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ABSTRACT

Context. Slow magnetoacoustic waves are routinely observed in astrophysical plasma systems such as the solar corona, and are usually
seen to damp rapidly. As a slow wave propagates through a plasma, it modifies the equilibrium quantities of density, temperature,
and magnetic field. In the corona and other plasma systems, the thermal equilibrium is comprised of a balance between continuous
heating and cooling processes, the magnitudes of which vary with density, temperature and magnetic field. Thus the wave may induce
a misbalance between these competing processes. Its back reaction on the wave has been shown to lead to dispersion, and amplification
or damping, of the wave.
Aims. This effect of heating/cooling misbalance has previously been studied in the infinite magnetic field approximation, in a plasma
whose thermal equilibrium comprises of optically thin radiative losses and field-aligned thermal conduction, balanced by an (un-
specified) heating process. In this work we extend this analysis by considering a non-zero β plasma. The importance of the effect of
magnetic field in the rapid damping of slow waves in the solar corona is evaluated, and compared to the effects of thermal conduction.
Methods. A linear perturbation under the thin flux tube approximation is considered, and a dispersion relation describing the slow
magnetoacoustic modes is found. The dispersion relation’s limits of strong non-adiabaticity and weak non-adiabaticity are studied.
The characteristic timescales are calculated for plasma systems with a range of typical coronal densities, temperatures and magnetic
field strengths.
Results. The number of timescales characterising the effect of misbalance is found to remain at two, as with the infinite magnetic
field case. In the non-zero β case, these two timescales correspond to the partial derivatives of the combined heating/cooling function
with respect to constant gas pressure and with respect to constant magnetic pressure. The predicted damping times of slow waves
from thermal misbalance in the solar corona are found to be of the order of 10–100 minutes, coinciding with the wave periods and
damping times observed. Moreover the slow wave damping by thermal misbalance is found to be comparable to the damping by
field-aligned thermal conduction. The change in damping with plasma-β is complex and depends on the coronal heating function’s
dependence upon the magnetic field in particular. Nonetheless we show that in the infinite field limit, the wave dynamics is insensitive
to the dependence of the heating function on the magnetic field, and this approximation is found to be valid in the corona so long as
the magnetic field strength is greater than approximately 10 G for quiescent loops and plumes, and 100 G for hot and dense loops.
Conclusions. Thermal misbalance may damp slow magnetoacoustic waves rapidly in much of the corona, and its inclusion in our
understanding of slow mode damping may resolve discrepancies between observations and theory relying on compressive viscosity
and thermal conduction alone.
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1. Introduction

Slow magnetoacoustic waves are a common feature of many
plasma systems, and the study of their properties allows one to
probe the local plasma conditions which otherwise may be dif-
ficult to measure. Often these plasma systems are maintained
at thermal equilibrium by a delicate balance between continu-
ous heating and cooling mechanisms - one example being the
solar corona, which is cooled by radiative losses and heated
by some as-yet undetermined heating process(es). The effect of
these heating and cooling mechanisms vary with the plasma pa-
rameters. As a slow wave propagates through the plasma, the
wave perturbs both the plasma’s mechanical and thermal equi-
libria, through modifications in the local density, temperature
and magnetic field strength. Thus if the plasma is steadily be-
ing heated and cooled at thermal equilibrium, the wave induces

a misbalance between these competing processes. This leads to
the transfer of energy between the wave and the plasma referred
to as a heating/cooling misbalance.

Previous studies of the effects of this wave-induced thermal
misbalance under the infinite magnetic field approximation have
shown that the plasma may act as a dissipative or active medium,
damping the wave or growing its amplitude (Nakariakov et al.
2000; Kumar et al. 2016). The presence of characteristic times
associated with the thermal misbalance may also cause disper-
sion, such that any broadband pulse is dispersed by the medium
into a quasi-periodic slow wave train (Zavershinskii et al. 2019).
Such observable effects upon the wave by the heating/cooling
misbalance are related to the properties of the heating and cool-
ing processes themselves, specifically their derivatives with re-
spect to the thermodynamic parameters of the plasma: density
ρ, temperature T and potentially magnetic field strength B. In
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Kolotkov et al. (2019) the damping by thermal misbalance of hot
coronal loops observed by SUMER was considered, and it was
found that in the regime of enhanced damping, the theoretically
obtained damping rates coincide with those seen in observations.
Recently, Kolotkov et al. (2020) demonstrated the potential for
constraining the unknown coronal heating function, using obser-
vations of the solar corona such as the observed rapid damping
of slow modes, and coronal slow waves’ thermal instability and
acoustic overstability.

These previous works rest on the assumption of infinitely
strong magnetic field and consider perturbations to the local
plasma density and temperature, following from the seminal
work of Field (1965) analysing perturbations to an infinite ho-
mogeneous plasma. Yet to fully understand the effects of the
heating/cooling misbalance, the influence of non-zero β must be
studied, since any non-zero magnetic field fluctuations will in-
teract with the density, temperature and velocity perturbations
and therefore affect the wave evolution and propagation speed
(Afanasyev & Nakariakov 2015; Nakariakov et al. 2017). Some
magnetic field measurements of coronal structures have found
magnetic field strengths can drop to 10 G and below (e.g. a value
of 4 G reported in Lin et al. 2004), implying that the magnetic
pressure may not totally dominate over gas pressure everywhere.
Moreover, the source of energy for the solar coronal heating is
known to be the magnetic field, and so it is natural to allow a
dependence of the heating/cooling misbalance upon the mag-
netic field strength. It is therefore important to investigate the
role magnetic effects have upon the dispersion and damping by
heating/cooling misbalance.

The rapid damping of slow magnetoacoustic modes observed
in the solar corona is well documented, yet ambiguity remains
regarding its origin (e.g. De Moortel 2009). Thermal conduc-
tion and compressive viscosity are invoked as damping mecha-
nisms, however we contend that the effect of wave-induced heat-
ing/cooling misbalance can be of equal importance. The inclu-
sion of thermal misbalance as an additional damping mechanism
could resolve discrepancies seen in the frequency dependencies
of observed slow mode damping, such as for the standing slow
modes of hot loops reported in Mariska (2006), the propagating
slow modes in coronal holes detailed in Gupta (2014), and the
propagating slow modes in the warm corona analysed in Krishna
Prasad et al. (2014). The phase shifts between density and tem-
perature measured in e.g. Krishna Prasad et al. (2018) disagree
with those predicted from theory (Owen et al. 2009), and simi-
larly the growth in polytropic index (estimated via phase shift)
with temperature observed in Van Doorsselaere et al. (2011); Kr-
ishna Prasad et al. (2019) are also a mystery. The series of pa-
pers culminating in Wang & Ofman (2019) try to rectify these
and similar discrepancies between 1D slow mode damping the-
ory and observations through anomalous thermal conduction and
viscosity coefficients – the inclusion of thermal misbalance pro-
vides an alternative, perhaps more physically motivated, expla-
nation.

In this work we extend the results of Kolotkov et al. (2019)
to investigate the effects of thermal misbalance in non-zero β
plasma upon a slow wave using the thin flux tube approximation.
A non-adiabatic linear dispersion relation is derived, and its lim-
its of weak and strong non-adiabaticity are explored in Section 2.
Estimates of the damping time of slow waves in the solar corona
by thermal misbalance, its sensitivity to the dependence of the
heating/cooling function on B, and comparisons with other dis-
sipation mechanisms are the topics of Section 3. Discussion and
concluding remarks are made in Section 4.

2. Dispersion relation

2.1. Derivation

In this work we use the first order thin flux tube approxima-
tion, which formally corresponds to the first order of the Tay-
lor expansion of the MHD variables with respect to the radial
coordinate, derived by Roberts & Webb (1978) and Zhugzhda
(1996). The governing equations are the same as for Nakariakov
et al. (2017), neglecting the viscous dissipation in the momen-
tum equation and slightly adjusting the definition of the thermal
heating/cooling function Q to have the units of W kg-1 (matching
the definition in Field 1965; Kolotkov et al. 2019):

dp

dt
− γp

ρ

dρ

dt
= (γ − 1)

(

κ‖
∂2T

∂z2
− ρQ(ρ,T, B)

)

, (1)

ρ
du

dt
+
∂p

∂z
= 0, (2)

p +
B2

2µ0
= pext

total, (3)

∂B

∂t
+ u
∂B

∂z
+ 2Bvr = 0 (4)

∂ρ

∂t
+ 2ρvr +

∂

∂z
(ρu) = 0, (5)

p =
kB

m
ρT (6)

As usual, p is the plasma pressure, ρ is the plasma density, T
is the temperature, kB is the Boltzmann constant, µ0 is the mag-
netic permeability of free space, m is the mean particle mass,
and γ is the polytropic index. Also u is the wave-induced flow
speed along the tube (i.e. in z direction), B is the component of
magnetic field strength along the tube, pext

total is the total external
pressure and vr is the radial derivative of the radial component of
plasma velocity. All of these quantities are measured at the axis
of the (infinitesimally thin) flux tube. The right hand side of the
energy equation (1) represent thermodynamic processes ongoing
inside the plasma. The first term is the (field-aligned) thermal
conduction, for which we use the standard estimation of coeffi-
cient κ‖ ≈ 10−11T 5/2 Wm-1K-1. The second term is the combi-
nation of some unspecified heatingH(ρ,T, B) and optically thin
radiative cooling L(ρ,T ), combined in the net heat/loss function
Q(ρ,T, B) = L−H . We note Q depends on B only if the heating
termH is a function of B, since the radiative lossesL are known
to be independent of B.

Thus, in addition to the perturbation of the mechanical equi-
librium provided by the force balance, in this work we consider
a wave-induced perturbation of the thermal equilibrium of the
corona. It is important to remark explicitly that, following from
the previous works on thermal misbalance, we allow both the
heating and cooling functions to be perturbed. This is is con-
trast to several previous works in which the heating term is held
constant, which is to say remains unperturbed by the wave, such
as Claes & Keppens (2019); Kaneko & Yokoyama (2017); De
Moortel & Hood (2003) do when setting up their simulations.

We consider linear perturbations of a mechanical equilib-
rium, characterised by the constant quantities denoted p0, ρ0,
B0, T0, and pext

total, and without steady flows. In addition we con-
sider Q0 = 0 in the equilibrium, motivated by the continued ex-
istence of the corona. The parallel thermal conduction does not
contribute to this equilibrium because the plasma temperature is
uniform. Let the perturbations of the equilibrium quantities be
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small,

p = p0 + p1, ρ = ρ0 + ρ1, T = T0 + T1,

B = B0 + B1, vr = v1, u = u1,

where the subscript 1 denotes small perturbations. In the follow-
ing, exceptions are made for vr, u since these are small quantities
about zero anyway and so we leave their subscripts alone. We
substitute these quantities into Equations (1) - (6) and keep only
the linear terms of the small quantities to find:

∂

∂t
p1 −C2

S
∂

∂t
ρ1 =

(γ − 1)
(

κ‖
∂2

∂z2
T1 − ρ0

[

Qρρ1 + QT T1 + QBB1

]

)

, (7)

ρ0
∂

∂t
u +
∂

∂z
p1 = 0, (8)

p1 +
B0B1

µ0
= 0, (9)

∂

∂t
B1 + 2B0vr = 0, (10)

∂

∂t
ρ1 + 2ρ0vr + ρ0

∂

∂z
u = 0, (11)

p1 −
kB

m
(ρ0T1 + T0ρ1) = 0. (12)

The parameter C2
S = γp0/ρ0 is the sound speed at equilibrium,

and QT ,Qρ,QB are the partial derivatives of the combined heat-
ing/cooling function Q (Qx = ∂Q/∂x), evaluated at the equilib-
rium.

By using these equations, several assumptions have been
made which are worth mentioning. Firstly, since in a slow wave
in a low-beta plasma, any change in the external pressure pext

total to
the flux tube is neglected (e.g. see Edwin & Roberts 1983), we
concentrate on waves propagating inside the flux tube, taking
that the slow waves are always in the trapped regime. Secondly,
the obliqueness of the wavefronts are accounted for through the
use of vr – this is valid when the wavelength of the perturbations
(parallel to the field) is much longer than the transverse spatial
scale, determined by the width of the waveguiding plasma non-
uniformity. This is the applicability condition of the thin flux
tube approximation, and is a key difference to the plane acoustic
wave case used elsewhere. Finally it should be noted that, for all
non-adiabatic processes in general (whose assorted characteris-
tic timescales we call τi), the assumption γ = CP/CV is only
valid when ω ≫ τ−1

i
, i.e. when the wave is of sufficiently high

frequency that it is adiabatic or weakly non-adiabatic (for exam-
ple see the discussion in Van Doorsselaere et al. 2011). In general
non-adiabatic scenarios (Zavershinskii et al. 2019) or non-zero β
plasmas (Nisticò et al. 2017), the ratio of specific heats can vary.
In our estimations, we use γ = 5/3 without loss of generality.

Since we have no flows and we have uniformity in the z di-
rection, we take a Fourier transform by making the ansatz of
plane waves, that is to say we assume a harmonic dependence
upon the time and spatial coordinates for all perturbed variables
∝ exp (−iωt + ikz) where ω is the frequency and k is the parallel

wavenumber. The resulting linearised set of equations yield the
following dispersion relation:

ω3 + A(k)ω2 + B(k)ω +C(k) = 0 (13)

where the coefficients are

A = i
C2

T

C2
S

{

QT

CV
+
κ‖
ρ0CV

k2 +
(γ − 1)

C2
A

[

T0QT − B0QB − ρ0Qρ

+
T0

ρ0
κ‖k

2
]

}

,

B = −C2
Tk2,

C = −i(γ − 1)
C2

T

C2
S

(

T0QT − ρ0Qρ +
T0

ρ0
κ‖k

2
)

k2 = 0.

The term CA is the standard Alfvén speed defined through C2
A =

B2
0/µ0ρ0, and the term CT is the tube speed defined through

C−2
T = C−2

S + C−2
A . Equation (13) is cubic in ω yet quartic in

k, that is to say asymmetric with respect to space and time. This
dispersion relation describes two oppositely-directed propagat-
ing slow waves and an entropy mode, made into a thermal mode
by the non-adiabatic effects (e.g. De Moortel & Hood 2003). The
tube speed appears in the coefficient of the ω term, thus in the
adiabatic limit the equation reduces to the wave equation with
C2

T as the speed, as expected for so-called tube waves. This ex-
pression also agrees exactly with the infinite magnetic field case
(Eq. 7, Kolotkov et al. 2019) in the limit B→ ∞.

Regarding the thermal conduction terms, we see the term
(C2

T/CS)2κ‖k
2/ρ0CV in the ω2 coefficient A, which is propor-

tional to the term in the infinite magnetic field case (e.g. Eq. 8 in
Kolotkov et al. 2019) but modified by the ratio of tube to sound
speed squared. Thus there is a non-zero β modification to the ef-
fect by thermal conduction on the waves, which is qualitatively
consistent with the result in Afanasyev & Nakariakov (2015).

It is convenient to re-express the non-adiabatic terms us-
ing characteristic timescales, which for the thermal misbalance
terms are fully determined by the equilibrium parameters and
partial derivatives Qρ,QB,QT . Note that these timescales are
not determined by the heating and cooling processes separately.
Rather, these characteristic timescales are determined by how
quickly the perturbation returns to, or destroys, the equilibrium.

In the case with infinite magnetic field, the characteristic
timescales were written in terms of QT [p] and QT [ρ] = QT ,
where QT [p] means the partial derivative taken with respect to
temperature assuming constant gas pressure (Zavershinskii et al.
2019). The introduction of a finite magnetic field means there
is a separate, magnetic pressure term B2/2µ0. Thus we con-
sider separately the derivative with respect to constant gas pres-
sure QT [gas p], and with respect to constant magnetic pressure
QT [mag p]. To write the additional terms in the derivatives of Q
by the magnetic field, the relevant equations are the radial pres-
sure balance (Eq. 9) and the ideal gas law (Eq. 12), finding:
∂ρ

∂T
= − m

kB

p0

T 2
0

= − ρ0

T0
,

∂p

∂T
=

kB

m
ρ0,

∂B

∂T
= − µ0

B0

∂p

∂T
= −β

2
B0

T0























































=⇒
QT [gas p] = QT −

ρ0

T0
Qρ

QT [mag p] = QT −
β

2
B0

T0
QB.

Gathering terms in the dispersion relation (Eq. 13) we can define
two characteristic timescales,

τ1 =
CP

QT [gas p]
=
γCV

QT [gas p]
, τ2 =

CV

QT [mag p]
. (14)

Article number, page 3 of 11



A&A proofs: manuscript no. output

It is striking that despite there being three different dependencies
in Q(ρ,T, B), the effects of heating/cooling misbalance can be
expressed in terms of these two timescales evaluated at constant
gas and magnetic pressures. Comparing these timescales with
the infinite magnetic field case (Kolotkov et al. 2019; Zavershin-
skii et al. 2019) we see that τ1 is identical, whilst τ2 is different
only by a magnetic correction term in QT [mag p], which goes to
QT as the plasma-β goes to zero. We also use the characteristic
timescale for thermal conduction (in the infinite magnetic field
limit) - for wavelength λ = 2π/k - as given in Kolotkov et al.
(2019), namely τcond(k) = ρ0CVλ

2/κ‖. Pulling these definitions
together, we write the dispersion relation as

ω3 + i
2

2 + γβ

{

4π2

τcond(k)

(

1 +
β

2

)

+
1
τ2
+
γβ

2
1
τ1

}

ω2

−C2
Tk2ω − iC2

T

{

1
γ

4π2

τcond(k)
+

1
τ1

}

k2 = 0. (15)

It may be seen that Equation (15) is affected by the magnetic
field in several ways: the phase speed CS → CT, the terms
with plasma-β, and also implicitly through the timescale τ2 (i.e.
via the product βQB/2). Interestingly, only the last of these is
affected by the dependence of Q upon magnetic field B. This
means that even if the heating model is independent of magnetic
field, the properties of the wave are still affected by the magnetic
field strength. The reverse is also true, if β goes to zero the wave
dynamics is not affected by the magnetic field even if the heating
function has some dependence on it.

The non-zero β effects on the real part of ω (and hence phase
speed) are well known, and it has been demonstrated they may
be important for slow waves in some wave guides such as hot
flaring loops (Afanasyev & Nakariakov 2015), as well as the
determination of cut-off frequency in the solar atmosphere. By
accounting for the obliqueness of the waves, the wave speed is
made to depend on the absolute value of the magnetic field via
CT, which is sub-sonic and sub-Alfvénic.

2.2. Limit of weak non-adiabaticity

Similar to the previous works on damping of magnetoacous-
tic waves by thermal conduction, the upper and lower limits
of non-adiabaticity are now derived. We begin with the limit of
weak non-adiabaticity, in which the wave is only mildly affected
by the transfer of energy with the active medium. In this limit
ω ≫ 1/τ1,2,cond, thus we rearrange the dispersion relation (15)
assuming ω , 0 into

ω2 = C2
Tk2

{

1 − i

[

1

C2
T

ω2

k2

(

1
ωτ2
+
γβ

2
1
ωτ1

)

C2
T

C2
S

− 1
ωτ1

+
4π2

ωτcond(k)













1

C2
T

ω2

k2

[

1 +
β

2

] C2
T

C2
S

− 1
γ













]}

, (16)

(consistent with Eq. (21) Nakariakov et al. 2017, which deals
with the same limiting case). Taking the limit of 1/ωτcond and
1/ωτ1,2 as small parameters, the Taylor expansion of the disper-
sion relation reduces to

ω2 ≈ C2
Tk2

{

1 − iω−1 2
2 + γβ

[ (

γ − 1
γ

)

4π2

τcond
+

1
τ2
− 1
τ1

]}

. (17)

To evaluate the ω−1 in the imaginary component of Equa-
tion (17), perturbation theory is used. In the zeroth order ω ≈

CTk, and using this yields the following solution to the weakly
non-adiabatic dispersion relation:

ωR ≈ CTk, (18)

ωI ≈ −
1
2

(

2
2 + γβ

) [

γ − 1
γ

4π2

τcond
+

1
τ2
− 1
τ1

]

. (19)

The phase speed of the weakly non-adiabatic wave is the tube
speed CT as expected, so the phase speed is reduced as β in-
creases. In the limit of β → 0 this equation coincides with the
results in Kolotkov et al. (2019).

From Equation (19) we are motivated to form the single,
combined timescale TM(τ1, τ2) which can be referred to as a
characteristic damping time of the heating/cooling misbalance
in the weakly non-adiabatic regime:

1
TM
=

C2
T

C2
S

(

1
τ2
− 1
τ1

)

,

=

(

2
2 + γβ

) (

1
τ2
− 1
τ1

)

,

=
2

2 + γβ

{

γ − 1
γ

QT

CV
+

1
γ

ρ0

T0

Qρ

CV
− β

2
B0

T0

QB

CV

}

.

(20)

From a physical standpoint, this equation implies that in the con-
sidered limit of weak non-adiabaticity, the perturbations of T , ρ,
B all affect the heat/loss function Q independently (i.e. the ef-
fects of QT , Qρ and QB are additive in Eqs. 19 and 20). In the ab-
sence of thermal conduction, the e-folding time of the slow wave
amplitude by thermal misbalance is accordingly Tdamp = 2TM,
consistent with the relationship between damping time and char-
acteristic times defined in De Moortel & Hood (2003). In a simi-
lar fashion, we form a timescale TcondB(k, β) characteristic of the
wave damping time by thermal conduction in the limit of weak
non-adiabaticity, related to τcond(k) by

TcondB =

(

1 +
γβ

2

)

γ

γ − 1
τcond(k)

4π2
, (21)

=⇒ ωI ≈ −
1
2

(

1
TcondB

+
1
TM

)

. (22)

If the limit of weak non-adiabaticity applies, there is no thermal
conduction, and TM > 0, then we may interpret TM as the damp-
ing time over which the thermal misbalance is attenuating the
slow wave. Similarly, if the limit of weak non-adiabaticity ap-
plies and TM < 0, energy is supplied from the medium into the
wave, amplifying the slow wave over the characteristic timescale
TM. Regarding the effect of non-zero β, the phase speed is re-
duced as β increases through CT, and the effect on the damping
depends on the sign of QB – note if there is no magnetic depen-
dence (QB = 0), then the damping effect is always lessened with
increasing β.

The effect of thermal conduction is always to damp (TcondB is
strictly positive). From Equation (21) it is clear that in the limit of
weak non-adiabaticity, the damping effect of thermal conduction
is reduced as the plasma-β increases. In the weak non-adiabatic
limit, the effect of thermal conduction and the effect of thermal
misbalance upon the wave increment ωI are additive, shown in
Equation (22).

In the presence of both thermal conduction and thermal mis-
balance, whilst remaining in the weakly non-adiabatic limit, the
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damping time of the wave is Tdamp = 2/(T −1
condB + T −1

M ), equiva-
lently

Tdamp =
2 + γβ

(

γ − 1
γ

4π2κ‖
ρ0CV

)

k2 +
τ1 − τ2

τ1τ2

. (23)

2.3. Limit of strong non-adiabaticity

The limit of strong non-adiabaticity describes slow magnetoa-
coustic waves for which ω ≪ 1/τ1,2,cond, which is to say these
waves are highly affected by the exchange of energy with the ac-
tive medium. The dispersion relation (Eq. 15) may be expressed
in the following way (where we have divided through by ω , 0):

ω2 = C2
Tk2

1 + i

{

1
γ

4π2

ωτcond
+

1
ωτ1

}

1 + i

{

2
2 + γβ

(

(1 + β/2)4π2

ωτcond
+

1
ωτ2
+
γβ

2
1
ωτ1

)}

(24)

After Taylor expansion we find the strong limit to be

ω2 ≈C2
Sk2



































(

1
γ

4π2

τcond
+

1
τ1

)

4π2

τcond
+

1
τ2
+
γβ

2

(

1
γ

4π2

τcond
+

1
τ1

)

−iω

(

γ − 1
γ

)

4π2

τcond
+

1
τ2
− 1
τ1

(

4π2

τcond
+

1
τ2
+
γβ

2

(

1
γ

4π2

τcond
+

1
τ1

))2







































. (25)

The change from C2
T to C2

S is caused by pulling out a factor of 1+
γβ/2. Equation (25) agrees with strong limit in the infinite field
limit as β → 0 as it should (Zavershinskii et al. 2019). In order
to deal with the ω in the imaginary component, we again apply
the perturbation approach. In the zeroth order ω is approximated
by ωR as seen in Equation (25), yielding the following solution
to the highly non-adiabatic dispersion relation:

ωR ≈
1
√
γ

CSk

(

4π2

τcond
+
γ

τ1

)1/2

[

4π2

τcond
+

1
τ2
+
β

2

(

4π2

τcond
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γ

τ1

)]1/2
, (26)

ωI ≈ −
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2

)

(
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− 1
τ1

)

[

4π2

τcond
+

1
τ2
+
β

2

(

4π2

τcond
+
γ

τ1

)]2
. (27)

We must make it clear that different combinations of signs of
τ1, τ2 may lead to very different behaviour, e.g. complex phase
speeds (that is, even non-propagating modes) or the develop-
ment of thermal instabilities of a non-acoustic nature (see Field
1965). Restricting our attention to the case of a stable propa-
gating slow wave (τ1, τ2 > 0), in the absence of thermal con-
duction the non-adiabatic wave propagates at the speed ωR/k

with ωR = CSk (τ2/(τ1 + (γβ/2)τ2))1/2, which in the infinite
field case is simply CS

√
τ2/τ1. In non-zero β plasma, the phase

speed of the highly non-adiabatic wave is reduced compared to
the infinite magnetic field case. The wave will damp if Equa-
tion (27) is negative. The effect of non-zero β upon this wave
increment/decrement (that is, growth or damping) is governed
by Equation (27), and is different for different plasma conditions
(equivalently its impact depends on the relative magnitudes of
τcond, τ1, τ2). Unlike the weakly non-adiabatic case, the effects
of the different non-adiabatic mechanisms upon the wave incre-
ment/decrement ωI are not additive.

Considering only the thermal conduction terms (τ1,2 ≫
τcond), it is found that ωR/k ≈ CS (γ(1 + β/2))−1/2. This tends
to the isothermal sound speed CS/

√
γ as β → 0 consistent with

De Moortel & Hood (2003); as with the case for no thermal con-
duction, for increasing β this phase speed is reduced. The ef-
fect of thermal conduction on the wave decrement is always to
damp (ωI < 0). However, as the wave approaches the isothermal
regime (without misbalance) ωI becomes proportional to ωτcond
which is a small parameter in the strong limit. In other words, al-
though the effect of thermal conduction is always to damp, in the
isothermal regime the damping ceases. The effect of increasing
β is to reduce ωI and hence increase damping times (equivalent
to lessening the rate of damping).

3. Damping of slow waves in the corona

3.1. Estimation of damping time for non-zero plasma-beta

We now focus on the damping effect of the thermal misbalance
upon slow magnetoacoustic waves in the corona. The charac-
teristic timescales of wave-induced thermal misbalance (Eq. 14)
vary with T0, ρ0, B0, as well as the parameters dictating the heat-
ing and cooling rates H and L. Up to this point, all our results
have been expressed in terms of a generic heating/cooling func-
tion Q, whose derivatives with respect to thermal equilibrium
are treated as free parameters, and applicable to any plasma con-
ditions for which the governing equations may be satisfied. In
order to fully explore our results in the coronal context how-
ever, we now pin down a functional form of Q and pick some
plasma parameter ranges to evaluate. We consider temperatures
ranging from 0.5 MK to 20 MK and electron number densities
ranging from 1 × 108 cm−3 to 5 × 1012 cm−3, since many typical
coronal structures have been detected at these temperatures and
densities, such as plumes and coronal loops (De Moortel 2009).
Some coronal structures do exist outside of these ranges, such as
prominences, however for such conditions the effects of partial
ionisation, non-LTE conditions and optical thickness can not be
neglected.

We parameterise the coronal heating/cooling function as

Q = L(ρ,T ) −H(ρ,T, B)⇐=










L(ρ,T ) from CHIANTI,

H(ρ,T, B) = h0ρ
aT bBc.

(28)

where the coefficient h0 is determined from the initial thermal
equilibrium condition, Q0 = 0, =⇒ h0 = L0/ρ

a
0T b

0 Bc
0, and

the power indices a, b and c are treated as free parameters. We
synthesise the coronal optically thin radiation function L(ρ,T )
from CHIANTI atomic database v. 9.0.1 (Dere et al. 1997, 2019)
for the densities and temperatures from those intervals.

We do not know the values of a, b, c, as this is essentially the
coronal heating problem. As discussed in Kolotkov et al. (2020),
many previous authors such as Ibanez S. & Escalona T. (1993);
Carbonell et al. (2006) have considered five models for a, b origi-
nating from appendix B of Rosner et al. (1978). However all five
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of these are incompatible with the observations of widespread
coronal thermal stability and the rapid damping of slow (acous-
tic) waves. Following Kolotkov et al. (2020) we consider the val-
ues of a = 1/2, b = −7/2, for which both thermal stability and
acoustic stability are always satisfied in coronal conditions, in
accordance with observations. We study the change in damping
with the parameter c, and the change in damping with plasma-β.

We now estimate the absolute values of the characteristic
thermal misbalance damping time TM in the limit of weak non-
adiabaticity (recall the connection to the wave damping time
Tdamp = 2TM, in the absence of damping by thermal conduc-
tion). The effect of a weaker magnetic field (i.e. higher plasma-β)
on TM may be seen in Figure 1, for two heating models with dif-
ferent magnetic dependencies (chosen for illustration purposes
only). Looking only at the effect of reduced magnetic field (scan-
ning downwards in Fig. 1) across the range of typical coro-
nal magnetic field strengths, the damping time decreases due to
non-zero β effects, particularly temperatures over ∼ 2 MK; the
change in magnetic field strength has the most pronounced effect
on hotter, denser plasma (i.e. where plasma-β is greater) whereas
the cooler loops and plumes remain largely unaffected.

There is a distinction between the impact of the finite mag-
netic field (non-zero plasma-β) upon the wave-induced ther-
mal misbalance, and the effect of any dependence of the heat-
ing/cooling function upon magnetic field strength (non-zero QB).
To demonstrate the latter of these, consider the difference intro-
duced by the change in dependence of H upon B (scanning left
to right in Fig. 1). For these heating functions the magnetic heat-
ing power-law index (c = 0 → c = 1) has made the damping
time vary less with magnetic field strength. In other words, the
heating scenario with c = 1 has a stabilising effect on the wave
dynamics. This may not be the case for other values of c (e.g.
c = −1), this is not discussed in this work. The difference is ap-
parent only for lower magnetic field strengths. At infinite mag-
netic field, there is no difference between damping times for the
two heating models – see panels (a) and (b) in Figure 1, which
are almost identical. This implies that above a certain magnetic
field strength, the infinite magnetic field approximation is valid
regardless of the heating functional dependence upon magnetic
field.

3.2. Sensitivity of the wave damping to the dependence of
heating function upon magnetic field

In order to estimate the magnetic field strength above which the
infinite magnetic field approximation is appropriate, we consider
the combined damping effect of thermal misbalance and thermal
conduction. This is necessary because the thermal conduction
damping term is also affected by non-zero plasma-β (see Eq. 21),
so its exclusion would not allow for delineating a complete pic-
ture. For simplicity, we only consider the weakly non-adiabatic
limit, such that the angular frequency of the slow wave is ap-
proximated by Equations (18), (19) and (22). We specify three
pertinent examples of damped slow waves seen in the corona: the
3-minute upwardly propagating slow waves above a sunspot ob-
served in the SDO/AIA 171 Å bandpass which peaks at 0.63 MK
(De Moortel 2009), the slow waves seen in a plume observed
with the 193 Å bandpass (which peaks at 1.3 MK) (e.g. Krishna
Prasad et al. 2014), and the standing oscillations in hot loops ob-
served by SUMER, with a formation temperature of Fe XIX of
6.3 MK) (e.g. recently reviewed in Nakariakov et al. 2019). As
before we use the illustrative choice of heating scenario taken

from Kolotkov et al. (2020), H ∝ ρ1/2T−7/2Bc, and let c vary
from -1, 0, 1.

Figure 2 shows that for sufficiently strong magnetic field
strengths, slow waves in the presence of all of the heating models
shown have converged to the quality factor calculated for the in-
finite magnetic field case. This is regardless of the dependence of
heating model upon magnetic field, in our case controlled by the
power-law index c. For the warm quiescent corona, as demon-
strated by the top two panels, a magnetic field strength greater
than around 10 G is sufficient for the infinite magnetic field ap-
proximation to be appropriate. For the conditions typical of hot
loops seen by SUMER, which are often post-flare, the non-zero
β effects are still important at high magnetic field strengths, and
so a magnetic field strength of approximately one order of mag-
nitude higher (∼100 G) is required for the damping to be inde-
pendent of the heating/cooling function’s dependence upon B.
This difference in behaviour may also be seen in Figure 1 since
it is the hot, dense plasmas (upper right quadrants of those plots)
for which the change with plasma-β and with the change in mag-
netic dependence c is greatest and visible. Returning to Figure 2,
it may also be seen that if QB = 0 (black lines) or the plasma-β is
sufficiently small to neglect the effects of QB, then the damping
is always diminished with increasing β (stronger magnetic fields
mean more damping) – consistent with Subsection 2.2.

When the plasma-β greatly exceeds 1, that is to say when
the plasma is pressure dominated as opposed to magnetically
dominated, the timescales for both the thermal misbalance and
the thermal conduction depart greatly from the infinite magnetic
field values. This is apparent in the bottom panel of Figure 2,
where the quality factors have diverged greatly in the β > 1 re-
gion. Also, the effect of plasma-β upon the wave damping can
now be to decrease or increase the damping, depending on the
sign of QB. We do not consider the regime β > 1 since it is more
applicable to chromospheric plasma and below, necessitating the
addition of further physical effect such as optically thick radia-
tion, partial ionisation and non-LTE conditions.

3.3. Comparison with damping by thermal conduction

As Figure 1 demonstrates, the damping timescale for the ther-
mal misbalance in the infinite magnetic field case is of the same
order as the observed periodicity of slow waves in many typi-
cal coronal conditions, and the same order again as the observed
damping times (some tens of minutes). To check this holds true
when accounting for non-zero β plasma, as well as compare the
damping by thermal misbalance with the (conventionally domi-
nant) damping by thermal conduction, we calculate the charac-
teristic damping times due to thermal misbalance TM and TcondB
for typical combinations of coronal densities, temperatures and
magnetic field strengths. The results are shown in Table 1.

We stress that the variation of thermal conduction damp-
ing time TcondB with both β and λ means that its relevance
is extremely broad, and the thermal misbalance timescale TM
depends on the exact parameterisation of the as-yet unknown
coronal heating function. Even so, for typical coronal situations
Table 1 leads us to conclude that when comparing the damp-
ing of slow waves by thermal misbalance with the damping by
field-aligned thermal conduction, we find the effect of the heat-
ing/cooling misbalance could be of equal or greater importance.
As a specific example, consider the propagating 3 minute oscilla-
tions seen in 171 Å with a wavelength λ ≈ 22 Mm. Both TM and
TcondB are of the same order as the wave period, and the quality
factor calculated for this combination of parameters is ∼2 (top
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(a) Plot of TM with c = 0 at 100 G. (b) Plot of TM with c = 1 at 100 G.

(c) Plot of TM with c = 0 at 12 G. (d) Plot of TM with c = 1 at 12 G.

(e) Plot of TM with c = 0 at 4 G. (f) Plot of TM with c = 1 at 4 G.
Fig. 1: Variation of the characteristic thermal misbalance damping timescale TM with magnetic field, and with different power-law
index c whereH ∝ ρ1/2T−7/2Bc. Scanning down the column shows how the damping time changes as magnetic field B0 decreases:
panels (a), (b) at 100 G; panels (c), (d) at 12 G; panels (e), (f) at 4 G. Comparing left-to-right shows the effect of a different
power-law index c (left side c = 0, right side c = 1), whilst all other parameters are held the same. Symbols correspond to specific
plasma conditions (see Table 1). Note that panels (a) and (b) are practically identical, since the plasma-β everywhere in these plots
is sufficiently close to zero for the infinite magnetic field approximation to apply, which is independent of ∂Q/∂B (see Subsec. 3.2).
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Typical value Loop in 171 Å Plume in 193 Å Hot loop in SUMER

(Symbol on plots) (square) (star) (circle)

Temperature, T0 0.63 MK 1.3 MK 6.3 MK
Number density, ne 1.5 × 109 cm−3 0.5 × 109 cm−3 1 × 1010 cm−3

Period, P ≈ 3 − 10 min ≈ 8 − 18 min ≈ 10 − 20 min
TM, B = ∞ 3.2 min 23 min 23 min

TM, B = 34 G
3.2 min
(β=0.01)

23 min
(β=0.00)

30 min
(β=0.38)

TM, B = 12 G
3.3 min
(β=0.05)

24 min
(β=0.03)

81 min
(β=3.0)

TM, B = 4 G
4.4 min
(β=0.43)

29 min
(β=0.28)

548 min ≃ 9 hr
(β=27)

TcondB, B = ∞ 10 min 11 min 27 min

TcondB, B = 34 G
10 min
(β=0.01)

11 min
(β=0.00)

36 min
(β=0.38)

TcondB, B = 12 G
11 min
(β=0.03)

12 min
(β=0.03)

97 min
(β=3.0)

TcondB, B = 4 G
14 min
(β=0.43)

14 min
(β=0.28)

650 min ≃ 11 hr
(β=27)

τrad 9.7 min 60 min 70 min

Table 1: Table comparing the characteristic timescales calculated for the typical values of three coronal plasma non-uniformities in
which rapidly decaying slow modes have been observed: warm quiescent loops seen in 171 Å (De Moortel 2009), coronal plumes
seen in 193 Å (e.g. Krishna Prasad et al. 2014), and hot dense loops observed in the Fe XIX channel by SUMER (Nakariakov et al.
2019). The three points (T, ρ) are marked on the plots in Fig. 1, and are the same parameters used for the three plots in Fig. 2. The
characteristic timescale TM is calculated using Eq. (20) for heating model H = ρ1/2T−7/2. The thermal conduction damping time
TcondB is calculated from Eq. (21) using wavelengths λ = 22 Mm, 100 Mm and 250 Mm respectively. A range of magnetic field
strengths (hence β) are presented. The characteristic radiative timescale τrad is calculated from Eq. (29)

panel of Fig. 2). This is consistent with the observations of the
rapid damping of these propagating slow waves.

The evaluation of the effect of the heating and cooling upon
the slow wave may easily be confused with the cooling timescale
of the host plasma, often defined as (see e.g. Eq. (6) in De Moor-
tel & Hood 2004)

τrad =
γCVT0

L0(ρ0,T0)
. (29)

Although the values of timescales τrad in Table 1 look similar to
their counterparts the misbalance damping timescales TM, from
a physical point of view they are independent and describe fun-
damentally different processes. The quantity τrad is associated
with the host plasma (not the wave), it depends on the magni-
tude of the radiative losses, and neglects the influence of coronal
heating which indisputably exists. The cooling with the char-
acteristic time τrad occurs when the heating of the plasma is
suddenly switched off. In contrast, the characteristic timescales
τ1, τ2 and damping time TM are determined by the derivatives of
the complete heating/cooling function and the plasma parame-
ters, and characterise the effect of the wave-induced misbalance
upon the wave when both cooling and heating processes are still
operating. Thus, the radiative timescale does not reflect if the ef-
fect of misbalance between heating and cooling is important for
the slow magnetoacoustic wave: the heating/cooling misbalance
may have a great effect even if τrad is far from the wave period
ω.

The slow waves considered in Table 1 all lie comfortably in
the weakly non-adiabatic regime, ω × {τcond, τ1, τ2} ≫ 1. This
may not necessarily be true for all slow waves in the corona.

Supposing the thermal conduction were strong enough to be in
the strongly non-adiabatic regime ωτcond ≪ 1, the damping time
should be calculated using Equation (27) and tends to no damp-
ing by thermal conduction in the isothermal limit (De Moortel &
Hood 2003). In contrast, thermal misbalance may cause strong
damping even in the isothermal regime in which the conductive
damping is very weak, via the wave’s perturbations to density
and magnetic field, not temperature. This makes the damping by
thermal misbalance a viable mechanism for damping in isother-
mal regimes.

4. Discussion and Conclusions

The importance of non-adiabatic effects for the damping of slow
modes has been shown in many previous works, however in
some cases the importance of the presence of steadily operating
coronal heating for slow modes has not been realised because
the heating term is considered a constant (that is, unperturbed)
(e.g. De Moortel & Hood 2004). As we have shown, if the coro-
nal heating mechanism is acting during the oscillation, then the
damping effect of wave-induced misbalance between the heat-
ing and cooling mechanisms can be significant and should not
be neglected. We must stress that in our study the energy for
heating does not come from the slow wave, and is supplied by
some other mechanism.

The potential for the inclusion of damping by thermal mis-
balance to explain the various discrepancies between observed
slow mode damping and theory is clearly enormous. In the
weakly non-adiabatic limit, the damping (or amplification) by
heating/cooling misbalance does not change with wavenumber
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Fig. 2: Plots of damping time over period (quality factor) against
magnetic field strength, for 3 heating models with differing de-
pendencies on magnetic field strength, which are each coloured
(Eqs. 23, 18). [Top] Quality factors calculated for plasma param-
eters corresponding to an upwardly propagating slow wave in a
coronal fan loop above a sunspot, T = 0.63 MK, electron den-
sity of ne = 1.5 × 109 cm−3, and periodicity set to 3.0 minutes
corresponding to a wavelength of λ = 22 Mm. [Middle] Qual-
ity factors calculated for a slow wave propagating in a coronal
plume, T = 1.3 MK, ne = 5 × 108 cm−3, and wavelength λ set
to 100 Mm corresponding to a periodicity of 9 minutes. [Bot-
tom] Quality factors calculated for a standing slow wave in a hot
loop observed by SUMER, T = 6.3 MK, ne = 1 × 1010 cm−3, λ
= 250 Mm yielding a periodicity of 11 minutes. Grey shading
marks the β > 1 region, and the dotted line in the bottom plot
marks a region in which TM < 0 and so the effect of thermal
misbalance is destabilising the plasma.

k, meaning its effect is universal for different length structures. In

the general non-adiabatic case, there is some dependence upon
k. The damping by thermal conduction always varies with length
scale. Thus if the slow wave is damped by both thermal conduc-
tion and thermal misbalance (e.g. Eq. 23), the dependence of
damping time upon frequency would be more complicated than
a straight line of gradient 2 on a log-log plot (as was previously
expected since τcond ∝ k−2). The inclusion of thermal misbalance
as a damping mechanism may therefore explain the unexpected
frequency dependencies found in Krishna Prasad et al. (2014),
since the gradients of best fit on period vs damping length plots
can take a range of values depending on the relative contribu-
tions of TM and TcondB. Moreover, the difference seen between
the damping of slow waves observed in plumes and those seen
in sunspots (Krishna Prasad et al. 2014); the unexpected depen-
dence of damping length upon temperature reported in Krishna
Prasad et al. (2019); and the change of the damping’s frequency
dependence with height in Gupta (2014) are naturally explained
by the variation of τdamp upon plasma-β and/or the variation
of TM with density, temperature and heating function. Further-
more, the thermal misbalance will likely introduce a phase shift
between density and temperature in the same manner as ther-
mal conduction does (see Sec 3.1.2, Owen et al. 2009) which
may explain the results in e.g. Krishna Prasad et al. (2018). The
variation of this phase shift with the effectiveness of the ther-
mal misbalance would have the consequence of making mea-
surements of the coronal polytropic index, measured using den-
sity/temperature phase shifts, also vary with the effectiveness of
the thermal misbalance. As we have demonstrated in this work
(see also Kolotkov et al. 2020) the effect of thermal misbalance
varies with temperature in the corona, and so one may expect
that the polytropic index would vary with temperature as was the
case in Krishna Prasad et al. (2019), though further validation is
warranted.

The damping and dispersion of slow waves in the corona by
wave-induced thermal misbalance are subject to non-zero β ef-
fects, some of which are irrespective of the heating/cooling func-
tion whilst further effects may occur if there is any dependence
of Q upon magnetic field. Regarding purely non-zero β effects,
we have found that a wave propagating through a non-zero β
plasma will always have a reduced phase speed compared to
a wave in the infinite magnetic field case, whilst its effect on
the wave attenuation depends on the exact plasma conditions. In
the case of a damped wave in weakly non-adiabatic plasma, any
reduction in the magnetic field strength (increase in plasma-β)
will increase the damping time. The effect of thermal conduc-
tion is diminished (compared to the infinite field case) as the
plasma-β grows, such that both the isothermal phase speed and
the damping rate from thermal conduction are reduced. Regard-
ing the effects of any dependence of Q upon of magnetic field
strength, one important effect on slow waves which may be im-
portant even for low-β plasma, is the stability of the plasma to
the isentropic instability (and potentially the thermal instability
as well). In this work we have focussed on the damping effect
of thermal misbalance upon slow waves, enforced by our choice
of heating model informed by Kolotkov et al. (2020), since such
heating model(s) is chosen such that slow modes are damped ev-
erywhere in the corona. This may not be the case everywhere,
since this assumption renders the phenomenon of coronal rain
from thermal instability an impossibility, which is evidently not
true. However the topic of instability in a non-zero β plasma with
magnetically dependent heating will be the subject of its own
dedicated work in the future.

One major result of this work is that the infinite magnetic
field approximation is good for the quiescent corona when the
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magnetic field strength is above ∼10 G. The magnetic field
strengths in coronal structures are difficult to observe directly,
often relying on seismological inference. Typical values in trans-
versely oscillating coronal loops lie in the tens of Gauss (e.g. see
the inferences in tables B.1 and B.2 in Arregui et al. 2019), but
values of several kilogauss have been reported at the base of the
corona above exceptionally strong sunspots (e.g. Anfinogentov
et al. 2019). Thus it may be concluded that, for the majority of
the quiescent corona, the effects of the dependency of the heat-
ing model upon magnetic field strength may be safely neglected,
and the infinite magnetic field approximation used instead. The
situation may be different in particularly hot loops such as af-
ter a flare, where the plasma-β tends to be higher, and it is in
these non-zero β regions in which any dependence of the heat-
ing/cooling function upon magnetic field strength may be probed
in a manner analogous to Kolotkov et al. (2020). A natural gen-
eralisation of our study would be the consideration of the heating
scenario which depend also upon the height above the bottom of
the corona.

The key results of this paper may be summarised into the
following:

1. The dispersion relation governing slow magnetoacoustic
waves along an infinitely thin cylinder with non-zero β was
derived. Crucially, two timescales (τ1 and τ2) that charac-
terise the effect of wave-induced thermal misbalance are
generalised for the non-zero β case (these timescales were
found in the infinite magnetic field case in e.g. Kolotkov
et al. 2019). These are inversely proportional to the combined
heating/cooling functions’ derivatives with respect to tem-
perature at constant gas pressure, and with respect to tem-
perature at constant magnetic pressure respectively (Eq. 14).

2. The effect of heating/cooling misbalance in the limit of weak
non-adiabaticity was found, applicable for waves in which
the exchange of energy with the medium is only mild. Such
waves propagate at the tube speed CT, and their amplitude
damping may be calculated through Equation (22). In this
limit the two characteristic timescales for thermal misbal-
ance may be combined into a single damping time TM,
whose effect on the wave decrement is additive to that from
thermal conduction (Eqs. (17)–(19)). The sign of TM may
be positive (enhanced damping) or negative (reduced damp-
ing or over-stability). A change in magnetic field strength
(plasma-β) will change the damping rate depending on the
sign of QB. If QB = 0 (or the magnetic field is sufficiently
strong for the infinite field approximation to be valid), then
a decrease in magnetic field strength (increase in plasma-β)
will always lessen the damping rate. Thermal conduction al-
ways acts to damp the wave, and its effect is also reduced as
β increases.

3. The effect of thermal misbalance in the limit of strong non-
adiabaticity was found, applicable for waves in which the
exchange of energy with their medium is extreme (Eqs. (25)–
(27)). In this limit, the effects upon the wave decrement
by parallel thermal conduction and by thermal misbalance
are not additive. The limited isothermal phase speed in this
regime is reduced for greater β.

4. The damping effect of wave-induced thermal misbalance
upon slow magnetoacoustic waves is important for a wide
range of coronal conditions, demonstrated through Table 1
by reason of the heating/cooling misbalance’s damping
timescale TM coinciding with typical observed coronal slow
wave periods and damping times. The damping by thermal
misbalance is of comparable importance to the damping ef-
fect by thermal conduction. The different physical origins

(and therefore different parametric dependencies) of these
omnipresent damping mechanisms may explain the discrep-
ancies reported between observations of slow mode damping
in the corona and theory.

5. The quality factors for 3 minute slow mode oscillations
above sunspots, slow modes in plumes, and in hot (post-flare)
loops are estimated, considering both damping both thermal
conduction and damping by wave-induced thermal misbal-
ance. For sufficiently large β plasma, the damping of slow
waves is independent of the heating/cooling functional de-
pendence upon magnetic field. As a rule of thumb, the in-
finite magnetic field approximation is valid for studying the
effect of thermal misbalance in the quiescent corona for mag-
netic field strengths greater than ≈ 10 G.
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