival of newly emerged

adults was determined by the adult temperature-dependent

mortality alone. The model predicted the largest abundance of

long-lived mosquitoes to be across the 20–30uC temperature

range, with the most noticeable drops in longevity at the extremely

warm and cool temperatures where recruitment was low. This

corresponds with observations of decreased longevity at temper-

atures above 32uC and in the East Africa highlands were

temperatures are cool [2,53].

We found that the adult population old enough to potentially be

capable of transmitting malaria was strongly influenced by juvenile

stage dynamics through adult recruitment and more strongly

temperature-dependent than previously predicted, regardless of

the EIP prediction curve used. The predictions about the

potentially infectious populations differed based on the EIP

prediction curve used, most noticeably at the warmer end of the

temperature range. With both the Detinova and the Paaijmans

curves (Figure 4), the model predicted a peak in the abundance of

mosquitoes potentially able to transmit parasites at cooler

temperatures than when using the classic assumptions of a

temperature-independent adult population (Figure 5).

The shift to peaks at cooler temperatures is important

biologically for this system, because malaria transmission peaks

at temperatures in the mid-20s rather than in the 30s [2,54,55].

The Detinova curve predicts that parasite development speed

continued to increase until it was curtailed by the imposed lethal

temperature of 40uC; thus the observed drop in abundance at high

temperatures was the result of the population dynamics in the

model. Our model, in combination with the Detinova curve,

predicted that the abundance of potentially infectious mosquitoes

will start to decrease above 30uC. The combination of our model

predictions and the Paaijmans curve resulted in a peak in the

abundance of epidemiologically relevant mosquitoes at the slightly

cooler temperature of 28uC. This observed two-degree drop in the

peak occurs because the Paaijmans curve predicts that parasite

development will begin to slow above 30uC and eventually halt at

35uC. It should be noted that the Paaijmans curve, because of its

predicted 30uC peak, does as well alone in predicting a biologically

realistic peak as the Detinova Curve does in combination with our

mosquito model. However, the most biologically realistic peak

found in this study is the combination of the Paaijmans curve and

the predictions of our model. This can be seen when the EIR data

points are compared to the predicted results (Figure 5). The

transmission intensity is generally higher at cooler temperatures

than are predicted by the curves without mosquito dynamics and it

drops off rapidly at higher temperatures.

We ran a local sensitivity analysis on the twelve parameters in

our model at each of the 25 temperatures from 16 to 40uC. This

allowed us to determine which model parameters were most

sensitive to change but also whether the sensitivity of a given

parameter changed across the temperature range. The outputs

used to gauge model sensitivity to changes in parameters were

larval and adult abundance, recruitment into the adult stage and

the abundance of mosquitoes old enough to potentially transmit

malaria using both the Detinova and Paaijmans EIP prediction

curves. For larval abundance the parameters that were the most

Figure 2. Larval and adult equilibrium abundances. (A) The larval equilibrium abundances across temperatures with exponential density-
dependence. (B) The adult equilibrium abundances (solid line, left axis) and daily survival (dashed line, right axis) across temperatures. The gray points
and bars in both panels are the stable and cyclic abundances, respectively. The solid line connecting the points is the average abundance across
temperature. Notice that the y-axes have different scales.
doi:10.1371/journal.pone.0079276.g002
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sensitive to change were the three juvenile mortality parameters

(m3, m4, and m5), density-dependent mortality (sexp) and juvenile

development rate (aI ). These five parameters displayed high

sensitivity across the majority of the temperature range. The

parameters that showed the greatest sensitivity for adult abun-

dance were larval density-dependence (sexp), juvenile development

rate (aI ) and the proportion of time spent in the larval stage (cL).

Additionally, adult abundance was sensitive to changes in one of

the juvenile mortality parameters (m4), with the other two (m3, and

m5) becoming more important at the extreme edges of the

temperature range. The responses of adult recruitment and of the

potentially infectious mosquito population were quite similar;

across most of the temperature range the parameter that resulted

in greater sensitivity was the proportion of time spent in the larval

stage (cL). Additionally, across shorter ranges of temperatures

juvenile development rate (aI ), larval density-dependence (sexp),

one of the adult mortality parameters (m0), and one of the juvenile

parameters (m4), were important (Figure 6, Figures S11, S12, S13,

and TablesS4, S5).

Discussion

The population dynamics and adult age structure of Anopheles

mosquitoes are important when determining a given population’s

ability to transmit malaria. Ambient temperature conditions affect

both mosquito life history processes and the Plasmodium EIP. The

sensitivities to temperature change between the mosquito juvenile

stages and the adult as well as between life history traits such as

development and mortality. Additionally, malaria parasites have a

temperature-dependent development curve that does not match

up with the mosquito temperature curves. All these factors pull the

system in different directions at certain temperatures, making the

population response hard to predict. By running simulations of our

DDE model across a broad temperature range (16–40uC) we were

able to explore population responses to changes in temperature.

Our results indicate that non-linear temperature sensitivities

throughout the mosquito life cycle have a large impact on the

adult population dynamics and therefore on a population’s ability

to vector malaria effectively. Additionally, our results suggest that

juvenile stage dynamics influence adult stage structure dramati-

cally.

Juvenile mosquitoes are not infected by Plasmodium parasites and

live in an entirely different habitat from the adults, and so juvenile

mosquitoes are frequently left out of malaria transmission models.

It is well known that conditions experienced by juvenile

mosquitoes determine adult characteristics, only some of which

have been included in our model [30,32–34]. Our results

demonstrate that the effects of temperature on juvenile stages

are important in determining the age structure of the adult

population. Here we made the simplifying assumption that water

and air temperatures are the same. However, it has been been

shown that water temperatures in the pools that are preferred by

An. gambiae mosquitoes are warmer than air temperatures in

western Kenya [56]. When data are available across a range of

environments, the relationship between air and water temperature

can be easily incorporated into the model.

Adult mortality is less sensitive across much of the temperature

range in question than the juvenile mortality rate; in fact, across

much of the range, mortality in adults is almost constant (Figure

S2). If adults were independent of the juvenile stages we would

expect to see a very broad flat curve of equilibrium adult

abundance. Instead we see a curve that resembles the shape of the

larval equilibrium abundance curve and has a more defined peak

and rapid declines on both edges of the temperature range

(Figure 2). Additionally, our results show that larval density-

dependence has a significant regulatory impact on mosquito

populations and can lead to low amplitude overcompensation

cycles.

Larval density-dependence is an important regulatory process in

the model. It is also one of the most sensitive parameters across

most of the temperature range for adult recruitment, adult and

larval abundance and the abundance of potentially infectious

mosquitoes. From the literature, it appears that different species of

Anopheles respond to increases in density in different ways. For

example, An. stephensi, an important vector in Southeast Asia,

shows an increase in daily mortality rate with increased density in

the larval stage [31]. In contrast, An. gambiae, an important vector

in Africa, does not appear to respond strongly to density through

morality rate, but does show a increase in the developmental

period [30,31]. In the model, we assumed that the influence of

density is manifested in daily mortality rates and, because of this,

used data from An. stephensi (Figure S3). This assumption allows for

the delays in the model to be determined solely by temperature,

making the system more tractable. It also provides a starting point

Figure 3. Age-specific adult abundance and adult recruitment
across temperature. (A) The age-specific abundance of a single
cohort of adult mosquitoes for each temperature. High abundance is in
dark blue decreasing to zero in white. (B) Recruitment (the mean
abundance of new recruits) into the adult stage over the temperature
range.
doi:10.1371/journal.pone.0079276.g003

Figure 4. Extrinsic incubation period curves. Temperature-
dependent extrinsic incubation period in days; the solid line is the
Detinova prediction curve and the dashed line is the Paaijmans curve.
doi:10.1371/journal.pone.0079276.g004
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to explore the ways in which the type of density-dependence

influences population dynamics.

We also assumed that density-dependence in mortality takes an

exponential form. This assumption was based on the fit to the data

and on the fact that this form of density-dependence resulted in

population abundances and peaks that most closely resemble the

biology of the system. Past experimental work has shown a

relationship between key life history traits and larval density

[30,31,33,34]; however, much of those data are in a format that

could not be used to parameterize the model. The data needed to

parameterize this model are daily mortality rates for a single

Anopheles species. The scarcity of data is a great hinderance to

understanding Anopheles mosquito population dynamics. This is

particularly true if we want to use models to predict the potential

impact of a mosquito control program, as changing densities of

larval populations could have unexpected ramifications in the

adult population. The effects of density-dependence on Anopheles

mosquito populations merit further exploration both theoretically

and empirically, as our sensitivity analysis reveals that it is one of

the critical parameters.

In addition to density-dependence, other key parameters such as

juvenile mortality and development were important for all the

population metrics we looked at in our sensitivity analysis. It is

interesting to note that all of the parameters that appear to be

important to the population across temperatures have been found

to be affected by density-dependence [30,31,33,34]. Juvenile

mortality and development have been fairly well studied across a

constant temperature range in optimized food and density

conditions; however, much more data is needed in order to

understand how these parameters respond to density and to

temperature and density together. The scarcity of field data on

density-dependence has recently been addressed by Muriu et al.

[57], who found that larval density of An. gambiae can impact larval

survival and development rates as well as the size of adults. These

results provide further evidence that understanding the regulatory

processes can increase our understanding of mosquito population

dynamics.

The adult population abundance is more sensitive to temper-

ature than previously assumed, such that the adult population only

persisted at temperatures that were suitable for juvenile mosqui-

toes, despite having high predicted survival across a much broader

range. This does not correspond directly with the vectorial

capacity because the parasitic development rate has a different

temperature relationship. We found that the function used to

describe Plasmodium developmental rate influences the predictions

about a mosquito population’s ability to effectively transmit the

parasite. Both the Detinova and Paaijmans curves predict a rapid

increase in developmental rate over the lower end of the

temperature range. The Paaijmans curve then tapers off and

predicts cessation of development at very high temperatures where

Figure 5. Potential for infectious mosquitoes. The abundance of mosquitoes old enough to be potentially infectious across temperatures. In
both graphs the solid line represents the predictions made using our model in combination with either the Detinova (A) or Paaijmans (B) EIP
prediction curve. The gray points and bars in both panels are the stable and cyclic abundances predicted by our model, respectively. The dashed lines
represent the predictions made using the classic model assumptions of a constant vector population, in combination either the Detinova (A) or
Paaijmans (B) EIP prediction curve. The red points, which correspond to the right y-axis are the observed entomological inoculation rates from 14
countries in Africa, compiled by [54].
doi:10.1371/journal.pone.0079276.g005
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the Detinova curve does not. Using either of these curves with the

predictions from our model gives a more realistic prediction about

temperatures at which we would expect a peak in potentially

infectious mosquitoes [2,54,55]. Our model predicts that the peak

in potentially infectious mosquitoes begins at lower temperatures

than models without vector dynamics (Figure 5). This is important

for understanding the dynamics of mosquito populations and

malaria in the field, and could help to explain some of the mis-

match between previous model predictions and observed malaria

patterns. The prediction from our model that abundance of

potential vectors decreases at high temperatures is a phenomenon

that has been demonstrated in malarious regions [2].

One major advantage of having a model such as this one, which

admittedly does not include all the aspects of mosquito biology, is

that the model is relatively parameter sparse. The inclusion of

other types of environmental drivers, mosquito physiological

responses, or behavior would add considerably to the degree of

difficulty in interpreting the model results. Additionally, many of

those relationships are data scarce and we would therefore be in

danger of over parameterizing relationships that are not well

understood. As it stands, the model represents a starting point and

provides a robust framework that can be built upon. Because there

are only a dozen parameters in the model, we can point to areas

where the sensitivity analysis and/or the data suggest there is good

reason for further empirical exploration. The limited number of

parameters in our model—and our focus on temperature-

dependence—makes it relatively easy to interpret which life

history traits are most important for driving dynamics, in contrast

to the more parameter heavy models (e.g., [17]).

Despite the availability of control systems, such as drug

therapies, insecticides, and bed-nets, malaria continues to be a

major problem for a large part of the world. To date, theoretical

efforts to understand transmission have in large part failed to take

into account vector biology. This is of particular concern when the

impacts of climate and/or climate change on disease risk are

explored. Our results highlight the importance of including

mosquito biology in models of mosquito-borne disease. Incorpo-

rating the juvenile stage dynamics increases our understanding of

potential for transmission because of strong regulatory effects in

the epidemiologically significant adult stage. Furthermore, includ-

ing temperature-dependencies in the entire life cycle has

interesting and non-intuitive impacts on the potential vectorial

capacity of a population. The model framework we have

developed is robust and can be run with a variety of temperature

conditions, including fluctuating temperature regimes (see example

in Figure S1). We can also build upon the model, adding processes

such as malaria infection. The model is relatively parameter

sparse, a considerable bonus for adapting it to different scenarios

quickly and effectively. Because all mosquito vectors share the

same basic lifecycle, the model can also be converted to other

mosquito-borne disease systems, such as Dengue Fever and West

Nile Virus. We propose this model as a useful framework to begin

to interpret mosquito population responses to temperature

sensitivities as well as inter- and intra-stage interactions. Under-

standing the vector population will lead to clearer understanding

of malaria transmission and enhance our ability to predict what

may happen to disease intensity in the future.

Supporting Information

Figure S1 Adult abundance from model simulations

with a 106C seasonal temperature fluctuation. (A) Adult

abundance trajectory over the course of one year, with a mean

temperature of 18uC (B) Adult abundance trajectory over the

course of one year, with a mean temperature of 22uC (C) Adult

abundance trajectory over the course of one year, with a mean

temperature of 26uC (D) Adult abundance trajectory over the

course of one year, with a mean temperature of 30uC. The x-axes

are all time in days over a single year and the y-axes are adult

abundance.

(EPS)

Figure S2 Developmental and mortality data used in the
model parameterization. (A) Juvenile development rate across

temperature. The points are data from [17] and the development

function used in our model is the solid line. (B) Development rate

of the gonotrophic cycle across temperature. The points are data

from [44] and the solid line is the fit function. (C) Temperature-

dependent juvenile mortality rate. The filled circles data are from

[38] and the x’s are data from [37]; the solid line is the fit function.

(D) Temperature-dependent adult mortality rate. The filled circles

are data from 60% humidity and the x’s are data from 80%

humidity; these data were published in [36]. The solid line is the fit

function used in our model.

(EPS)

Figure 6. Sensitivity rank across temperature. The sensitivity of
larval abundance (A), adult abundance (B) and adult recruitment (C) to
changes in the parameters across temperatures ranked from highest to
lowest sensitivity. Red indicates greatest sensitivity to change, followed
by orange, yellow and white. The x-axis is temperature from 17–33uC,
and the y-axis is the parameter.
doi:10.1371/journal.pone.0079276.g006
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Figure S3 Exponential density-dependence. Exponential

function fit to the larvae mosquito density-dependent daily

mortality rate data. The data points are data from An. stephensi

published in [31].

(EPS)

Figure S4 Linear density-dependence. Linear function fit

to the larvae mosquito density-dependent daily mortality rate data.

The data points are data from An. stephensi published in [31].

(EPS)

Figure S5 Larval and adult equilibrium abundances. (A)

The larval equilibrium abundances across temperatures from the

model with linear density-dependence. (B) The adult equilibrium

abundances across temperature. Notice that the y-axes have

different scales.

(EPS)

Figure S6 Adult recruitment and age-specific adult
abundance across temperature. (A) The age specific

abundance of adult mosquitoes from the model with linear

density-dependence. Time in days is on the x-axis, temperature

(uC) is on the y-axis. High abundance is in dark blue decreasing to

zero in white. (B) The recruitment into the adult stage over the

temperature range, with temperature on the y-axis and recruit-

ment on the x-axis.

(TIF)

Figure S7 Potential for infectious mosquitoes The

abundance of potentially infectious mosquitoes across tempera-

tures from the model with linear density-dependence. In both

graphs the solid line represents the predictions made using our

model and the dashed line represents the predictions made using

the classic model assumptions. The Detinova prediction curve was

used to calculate (A), and (B) was calculated using the Paaijmans

curve.

(EPS)

Figure S8 Sensitivity ranks across temperature from
the model with linear density-dependence. The sensitivity

of larval abundance (A), adult abundance (B), abundance of

potentially infectious mosquitoes using the Detinova (C) and

Paaijmans (D) curves, and adult recruitment (E) to changes in the

parameters across temperatures ranked from highest to lowest

sensitivity. The x-axis is temperature from 17–33uC, and the y-axis

is the parameter. Red indicates greatest sensitivity to change,

followed by orange, yellow and white.

(EPS)

Figure S9 Sensitivity analysis of the across temperature
from the model with linear density-dependence. Sensitiv-

ity of adult equilibrium abundance, solid black line; larval

equilibrium abundance, dashed blue line; and recruitment into

the adult stage, dotted green line; across temperature. Temper-

ature from 16–40uC is on the x-axis and sensitivity is on the y-axis.

(EPS)

Figure S10 Sensitivity analysis of the across tempera-
ture from the model with linear density-dependence.
Sensitivity of adult equilibrium abundance, solid black line; larval

equilibrium abundance, dashed blue line; and recruitment into the

adult stage, dotted green line; across temperature. Temperature

from 16–40uC is on the x-axis and sensitivity is on the y-axis.

(EPS)

Figure S11 Sensitivity rank of the potential for infec-
tious mosquitoes across temperature. The sensitivity of

potentially infectious mosquito population calculated using the

Detinova (a) and Paaijmans (b) curves to changes in the

parameters across temperatures ranked from highest to lowest

sensitivity. The x-axis is temperature from 17–33uC, and the y-axis

is the parameter. Red indicates greatest sensitivity to change,

followed by orange, yellow and white.

(EPS)

Figure S12 Sensitivity analysis of the across tempera-
ture. Sensitivity of adult equilibrium abundance, solid black line;

larval equilibrium abundance, dashed blue line; and recruitment

into the adult stage, dotted green line; across temperature.

Temperature from 16–40uC is on the x-axis and sensitivity is on

the y-axis.

(EPS)

Figure S13 Sensitivity analysis of the across tempera-
ture. Sensitivity of adult equilibrium abundance, solid black line;

larval equilibrium abundance, dashed blue line; and recruitment

into the adult stage, dotted green line; across temperature.

Temperature from 16–40uC is on the x-axis and sensitivity is on

the y-axis.

(EPS)

Table S1 Sensitivity values assuming linear density-
dependence The sensitivity values are the percent change in the

adult and larval equilibrium abundance and adult recruitment in

response to a 5% change in the parameter in the model assuming

linear density-dependence.

(PDF)

Table S2 Potentially infectious abundance sensitivity
values assuming linear density-dependence The sensitivity

values are the percent change in the potentially infectious adult

abundance calculated using the Detinova or the Paaijmans curve

in response to a 5% change in the parameter in the model

assuming linear density-dependence.

(PDF)

Table S3 Periodicity of Fluctuations.
(PDF)

Table S4 Sensitivity values assuming exponential den-
sity-dependence The sensitivity values are the percent change

in the adult and larval equilibrium abundance and adult

recruitment in response to a 5% change in the parameter in the

model assuming exponential density-dependence.

(PDF)

Table S5 Potentially infectious abundance sensitivity
values assuming exponential density-dependence The

sensitivity values are the percent change in the potentially

infectious adult abundance calculated using the Detinova or the

Paaijmans curve in response to a 5% change in the parameter in

the model assuming exponential density-dependence.

(PDF)

Text S1 Model Development and Compression.
(PDF)

Text S2 Model Transformation.
(PDF)

Text S3 Model results when using the linear form of
density-dependence.
(PDF)
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