
The Effect of Test-Driven Development on

Program Code

Matthias M. Müller

Fakultät für Informatik, Universität Karlsruhe,
Am Fasanengarten 5, 76 131 Karlsruhe, Germany

muellerm@ipd.uka.de

Abstract. Usage of test-driven development (TDD) is said to lead to
better testable programs. However, no study answers either the question
how this better testability can be measured nor whether the feature
of better testability exists. To answer both questions we present the
concept of the controllability of assignments. We studied this metric on
various TDD and conventional projects. Assignment controllability seems
to support the rules of thumb for testable code, e.g. small classes with
low coupling are better testable than large classes with high coupling.
And as opposed to the Chidamber and Kemerer metric suite for object-
oriented design, controllability of assignments seems to be an indicator
whether a project was developed with TDD or not.

1 Introduction

Test-driven development (TDD) is besides pair programming one of the main
programming techniques in extreme programming. However, test-driven devel-
opment has not been studied as thoroughly as pair programming. Studies dealing
with test-driven development have focused on the development cost or the qual-
ity of the written tests [1–5]. Nobody investigated the structure of programs
developed with test-driven development although it is claimed that “Test-first
code tends to be more cohesive and less coupled than code in which testing isn’t
part of the intimate coding cycle” [6, p. 88].

This paper uses the concept of controllability [7] to investigate the effect of
test-driven development on program code. Controllability means that the pro-
gram can be put in every legal state by only altering the inputs. This concept is
applied to assignments. Controllability of an assignment means that the operands
on the right hand side are input parameters of a method or these operands can
be calculated from these parameters. We present a new metric called assignment

controllability (AC) which quantifies this property for methods and classes. The
assignment controllability is compared to the Chidamber and Kemerer metric
suite for object-oriented design [8] using a set of TDD and open-source projects
As a result, assignment controllability seems to support the rules of thumb of
testable code, i.e. fewer number of methods and low coupling, and assignment
controllability seems to be an indicator whether a project was developed us-
ing TDD or not. Throughout the paper we refer to projects which have been
developed with test-driven development as TDD-projects.

2 The Metric

2.1 Controllability

Controllability is a concept from the design of digital circuits. For example
Abramovici et al. [9] define controllability as ’the ability to establish a specific
signal value at each node in a circuit by setting values on the circuit’s inputs.’
The transformation of controllability to an object oriented program means that
all input parameters are known and that these parameters provide enough in-
formation to describe the state and the behaviour of the program. In this paper,
we concentrate on assignments as they provide the only means to change the
state of objects which represent the state of a program. Invocations of methods
which do not return any value are ignored by our analysis, so far.

2.2 Controllability of Assignments

The calculation of controllability is a data-flow problem. First of all, all param-
eters of a method as well as private or public instance or class variables are
controllable. These elements form the basic blocks for the calculation. Table 1
shows the rules for the remaining parts of an assignment. The result of an assign-

Table 1. Controllability of Operations

Operation Controllability of the result

lhs := rhs The left hand side of an assignment is controllable
if the right hand side is controllable.

exp1 ⊕ exp2 The result of an arbitrary binary operation ⊕ is con-
trollable, if both operands exp1 and exp2 are control-
lable.

⊕ exp1 The result of an arbitrary unary operation ⊕ is con-
trollable, if the operand exp1 controllable.

obj.foo (a, b) The result of a function call controllable, if obj and
parameters a and b are controllable.

ment, i. e. the left hand side, is controllable if its right hand side is controllable.
An expression is controllable if all its identifiers are controllable. The conditional
assignment is a special case, see Figure 1. The object a in line 6 is controllable
only if either both expressions exp1 and exp2 in the lines 2 and 4 are controllable,
or, the condition in line 1 and one of the expressions exp1 or exp2 is controllable.
All constants and all messages send to this are not controllable.

2.3 Calculation

The controllability of a method m is the ratio of controllable assignments to all
assignments in m. We call this metric Assignment Controllability AC :

AC(m) =
number of controllable assignments in method m

number of all assignments in method m

1 i f (cond) {
2 a = exp1 ;
3 } else {
4 a = exp2 ;
5 }
6 b = . . . a . . .

Fig. 1. Conditional Assignment

Its range varies between 0 and 1. The controllability of a class c is the average
controllability of its methods. For a class c having n methods mi (i = 1 . . . n)
the assignment controllability is

AC(c) =
1

n

i=n∑

i=1

AC(mi) (1)

Methods without any assignments are ignored in the calculation.
A program to calculate the assignment controllability metric was imple-

mented using the Byte Code Engineering Library (BCEL) [10] of the Jakarta
Apache Project.

3 Data Set

Table 2 lists the projects used for this analysis. The type of project is given in

Table 2. Overview of Projects

Number of

Name TDD Classes Packages

Webtest yes 149 21

XPChess1 yes 63 8

XPChess2 yes 48 8

XPChess3 yes 68 8

Yaps yes 100 16

Sum 428 61

Ant no 372 22

JUnit no 75 7

Log4j no 228 19

Sum 675 48

the second column. The columns 3 and 4 present the number of classes and the
number of packages for each project. Webtest [11] is a testing tool for web appli-
cations. The projects XPChess1, XPChess2, and XPChess3 are student projects
from the extreme programming lab course held in the summer term 2005 at the

Universität Karlsruhe. These programs are chess engines with command line in-
terface. Yaps is a portal framework of a medium-sized company. Ant [12] is the
Apache platform independent implementation of make. JUnit is the Java testing
framework of the xUnit family. Log4j [13] is the Java implementation of the pro-
tocol framework from the Apache project. The number of classes and packages
refer to the size of the application. The test classes were omitted because the
test classes were not part of this study.

4 Results

4.1 Metrics used in this Study

The assignment controllability metric is compared to the following eight metrics.
The first six metrics are known as the Chidamber and Kemerer metric suite for
object oriented design [8]. The suite contains the weighted sum of methods of a
class (WMC). As the weights of the sum are set to one, the weighted method
per class metric simply presents the number of methods of a class. The depth of
a class in the inheritance tree (DIT) is the next metric. The third metric is the
number of children of a class (NOC). For the number of children only the direct
subclasses are count. The coupling of a class c (CBO) is the number of classes
from which c uses methods or variables. The response set of a class c (RFC) is
the number of all methods which are called directly from c. The lack of cohesion
of methods (LCOM) of a class c is the difference between the number of method
pairs of c that do not share an instance variable of c and the method pairs of
c that do share an instance variable of c. The difference is cut off at zero to
prevent negative values. The last two metrics do not belong to the Chidamber
and Kemerer metric suite. They are the number of assignments (Assign) and the
number of byte code statements (Size) of a class.

4.2 The Projects from the Metrics’ point of view

Table 3 presents the metric values for the TDD-projects and the conventional
projects. The table lists the minium, the median (med), the maximum, and
the mean (x). We used the two-sided Wilcoxon test [14, pp. 106] to look for
differences in the data samples. The last column of Table 3 shows the p-values.
Values smaller than the 5 percent significant threshold are marked. The Wilcoxon
test shows a difference for all but two metrics: the depth in the inheritance tree
(DIT) and the weighted method per class.

4.3 Assignment Controllability on Method Level

Here, we focus on the values of the assignment controllability on method level.
Figure 2 which is located at the end of the paper shows for each project the
distribution of the assignment controllability. Two characteristics can be seen.
First, most methods have a value for the assignment controllability of 0 or 1.

Table 3. Metric values for the projects.

conventional TDD Wilcoxon

Metric min med max x min med max x p-Value

AC 0 0.42 1 0.45 0 0.51 1 0.54 <0.01

LCOM 0 0 741 3.37 0 1 325 7.28 <0.01

RFC 1 10 197 14.35 1 8 91 11.26 <0.01

CBO 2 8 165 10.81 2 6 60 8.5 <0.01

DIT 1 2 11 2.15 1 1.5 10 2.16 0.32

NOC 0 0 52 0.35 0 0 31 0.48 <0.01

WMC 1 5 133 8.29 1 4 59 6.95 0.6

Assign 0 5 273 14.11 0 3 239 6.95 <0.01

Size 2 67 2178 140.18 3 57 1762 90.65 <0.01

This means that each project has a large number of methods most of which
either do not contain any controllable assignment (AC=0, left most bar in each
histogram) or in which all assignments are controllable (AC=1, right most bar).
A second characteristic is the height of the two bars. Each conventional project
has more methods without any controllable assignment than methods in which
all assignments can be controlled. This observation holds for Webtest as well,
but not for the other TDD-projects. To investigate this topic further, we look
at the figures presented in Table 4. It lists for each project the number of meth-
ods with at least one non-controllable assignments (AC<1) and the number
the methods in which all assignments are controllable (AC=1). We look at the

Table 4. Percentages of controllable methods per project and project group.

Methods with

AC< 1 AC= 1

Project number % number % sum

Webtest 353 58.3 253 41.7 606

XPChess1 46 53.5 40 46.5 86

XPChess2 39 50.6 38 49.4 77

XPChess3 52 47.7 57 52.3 109

Yaps 138 59.0 96 41.0 234

TDD 628 56.5 484 43.5 1112

Ant 1144 63.1 669 36.9 1813

JUnit 146 68.9 66 31.1 212

Log4j 619 73.0 229 27.0 848

conv 1909 66.4 964 33.6 2873

all 2537 63.7 1448 36.3 3985

TDD-projects. Here, 43.5 percent of all methods have assignments which are

completely controllable. See the fourth value in the row labelled TDD. The
conventional projects achieve a value of 33.6 percent. The fraction of methods
where all assignments are controllable to methods where at least one assign-
ment is not controllable is 484/628 = 0.771 for the TDD-projects. The fraction
for the conventional projects is 964/1909 = 0.505. The fraction for the con-
ventional projects is smaller than for the TDD-projects. The fraction for the
whole data set is 1448/2537 = 0.571. Finally, the fraction for the TDD-projects
is 0.771/0.505 = 1.526 times larger than for the conventional projects.

4.4 Correlation Analysis on Class Level

This section analyses the correlation of the assignment controllability to the other
metrics used in this study. Correlation analysis was performed using Spearman’s
method. Table 5 shows the correlation coefficients for the corresponding data
sets. The column labelled all shows the results for the pooled data set. The

Table 5. Correlation analysis on class level.

AC

all TDD conv.

Assign -0.30 -0.19 -0.32

Size -0.34 -0.32 -0.35

WMC -0.20 -0.19 -0.26

DIT -0.22 -0.26 -0.20

NOC -0.07 -0.22 0.02

CBO -0.27 -0.20 -0.30

RFC -0.32 -0.31 -0.32

LCOM -0.23 -0.21 -0.29

following columns list the results for the TDD-projects and the conventional
projects, respectively. Two effects can be seen. First, all absolute values are
smaller or equal 0.35. These small values indicate a low correlation and it seems
as if assignment controllability covers a property which is not covered by the
other metrics analysed in this paper. And second, there is a negative correlation
of the assignment controllability to all other metrics for the all and the TDD data
sets. The negative correlation of the size metric means for example, that small
classes tend to have more controllable assignments in their methods than large
classes. A similar statement holds for classes with a small number of assignments
(Assign), for classes with a small depth of inheritance (DIT), and for classes with
low coupling (CBO). It seems as if the assignment controllability metric supports
the rules of thumb for testable code.

4.5 Logistic Regression

The applicability of the assignment controllability as indicator for the usage of
test-driven development is analysed. Logistic regression is used for this analysis

[15]. Logistic regression is an extension of linear regression to values on a nominal
scale. The type of the project is coded by a binary variable. All classes from
projects developed with test-driven development are coded with TDD=1. The
remaining classes are coded with TDD=0. The logistic model is as follows:

P (TDD = 1|X1, . . . , X9) =
1

1 + e−f(X1,...,X9)

f(X1, . . . , X9) =α +
9∑

i=1

βiXi

The enhance readability, the variables Xi (i = 1, . . . , 9) represent the metrics
used in this study. We are looking for parameter values with whom we can
estimate the probability whether a project was developed with test-driven de-
velopment or not. We are not interested in the actual values of α and the βi.
We would rather like to know which metric plays a role in the model and how
large its impact on this model is. We estimate the parameters (βi and α) for two
data sets. The data set DAll contains all classes while the data set DAssign>0

contains only those classes containing at least one assignment.

Table 6 lists for each data set the estimated parameter values and the corre-
sponding standard error. The p-values in the last column refer to the hypothesis
test that the parameter has no impact on the model. These p-values are in-
teresting for this analysis. Only α and the assignment controllability have an

Table 6. Logistic model parameter estimates.

DAll DAssign>0

Parameter Estimated Std. Err. p-Value Estimated Std. Err. p-Value

α -1.1955 0.2042 <0.001 -0.7337 0.2129 <0.001

AC 0.7171 0.2136 <0.001 0.8884 0.2306 <0.001

Assign -0.0393 0.0123 0.001 1.9888 62.9964 0.974

Size 0.0013 0.0013 0.312 -1.9909 62.9964 0.974

WMC 0.0134 0.0160 0.402 0.0159 0.0161 0.324

DIT 0.0609 0.0503 0.225 -0.0034 0.0533 0.949

NOC 0.0245 0.0294 0.404 0.0246 0.0308 0.424

CBO -0.0006 0.0209 0.975 0.0163 0.0226 0.468

RFC 0.0082 0.0201 0.683 -0.0058 0.0203 0.773

LCOM 0.0070 0.0051 0.169 0.0069 0.0051 0.180

impact on the model for both data sets (p<0.001). The number of assignments
is significant for the DAll data set as well. All other p-values are larger than
10 percent. Looking at the classes with at least one assignment our data set
suggests that the assignment controllability metric is a better indicator for the
usage of test-driven development than all the other metrics used in this paper.

4.6 Validity

There are two major threats concerning the validity of the results. First, the
data set of the TDD-projects is smaller than the data set of the conventional
projects. The main reason for this difference was the absence of industrial TDD-
projects. To overcome this shortcoming, we added the three student projects to
our analysis. Adding the student projects to the analysis increases the data set.
But now, we have three projects from the same problem domain. However, the
three projects have been developed by different student groups.

The next problem originates from the usage of student projects. It is unclear
how projects developed by developers experienced in test-driven development
differ from projects which have been developed by developers new to test-driven
development. Students have problems getting accustomed to the test-driven de-
velopment process [16, 17]. But whether their program code differs from that
written by professional developers is not known so far. Thus, the shown differ-
ences might not only be caused by the usage of test-driven development but also
by the differences caused by the usage of projects developed by students.

5 Conclusions

This paper investigated the assignment controllability of methods. We compared
projects which have been developed using test-driven development to conven-
tional projects. Our data set supports the following results:

– The number of methods where all assignments are completely controllable
is higher for projects developed with test-driven development than for con-
ventional projects.

– The metric assignment controllability is negatively correlated to all other
metrics studied in this paper. The negative correlation supports the rule of
thumb of testable programs.

– Assignment controllability is the only parameter that has a significant im-
pact on the predictability whether a project was developed with test-driven
development or not.

This study is a first step towards an understanding of the effects of test-driven
development on the program code. Further studies should repeat this analysis
with a larger data set to increase the validity of the results. Other metrics should
be incorporated into the analysis as well, such as complexity metrics or coverage
measures of existing tests.

6 Acknowledgement

I would like to thank Guido Malpohl for proof reading a previous version of this
paper and Christian Frommeyer for implementing the assignment controllability
calculator.

References

1. Müller, M., Hagner, O.: Experiment about test-first programming. IEE Proceed-
ings Software 149(5) (2002) 131–136

2. Pancur, M., Ciglaric, M., Trampus, M., Vidmar, T.: Towards empirical evaluation
of test-driven development in a university environment. In: EUROCON 2003.
Computer as a Tool. The IEEE Region 8. Volume 2. (2003) 83–86

3. George, B., Williams, L.: An initial investigation of test driven development in
industry. In: ACM symposium on Applied computing, Melbourne, Florida, USA
(2003) 1135–1139

4. Geras, A., Smith, M., Miller, J.: A prototype empirical evaluation of test driven
development. In: International Symposium on Software Metrics (Metrics), Chicago,
Illinois, USA (2004) 405–416

5. Erdogmus, H., Morisio, M., Torchiano, M.: On the effectiveness of the test-first
approach to programming. IEEE Transactions on Software Engineering 31(3)
(2005) 226–237

6. Beck, K.: Aim, fire. IEEE Software 18(5) (2001) 87–89
7. Binder, R.: Design for testability in object-oriented systems. Communications of

the ACM 37(9) (1994) 87–101
8. Chidamber, S., Kemerer, C.: A metrics suite for object oriented design. IEEE

Transactions on Software Engineering 20(6) (1994) 476–493
9. : Digital Systems Testing and Testable Design. Computer Science Press (1990)

10. Apache: Byte code engineering library (BCEL). (http://jakarta.apache.org
/bcel/index.html)

11. Canoo: Webtest. (http://webtest.canoo.com)
12. Apache: Ant. (http://ant.apache.org/)
13. Apache: Log4j. (http://logging.apache.org/)
14. Hollander, M., Wolfe, D.: Noparametric Statistical Methods. 2nd edn. John Wiley

& Sons (1999)
15. Kleinbaum, D.: Logistic regression: a self-learning text. Springer (94)
16. Wilson, D.: Teaching xp: A case study. In: XP Universe, Raleigh, NC, USA (2001)
17. Müller, M., Link, J., Sand, R., Malpohl, G.: Extreme programming in curriculum:

Experiences from academia and industry. In: Conference on Extreme Programming
and Agile Processes in Software Engineering (XP2004), Garmisch-Partenkirchen,
Germany (2004) 294–302

TDD: Webtest

AC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
25

0

TDD: XPChess1

AC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40

TDD: XPChess2

AC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

TDD: XPChess3

AC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40

TDD: Yaps

AC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

80

conv: Ant

AC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

0
80

0

conv: JUnit

AC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
40

10
0

conv: Log4j

AC

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

0
40

0

Fig. 2. Distribution of AC on method level for all projects.

