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The Effect of Time Delays in the Stability of Load
Balancing Algorithms for Parallel Computations
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Abstract� Deterministic dynamic time-delay systems are
developed to model load balancing in a cluster of computer
nodes used for parallel computations. A linear model is
developed whose stability can be characterized in terms of
the delays in the transfer of information between nodes and
the gains in the load balancing algorithm. A higher Þdelity
nonlinear model is also introduced. These models are then
compared with an experimental implementation of the load
balancing algorithm on a parallel computer network.
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I. Introduction

Parallel computer architectures utilize a set of compu-
tational elements (CE) to achieve performance that is not
attainable on a single processor, or CE, computer. A com-
mon architecture is the cluster of otherwise independent
computers communicating through a shared network. To
make use of parallel computing resources, problems must
be broken down into smaller units that can be solved in-
dividually by each CE while exchanging information with
CEs solving other problems.
The Federal Bureau of Investigation (FBI) National

DNA Indexing System (NDIS) and Combined DNA In-
dexing System (CODIS) software are candidates for par-
allelization. New methods developed by Wang et al
[3][4][5][16][17] lead naturally to a parallel decomposition of
the DNA database search problem while providing orders
of magnitude improvements in performance over the cur-
rent release of the CODIS software. The projected growth
of the NDIS database and in the demand for searches of
the database necessitates migration to a parallel comput-
ing platform.
Effective utilization of a parallel computer architecture

requires the computational load to be distributed more or
less evenly over the available CEs. The qualiÞer �more
or less� is used because the communications required to
distribute the load consume both computational resources
and network bandwidth. A point of diminishing returns
exists.
Distribution of computational load across available re-

sources is referred to as the load balancing problem in
the literature. Various taxonomies of load balancing al-
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gorithms exist. Direct methods examine the global distri-
bution of computational load and assign portions of the
workload to resources before processing begins. Iterative
methods examine the progress of the computation and the
expected utilization of resources, and adjust the workload
assignments periodically as computation progresses. As-
signment may be either deterministic, as with the dimen-
sion exchange/diffusion [7] and gradient methods, stochas-
tic, or optimization based. A comparison of several de-
terministic methods is provided by Willeback-LeMain and
Reeves [18].
To adequately model load balancing problems, several

features of the parallel computation environment should be
captured (1) The workload awaiting processing at each CE;
(2) the relative performances of the CEs; (3) the compu-
tational requirements of each workload component; (4) the
delays and bandwidth constraints of CEs and network com-
ponents involved in the exchange of workloads, and (5) the
delays imposed by CEs and the network on the exchange
of measurements. A queuing theory [14] approach is well-
suited to the modeling requirements and has been used in
the literature by Spies [15] and others. However, whereas
Spies assumes a homogeneous network of CEs and mod-
els the queues in detail, the present work generalizes queue
length to an expected waiting time, normalizing to account
for differences among CEs, and aggregates the behavior of
each queue using a continuous state model. The present
work focuses upon the effects of delays in the exchange of
information among CEs, and the constraints these effects
impose on the design of a load balancing strategy. Pre-
liminary results by the authors appear in [1]. However,
new nonlinear models are developed here to obtain better
Þdelity and experimental results are presented and com-
pared to that given by the models.
Section 2 presents our approach to modeling the com-

puter network and load balancing algorithms to incorpo-
rate the presence of delay in communicating between nodes
and transferring tasks. Section 3 contains an analysis of
the stability properties of the linear models, while Section
4 presents simulations of the linear and nonlinear models.
Section 5 presents experimental data from an actual imple-
mentation of a load balancing algorithm. Finally, Section
6 is a summary and conclusion of the present work and a
discussion of future work.

II. Models of Load Balancing Algorithms

In this section, continuous time models are developed to
model load balancing among a network of computers. A
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basic model is described Þrst to give the overall approach
used here. This basic model is a nonlinear system with de-
lay which is then simpliÞed to obtain a linear time-invariant
system with delay. Finally, the nonlinear model is modiÞed
so that the number of tasks a node distributes to the other
nodes is based on their relative load levels.
To introduce the basic approach to load balancing,

consider a computing network consisting of n computers
(nodes) all of which can communicate with each other. At
start up, the computers are assigned an equal number of
tasks. However, when a node executes a particular task
it can in turn generate more tasks so that very quickly
the loads on various nodes become unequal. To balance
the loads, each computer in the network sends its queue
size qj(t) to all other computers in the network. A node
i receives this information from node j delayed by a Þnite
amount of time τ ij , that is, it receives qj(t − τ ij). Each
node i then uses this information to compute its local esti-
mate1 of the average number of tasks in the queues of the n
computers in the network. In this work, the simple estima-
tor

³Pn
j=1 qj(t− τ ij)

´
/n (τ ii = 0) which is based on the

most recent observations is used. Node i then compares its
queue size qi(t) with its estimate of the network average as³
qi(t)−

³Pn
j=1 qj(t− τ ij)

´
/n
´
and, if this is greater than

zero, the node sends some of its tasks to the other nodes
while if it is less than zero, no tasks are sent (see Figure 1).
Further, the tasks sent by node i are received by node j
with a delay hij . The controller (load balancing algorithm)
decides how often and fast to do load balancing (transfer
tasks among the nodes) and how many tasks are to be sent
to each node.
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Fig. 1. Graphical description of load balancing. This bar graph shows
the load for each computer vs. node of the network. The thin
horizontal line is the average load as estimated by node 1. Node
1 will transfer (part of) its load only if it is above its estimate of
the average. Also, it will only transfer to nodes that it estimates
are below the node average.

As just explained, each node controller (load balancing
algorithm) has only delayed values of the queue lengths of

1It is an estimate because at any time, each node only has the
delayed value of the number of tasks in the other nodes.

the other nodes, and each transfer of data from one node
to another is received only after a Þnite time delay. An im-
portant issue considered here is to study the effect of these
delays on system performance. SpeciÞcally, the continuous
time models developed here represent our effort to capture
the effect of the delays in load balancing techniques and
were developed so that system theoretic methods could be
used to analyze them.

A. Basic Model

The basic mathematical model of a given computing
node for load balancing is given by

dxi(t)

dt
= λi − µi + ui(t)−

nX
j=1

pij
tpi
tpj
uj(t− hij)

yi(t) = xi(t)−
Pn
j=1 xj(t− τ ij)

n
(1)

ui(t) = −Kisat (yi(t))

pij > 0, pjj = 0,
nX
i=1

pij = 1

where

sat (y) = y if y > 0
= 0 if y < 0.

In this model we have
� n is the number of nodes.
� xi(t) is the expected waiting time experienced by a task
inserted into the queue of the ith node. With qi(t) the
number of tasks in the ith node and tpi the average time
needed to process a task on the ith node, the expected
(average) waiting time is then given by xi(t) = qi(t)tpi .
Note that xj/tpj = qj is the number of tasks in the node 1
queue. If these tasks were transferred to node i, then the
waiting time transferred is qjtpi = xjtpi/tpj , so that the
fraction tpi/tpj converts waiting time on node j to waiting
time on node i.
� λi is the rate of generation of waiting time on the ith

node caused by the addition of tasks (rate of increase in
xi)
� µi is the rate of reduction in waiting time caused by
the service of tasks at the ith node and is given by µi ≡
(1× tpi) /tpi = 1 for all i.
� ui(t) is the rate of removal (transfer) of the tasks from
node i at time t by the load balancing algorithm at node
i. Note that ui(t) ≤ 0.
� pijuj(t) is the rate that node j sends waiting time (tasks)
to node i at time t where pij > 0,

Pn
i=1 pij = 1 and pjj = 0.

That is, the transfer from node j of expected waiting time

(tasks)
Z t2

t1

uj(t)dt in the interval of time [t1, t2] to the

other nodes is carried out with the ith node being sent

the fraction pij
tpi
tpj

Z t2

t1

uj(t)dt where the fraction tpi/tpj

converts the task from waiting time on node j to waiting
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time on node i. As
Pn
i=1

µ
pij

Z t2

t1

uj(t)dt

¶
=

Z t2

t1

uj(t)dt,

this results in a removing all the waiting time
Z t2

t1

uj(t)dt

from node j.
� The quantity −pijuj(t−hij) is the rate of increase (rate
of transfer) of the expected waiting time (tasks) at time t
from node j by (to) node i where hij (hii = 0) is the time
delay for the task transfer from node j to node i.
� The quantities τ ij (τ ii = 0) denote the time delay for
communicating the expected waiting time xj from node j
to node i.
� The quantity xavgi =

³Pn
j=1 xj(t− τ ij)

´
/n is the esti-

mate2 by the ith node of the average waiting time of the
network and is referred to as the local average (local esti-
mate of the average).
In this model, all rates are in units of the rate of change

of expected waiting time, or time/time which is dimension-
less). As ui(t) ≤ 0, node i can only send tasks to other
nodes and cannot initiate transfers from another node to
itself. A delay is experienced by transmitted tasks be-
fore they are received at the other node. The control
law ui(t) = −Kisat(yi(t)) states that if the ith node out-
put xi(t) is above the local average

³Pn
j=1 xj(t− τ ij)

´
/n,

then it sends data to the other nodes, while if it is less
than the local average nothing is sent. The jth node

receives the fraction
Z t2

t1

pjiui(t)dt of transferred waiting

time
Z t2

t1

ui(t)dt delayed by the time hij .

B. Linear Model

Model (1) is the basic model but one important detail
remains unspeciÞed, namely the exact form pji for each
sending node i. One approach is to choose them as constant
and equal

pji = 1/(n− 1) for j 6= i
pii = 0

where it is clear that pij > 0,
Pn
i=1 pij = 1. If this were

done, and the saturation functions removed, the following
linear time invariant model results

dxi(t)

dt
= λi − µi + ui(t)−

X
j 6=i

puj(t− hij)

yi(t) = xi(t)−
Pn
j=1 xj(t− τ ij)

n
(2)

ui(t) = −Kiyi(t)
p =

1

n− 1
When ui(t) = −Kiyi(t) < 0, this operates as in (1) in that
the tasks are immediately removed and sent to the other

2This is an only an estimate due to the delays.

nodes where each of those nodes experiences a delay (hij)
in getting these tasks. However, a fundamental problem
with this linear model is that when yi(t) < 0 the controller
(load balancing algorithm) ui(t) = −Kiyi(t) > 0 so that
the node is instantaneously taking on waiting time (tasks)
from the other nodes before those tasks are removed from
the other nodes� queues. That is, it is accepting the waiting
times (tasks) puj(t) from each of the other nodes. There
is a Þnite time delay associated with this transfer of tasks,
and this model ignores this fact. In spite of this fact, it is
still of value to consider the system (2) because it can be
completely analyzed with regards to stability, and it does
capture the oscillatory behavior of the yi(t).

C. Nonlinear Model with Non Constant pij

The model (1) did not have the pij speciÞed explicitly.
For example, they can be considered constant as in the
linear model. However, it is actually useful to use the lo-
cal information of the waiting times xi(t), i = 1, .., n to set
their values. Recall that pij is the fraction of uj(t) that
node j allocates (transfers) to node i at time t, and con-
servation of the tasks requires pij > 0,

Pn
i=1 pij = 1 and

pjj = 0. The quantity xi(t − τ ji) − xavgj represents what
node j estimates3 the waiting time of node i is with re-
spect to the local average of node j. If node i queue is
above the local average, then node j does not send tasks
to it. Therefore sat

¡
xavgj − xi(t− τ ji)

¢
is an appropriate

measure by node j as to how much node i is below the lo-
cal average. Node j then repeats this computation for all
the other nodes and then portions out its tasks among the
other nodes according to the amounts they are below the
local average, that is,

pij =
sat
¡
xavgj − xi(t− τ ji)

¢X
i Ä i6=j

sat
¡
xavgj − xi(t− τ ji)

¢ . (3)

The pij are deÞned to be zero if the denominatorX
i Ä i6=j

sat
¡
xi(t− τ ji)− xavgj

¢
= 0.

3Again, the term �estimates� is used because node j does not know
the current value of xi(t), but only its earlier value xi(t− τ ij).
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Fig. 2. Illustration of a hypothetical distribution pi1 of the load at
some time t from node 1�s point of view. Node 1 will send data
out to node i in proportion pi1 it estimates node i is below the
average where

Pn
i=1 pi1 = 1 and p11 = 0

Remark If the denominator
X
i Ä i6=j

sat
¡
xi(t− τ ji)− xavgj

¢
is zero, then xi(t− τ ji)− xavgj < 0 for all i 6= j. However,
by deÞnition of the average,

X
i Ä i6=j

¡
xavgj − xi(t− τ ji)

¢
+

xavgj − xj(t) =
X
i

¡
xavgj − xi(t− τ ji)

¢
= 0 which implies

xavgj − xj(t) = −
X
i Ä i6=j

¡
xavgj − xi(t− τ ji)

¢
> 0. That is,

if the denominator is zero, the node j is below the local
average so that uj(t) = −Kjsat(yj(t)) = 0 and is therefore
not sending out any tasks.

With the deÞnition of the pij given by (3), a load balanc-
ing algorithm which portions out the tasks in proportion
to the amounts they are below the local average, is given
by the following nonlinear differential-delay system

dxi(t)

dt
= λi − µi + ui(t)−

X
j 6=i

pijuj(t− hij)

xavgi =

Pn
j=1 xj(t− τ ij)

n
yi(t) = xi(t)− xavgi

ui(t) = −Kisat (yi(t)) (4)

pij =
sat
¡
xavgj − xi(t− τ ji)

¢X
i Ä i6=j

sat
¡
xavgj − xi(t− τ ji)

¢ for i 6= j
= 0 for i = j

III. Stability Analysis of the Linear Model

A key issue here is whether or not the system models
(1)(2)(4) are stable. Even in the case of the linear model,
the presence of delays has a great inßuence on the stability
of the system [2][10][11]. In addition to stability, perfor-
mance is also an issue, that is, the system may be stable,

but oscillate. This is undesirable as the network is wast-
ing resources passing tasks back and forth between nodes
rather than executing the tasks. In this section, the lin-
ear model (2) is analyzed for stability as a function of the
control gains Ki. (The stability of the other two nonlinear
models will be studied through simulations.)
To simplify the presentation of the stability analysis of

the linear model (2), a three node model is considered with
K1 = K2 = K3 = K, p = 1/2, τ ij = τ , hij = 2τ for i 6= j
for all i, j = 1, 2, 3 (τ ii = hii = 0) Letting d1 = λ1 − µ1,
d2 = λ2−µ2, and d3 = λ3−µ3, the Laplace transform of the
output response y1(t) from (2) with zero initial conditions
is [1]

Y1(s) =
b1(s, z)

a1(s, z)a2(s, z)
D1(s)+

zb2(s, z)

a1(s, z)a2(s, z)
(D2(s) +D3(s))

(5)
where z , e−τs and

b1(s, z) = −6s−K
¡
z2 − 2¢ (z − 1)(z + 2)

a1(s, z) = 3s+K (2 + z)
¡
1 + 0.5z2

¢
a2(s, z) = −3s+ 2K (1− z)

¡−1 + z2¢
b2(s, z) = 3s+Kz(z − 1)(z + 2).

The range of delay values τ for which (5) is stable is found
by separately considering the stability of the transfer func-
tions 1/a1(s, z), b1(s, z)/a2(s, z) and b2(s, z)/a2(s, z). Us-
ing the techniques given in [1][6][12][13], it can be shown
that

1

a1(s, e−τs)
is stable for all τ ≥ 0

b1(s, e
−τs)

a1(s, e−τs)
is stable for τ <

5π

4K sin(π/3)

b2(s, e
−τs)

a2(s, e−τs)
is stable for τ <

5π

4K sin(π/3)

or, equivalently, the system is stable for

K <
5π

4τ sin(π/3)
.

IV. Simulations

Experimental procedures to determine the delay values
are given in [8] and summarized in [9]. These give represen-
tative values for a Fast Ethernet network with three nodes
of τ ij = τ = 200 µ sec for i 6= j, τ ii = 0, and hij = 2τ = 400
µ sec for i 6= j, hii = 0. The initial conditions were
x1(0) = 0.6, x2(0) = 0.4 and x3(0) = 0.2. The inputs
were set as λ1 = 3µ1, λ2 = 0, λ3 = 0, µ1 = µ2 = µ3 = 1.
The tpi �s were taken to be equal. Figure (3) is a block
diagram of one node of the system.

A. Linear Simulations

The simulation of the linear model was performed with
three nodes (n = 3), K1 = K2 = K3 = K, pij = 1/2,
for all i, j, τ ij = τ , hij = 2τ for i 6= j, τ ii = 0,
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hii = 0 for i = 1, 2, 3 and τ = 200 µ sec. The maxi-
mum value for the gain using these parameter values is
Kmax = 5π/

¡
4τ sin(π/3)

¢
= 22672

Fig. 3.

The Þgures below are plots of y1(t), y2(t), y3(t) using the
linear simulation. Three sets of runs are shown. Figures
4 and 5 show the responses with the gain K = 1000 and
K = 5000, respectively. Note the increase in oscillatory
behavior of the responses as the gain is increased from
1000 to 5000. If the delays are artiÞcially set to zero,
then this oscillatory response goes away and the response
with K = 5000 dies out the fastest as expected. To com-
pare with the experimental results given in Figure 14, Fig-
ure 6 shows the output responses with the gains set as
K1 = 6667,K2 = 4167,K3 = 5000, respectively. In each
of the plots, the effect of delay (τ = 200µ sec) coming into
play at t = 200µ sec is evident.
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Fig. 4. Linear output responses with K = 1000.
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Fig. 5. Linear output responses with K = 5000.
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Fig. 6. Linear simulation with K1 = 6666.7;K2 = 4166.7;K3 =
5000

B. Nonlinear Simulations with constant pij

In this set of simulations, the model (1) is used. Figures
7 and 8 show the responses with the gains set as K =
1000 and K = 5000. To compare with the experimental
results given in Figure 14, Figure 9 are the output responses
with the gains set as K1 = 6667,K2 = 4167,K3 = 5000,
respectively.
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Fig. 7. Constant pij nonlinear output responses with K = 1000.
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Fig. 8. Constant pij nonlinear output responses with K = 5000.
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Fig. 9. Nonlinear simulation with constant pij and K1 =
6666.7;K2 = 4166.7;K3 = 5000

C. Nonlinear Simulations

In this set, the model (4) is used. It is seen that the
responses are faster for the K = 1000 case compared to the
constant pij case. However, for K = 5000, the response is
actually deteriorated compared to the constant pij case.
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Fig. 10. Nonlinear output responses with K = 1000.
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Fig. 11. Nonlinear output responses with K = 5000.

V. Experimental Results

A parallel machine has been built to implement an exper-
imental facility for evaluation of load balancing strategies.
To date, this work has been performed for the FBI Labo-
ratory to evaluate candidate designs of the parallel CODIS
database. The design layout of the parallel database is
shown in Figure 12.
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Fig. 12. Hardware structure of the parallel database.

A root node communicates with k groups of computer
networks. Each of these groups is composed of n nodes
(hosts) holding identical copies of a portion of the data-
base. (Any pair of groups correspond to different data-
bases, which are not necessarily disjoint. A speciÞc record,
or DNA proÞle, is in general stored in two groups for redun-
dancy to protect against failure of a node.) Within each
node, there are either one or two processors. In the exper-
imental facility, the dual processor machines use 1.6 GHz
Athlon MP processors, and the single processor machines
use 1.33 GHz Athlon processors. All run the Linux oper-
ating system. Our interest here is in the load balancing in
any one group of n nodes/hosts.
The database is implemented as a set of queues with

associated search engine threads, typically assigned one
per node of the parallel machine. Due to the structure
of the search process, search requests can be formulated
for any target DNA proÞle and associated with any node
of the index tree. These search requests are created not
only by the database clients; the search process also cre-
ates search requests as the index tree is descended by any
search thread. This creates the opportunity for parallelism;
search requests that await processing may be placed in any
queue associated with a search engine, and the contents of
these queues may be moved arbitrarily among the process-
ing nodes of a group to achieve a balance of the load. This
structure is shown in Figure 13.

Fig. 13. A depiction of multiple search threads in the database index
tree. Here the server corresponds to the �root� in Figure 12. To
even out the search queues, load balancing is done between the
nodes (hosts) of a group. If a node has a dual processor, then it
can be considered to have two search engines for its queue.

An important point is that the actual delays experienced
by the network traffic in the parallel machine are random.
Work has been performed to characterize the bandwidth
and delay on unloaded and loaded network switches, in or-
der to identify the delay parameters of the analytic models
and is reported in [8][9]. The value τ = 200 µ sec used for
simulations represents an average value for the delay and
was found using the procedure described in [9]. The in-
terest here is to compare the experimental data with that
from the three models previously developed.
To explain the connection between the control gain K

and the actual implementation, recall that the waiting time
is related to the number of tasks as xi(t) = qi(t)tpi where
tpi is the average time to carry out a task. The continuous
time control law is

u(t) = −Ksat (yi(t))

where u(t) is the rate of decrease of waiting time xi(t) per
unit time. Consequently, the gain K represents the rate of
reduction of waiting time per second in the continuous time

model. Also, yi(t) =
³
qi(t)−

³Pn
j=1 qj(t− τ ij)

´
/n
´
tpi =

ri(t)tpi where ri(t) is simply the number of tasks above
the estimated (local) average number of tasks and, as the
interest here is the case yi(t) > 0, consider u(t) = −Kyi(t).
With ∆t the time interval between successive executions of
the load balancing algorithm, the control law says that a
fraction of the queue Kzri(t) (0 < Kz < 1) is removed
in the time ∆t so the rate of reduction of waiting time is
−Kzri(t)tpi/∆t = −Kzyi(t)/∆t so that

u(t) = −Kzyi(t)
∆t

=⇒ K =
Kz
∆t
. (6)

This shows that the gain K is related to the actual imple-
mentation by how fast the load balancing can be carried out
and how much (fraction) of the load is transferred. In the
experimental work reported here, ∆t actually varies each
time the load is balanced. As a consequence, the value of
∆t used in (6) is an average value for that run. The average
time tpi to process a task is the same on all nodes (identical
processors) and is equal 10µ sec while the time it takes to
transfer of load is about 50µ sec . The initial conditions were
taken as q1(0) = 60000, q2(0) = 40000, q3(0) = 20000 (cor-
responding to x1(0) = q1(0)tpi = 0.6, x2(0) = 0.4, x3(0) =
0.2). All of the experimental responses were carried out
with constant pij = 1/2 for i 6= j.
Figure 14 is a plot of the responses ri(t) = qi(t) −³Pn
j=1 qj(t− τ ij)

´
/n for i = 1, 2, 3 (recall that yi(t) =

ri(t)tpi). The (average) value of the gains were (Kz = 0.5)
K1 = 0.5/75µ sec = 6667,K2 = 0.5/120µ sec = 4167,K3 =
0.5/100µ sec = 5000. This Þgure compares favorably with
Figures 6 (linear model) and 9 (nonlinear model) except
for the time scale being off, that is, the experimental re-
sponses are slower. The explanation for this it that the
gains here vary during the run because ∆t (the time in-
terval between successive executions of the load balancing
algorithm) varies during the run. Further, this time ∆t is
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not modeled in the continuous time simulations, only its
average effect in the gains Ki. That is, the continuous time
model does not stop processing jobs (at the average rate
tpi) while it is transferring tasks to do the load balancing.
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Fig. 14. Experimental response of the load balancing algorithm.
The average value of the gains are (Kz = 0.5) K1 = 6667,K2 =
4167,K3 = 5000 with constant pij .

Figure 15 shows the plots of the response for the (av-
erage) value of the gains given by (Kz = 0.2) K1 =
0.2/125µ sec = 1600,K2 = 0.2/80µ sec = 2500,K3 =
0.2/70µ sec = 2857. The initial conditions were q1(0) =
60000, q2(0) = 40000, q3(0) = 20000 (x1(0) = q1(0)tpi =
0.6, x2(0) = 0.4, x3(0) = 0.2).
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Fig. 15. Experimental response of the load balancing algorithm. The
average value of the gains are (Kz = 0.2) K1 = 16000,K2 =
2500,K3 = 2857 with constant pij .

Figure 16 shows the plots of the response for the (av-
erage) value of the gains given by (Kz = 0.3) K1 =
0.3/125µ sec = 2400,K2 = 0.3/110µ sec = 7273,K3 =
0.3/120µ sec = 2500.
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Fig. 16. Experimental response of the load balancing algorithm.
The average value of the gains are (Kz = 0.3) K1 = 2400,K2 =
7273,K3 = 2500 with constant pij .

VI. Summary and Conclusions

In this work, a load balancing algorithm was modeled
in three ways using a linear time-delay model, a nonlin-
ear time-delay model with constant pij and a nonlinear
time-delay model with pij �s that depend on the system
state. Under the assumption of symmetric nodes and con-
trollers (all intercommunication delays are identical and
the controller gains identical) a systematic procedure was
presented to determine the stability of the linear system
by an explicit relationship between the delay values and
the control gain. In particular, the delays create a limit on
the size of the controller gains in order to ensure stability.
Experiments were carried that indicate a correlation of the
continuous time models with the actual implementation.
A consideration for future work is the fact that the load

balancing operation involves processor time which is not
being used to process tasks. Consequently, there is a trade-
off between using processor time/network bandwidth and
the advantage of distributing the load evenly between the
nodes to reduce overall processing time.
The decision to use constant or non constant pij �s may

depend on the network size. With only three nodes consid-
ered here, the constant pij �s seem to outperform the non
constant implementation. Another issue is that the delays
in actuality are not constant and depend on such factors
as network availability, the execution of the software, etc.
An approach to modeling using a discrete-event / hybrid
state formulation that accounts for block transfers that oc-
cur after random intervals may also be advantageous in
analyzing the network.
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