
Marquette University Marquette University

e-Publications@Marquette e-Publications@Marquette

Electrical and Computer Engineering Faculty
Research and Publications

Electrical and Computer Engineering,
Department of

2005

The effect of time delays on the stability of load balancing The effect of time delays on the stability of load balancing

algorithms for parallel computations algorithms for parallel computations

John Chiasson

Zhong Tang

Jean Ghanem

Chaouki T. Abdallah

J. Douglas Birdwell

See next page for additional authors

Follow this and additional works at: https://epublications.marquette.edu/electric_fac

 Part of the Computer Engineering Commons, and the Electrical and Computer Engineering Commons

https://epublications.marquette.edu/
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric_fac
https://epublications.marquette.edu/electric
https://epublications.marquette.edu/electric
https://epublications.marquette.edu/electric_fac?utm_source=epublications.marquette.edu%2Felectric_fac%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=epublications.marquette.edu%2Felectric_fac%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=epublications.marquette.edu%2Felectric_fac%2F538&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors Authors
John Chiasson, Zhong Tang, Jean Ghanem, Chaouki T. Abdallah, J. Douglas Birdwell, Majeed M. Hayat,
and Henry Jérez

Marquette University

e-Publications@Marquette

Electrical and Computer Engineering Faculty Research and
Publications/College of Engineering

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The
published version may be accessed by following the link in the citation below.

IEEE Transaction on Control Systems Technology, Vol. 13, No. 6 (2005): 932-942. DOI. This article is ©
Institute of Electrical and Electronic Engineers (IEEE) and permission has been granted for this version
to appear in e-Publications@Marquette. Institute of Electrical and Electronic Engineers (IEEE) does not
grant permission for this article to be further copied/distributed or hosted elsewhere without the
express permission from Institute of Electrical and Electronic Engineers (IEEE).

The effect of time delays on the stability of
load balancing algorithms for parallel
computations

John Chiasson
Electrical and Computer Engineering Department, University of Tennessee, Knoxville, TN

Zhong Tang
Electrical and Computer Engineering Department, University of Tennessee, Knoxville, TN

Jean Ghanem
Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, NM

Chaouki T. Abdallah
Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, NM

J. Douglas Birdwell
Electrical and Computer Engineering Department, University of Tennessee, Knoxville, TN

Majeed M. Hayat

https://dx.doi.org/10.1109/TCST.2005.854339
http://epublications.marquette.edu/

Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, NM

Henry Jérez
Electrical and Computer Engineering Department, University of New Mexico, Albuquerque, NM

Abstract:
A deterministic dynamic nonlinear time-delay system is developed to model load balancing in a cluster of
computer nodes used for parallel computations. The model is shown to be self consistent in that the queue
lengths cannot go negative and the total number of tasks in all the queues and the network are conserved (i.e.,
load balancing can neither create nor lose tasks). Further, it is shown that using the proposed load balancing
algorithms, the system is stable in the sense of Lyapunov. Experimental results are presented and compared
with the predicted results from the analytical model. In particular, simulations of the models are compared with
an experimental implementation of the load balancing algorithm on a distributed computing network.

SECTION I. Introduction
Distributed computing architectures utilize a set of computational elements (CEs) to achieve performance that is
not attainable on a single CE. A common architecture is the cluster of otherwise independent computers
communicating through a shared network. To make use of parallel computing resources, problems must be
broken down into smaller units that can be solved individually by each CE while exchanging information with CEs
solving other problems. For a background on mathematical treatments of load balancing, the reader is referred
to [1] [2] [3]. For example, The Federal Bureau of Investigation (FBI) National DNA Index System (NDIS) and
Combined DNA Index System (CODIS) software are candidates for parallelization. New methods developed by
Wang et al. [4]–[5][6][7] lead naturally to a parallel decomposition of the DNA database search problem while
providing orders of magnitude improvements in performance over the current release of the CODIS software. In
this type of application, the search itself, initiated on any particular node, can initiate subsequent new searches
which are added to the node's queue. Consequently, it is of great advantage to the overall system to carry out
load balancing to make effective use of the overall computational resources. The projected growth of the NDIS
database and the demand for searches of the database can be met by migration to a parallel computing
platform.

Effective utilization of a parallel computer architecture requires the computational load to be distributed, more
or less, evenly over the available CEs. The qualifier “more or less” is used because the communications required
to distribute the load consume both computational resources and network bandwidth. A point of diminishing
returns therefore exists.

Distribution of computational load across available resources is referred to as the load balancing problem in the
literature. Various taxonomies of load balancing algorithms exist [8]. Direct methods examine the global
distribution of computational load and assign portions of the workload to resources before processing begins.
Iterative methods examine the progress of the computation and the expected utilization of resources, and
adjust the workload assignments periodically as computation progresses. Assignment may be either
deterministic, as with the dimension exchange/diffusion [9] and gradient methods, stochastic, or optimization
based. A comparison of several deterministic methods is provided by Willebeek-LeMair and Reeves [10]. Here, a
deterministic model is developed.

The present work focuses upon the effects of delays in the exchange of information among CEs, and the
constraints these effects impose on the design of a load balancing strategy. Motivated by the authors' previous
work in [11] and [12], a new nonlinear model is developed here (see also [13]). Specifically, a deterministic
dynamic nonlinear time-delay system is developed to model load balancing. The model is shown to be self

consistent in that the queue lengths cannot go negative and that the total number of tasks in all the queues and
the network is conserved (i.e., load balancing can neither create nor lose tasks). Further, it is shown that the
controller proposed here is asymptotically stable in the sense of Lyapunov. Simulations of the nonlinear model
are compared with an experimental implementation of the load balancing algorithm performed on a distributed
computing network.

Section II presents our approach to modeling the computer network and load balancing algorithm to incorporate
the presence of delay in the communication between nodes and task transfers. In Section III, we show that the
model captures the nonnegativity of the queue lengths as well as the fact that the totality of tasks in all the
queues and in transit is conserved by the load balancing algorithm. Section IV shows that the system is
asymptotically stable in the sense of Lyapunov for any choice of positive gains in the load balancing algorithm
(controller). Section V presents simulations of the nonlinear models for comparison with the actual experimental
data. Section VI presents experimental results from an implementation of the load balancing controller on a
parallel computer consisting of a networked cluster of nodes. Section VII presents experiments conducted over a
geographically-dispersed distributed environment (i.e., PlanetLab). Both the effects of the network delays and
the variances in the task processing time on the behavior of the system are assessed. Finally, Section VIII is a
summary and conclusion of the present work and a discussion of future work.

SECTION II. Mathematical Model
Continuous time models are developed in this section that model the load balancing dynamics among a network
of computers. To introduce the approach, consider a computing network consisting of n computers (nodes) all of
which can communicate with each other. At start up, the computers are assigned an equal number of tasks each
of which has essentially the same processing time (homogenous tasks). However, in some applications when a
node executes a particular task it can, in turn, generate more tasks so that very quickly the loads on various
nodes become unequal. To balance the loads, each computer in the network sends (broadcasts) its queue size
qj(t) to all other computers in the network. A node i receives this information from node j delayed by a finite
amount of time τij (with the convention τii=0); that is, it receives qj(t−τij). Each node i then uses this information
to compute its estimate of the network average of the number of tasks in all n queues of the network. Based on
the most recent observations, the simple (local) estimate of the network average is computed by the ith node as

𝑞𝑞𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎 =Δ

� 𝑞𝑞𝑗𝑗�𝑡𝑡 − 𝜏𝜏𝑖𝑖𝑖𝑖�
𝑛𝑛

𝑗𝑗=1

𝑛𝑛 .

Node i then compares its queue size qi(t) with its estimate of the network average by estimating its excess load,
qi(t)−(∑nj=1qj(t−τij))/n. If its excess load is greater than zero or some positive threshold, the node sends some of
its tasks to the other nodes. If it is less than zero, no tasks are sent. Further, the tasks sent by node i are received
by node j with a delay hij. The controller (load balancing algorithm) decides how often to do load balancing
(transfer tasks among the nodes) and how many tasks are to be sent to each node.

The mathematical model of the task load dynamics at a given computing node is given by

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝜆𝜆𝑖𝑖 − 𝜇𝜇𝑖𝑖 + 𝑢𝑢𝑖𝑖(𝑡𝑡) −�𝑝𝑝𝑖𝑖𝑖𝑖

𝑡𝑡𝑝𝑝𝑖𝑖
𝑡𝑡𝑝𝑝𝑗𝑗

𝑢𝑢𝑗𝑗(𝑡𝑡 − ℎ𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

)

𝑦𝑦𝑖𝑖(𝑡𝑡) = 𝑥𝑥𝑖𝑖(𝑡𝑡) −
� 𝑥𝑥𝑗𝑗(𝑡𝑡 − 𝜏𝜏𝑖𝑖𝑖𝑖)

𝑛𝑛

𝑗𝑗=1

𝑛𝑛
𝑢𝑢𝑖𝑖(𝑡𝑡) = −𝐾𝐾𝑖𝑖sat(𝑦𝑦𝑖𝑖(𝑡𝑡))

(1)

where pij≥0, pjj=0, satisfy � 𝑝𝑝𝑖𝑖𝑖𝑖
𝑛𝑛

𝑖𝑖=1
= 1, and

sat(𝑦𝑦) = {
𝑦𝑦max if 𝑦𝑦 > 𝑦𝑦max
𝑦𝑦 if 0 ⩽ 𝑦𝑦 ⩽ 𝑦𝑦max
0 if 𝑦𝑦 < 0.

Further, in this model, we define

1. xi(t) is the expected waiting time experienced by a task inserted into the queue of the ith node. With tpi
as the average time needed to process a task on the ith node, the expected (average) waiting time is
given by xi(t)=qi(t)tpi. Note that xj/tpj=qj is the number of tasks in the queue of node j. If these tasks
were transferred to node i, then the waiting time transferred is qjtpi=xjtpi/tpj, so that the fraction tpi/tpj
converts waiting time on node j to waiting time on node i.

2. λi≥0 is the rate of generation of waiting times on the ith node caused by the addition of tasks (rate of
increase in xi).

3. μi≥0 is the rate of reduction in waiting time caused by the service of tasks at the ith node and is given by
μi≡(1×tpi)/tpi=1 for all i if xi(t)>0, while if xi(t)=0 then μi=Δ0; that is, if there are no tasks in the queue,
then the queue cannot possibly decrease.

4. ui(t) is the rate of removal (transfer) of the tasks from node i at time t by the load balancing algorithm at
node i. Note that ui(t)≤0.

5. pij is the fraction of the jth node's tasks to be sent out that it sends to the ith node. In more detail,
pijuj(t) is the rate at which node j sends waiting time (tasks) to node i at time t where, as all the tasks
must go to some node, one requires that pij⩾0, ∑ni=1pij=1 and pjj=0. That is, the transfer from node j of
expected waiting time (tasks) ∫t2t1uj(t)dt in the interval of time [t1,t2] to the other nodes is carried out
with the ith node receiving the fraction pij(tpi/tpj)∫t2t1uj(t)dt, where the ratio tpi/tpj converts the task
from waiting time on node j to waiting time on node i. As ∑ni=1pij∫t2t1uj(t)dt=∫t2t1uj(t)dt, this results in
removing all of the excess waiting time ∫t2t1uj(t)dt from node j.

6. The quantity −pijuj(t−hij) is the rate of increase (rate of transfer) of the expected waiting time (tasks) at
time t from node j by (to) node i where hij (hii=0) is the time delay for the task transfer from node j to
node i.

In this model, all rates are in units of the rate of change of expected waiting time, or time/time which is
dimensionless. This normalization of the queue length (i.e., xi=qi/tpi) at each node by the local average

processing time (tpi) is simply a way to account for unequal task processing rates by each node. As ui(t)≤0, node
i can only send tasks to other nodes and cannot initiate transfers from another node to itself. A delay is
experienced by transmitted tasks before they are received at the other node. The control law ui(t)=−Kisat(yi(t))
states that if the ith node output xi(t) is above its estimate of the network average xavgi=(∑nj=1xj(t−τij))/n, then
it sends data to the other nodes, while if it is less than this average nothing is sent. The jth node receives the
fraction ∫t2t1pji(tpi/tpj)ui(t)dt of transferred waiting time ∫t2t1ui(t)dt delayed by the time hij.

A. Specification of the Factors pij
The model described in (1) is the basic model, but an important detail remains unspecified, namely the exact
form of the pij for each sending node i. One approach is to choose them as constant and equal, that is,
pij=1/(n−1) for j≠i. Another approach is to use the local information of the waiting times xi(t), i=1,…,n to set their
values. The quantity xi(t−τji)−xavgj is node j's estimate of the excess (or deficit) waiting time in the queue of
node i with respect to the local average of node j. If node i's queue is above the local average, then node j does
not send tasks to it. Therefore, sat(xavgj−xi(t−τji)) is a measure by node j as to how much node i is below the
local average. Node j performs this computation for all the other nodes and then portions out its tasks among
the other nodes according to the amounts they are below the local average, that is

(2)

𝑝𝑝𝑖𝑖𝑖𝑖 =Δ
sat(𝑥𝑥𝑗𝑗

𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑥𝑥𝑖𝑖(𝑡𝑡 − 𝜏𝜏𝑗𝑗𝑗𝑗))
∑ sat𝑖𝑖϶𝑖𝑖≠𝑗𝑗 (𝑥𝑥𝑗𝑗

𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑥𝑥𝑖𝑖(𝑡𝑡 − 𝜏𝜏𝑗𝑗𝑗𝑗))
.

View Source If the denominator ∑ sat𝑖𝑖϶𝑖𝑖≠𝑗𝑗 (𝑥𝑥𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑥𝑥𝑖𝑖(𝑡𝑡 − 𝜏𝜏𝑗𝑗𝑗𝑗)) = 0, then the pij are defined to be zero and

no load is transferred. This is illustrated in Fig. 1 for node 1.

Fig. 1. Illustration of a hypothetical distribution pi1 of the load at some time t from node 1's point of view. Node
1 will send data out to node i in proportion pi1 it estimates node i is below the average where ∑ni=1pi1=1 and
p11=0.

Remark
If the denominator

� sat
𝑖𝑖϶𝑖𝑖≠𝑗𝑗

(𝑥𝑥𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑥𝑥𝑖𝑖(𝑡𝑡 − 𝜏𝜏𝑗𝑗𝑗𝑗))

https://ieeexplore.ieee.org/document/#deqn1
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-1-source-large.gif

is zero, then xavgj−xi(t−τji)≤0 for all i≠j. However, by definition of the average

� �𝑥𝑥𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑥𝑥𝑖𝑖�𝑡𝑡 − 𝜏𝜏𝑗𝑗𝑗𝑗��

𝑖𝑖϶𝑖𝑖≠𝑗𝑗

+ 𝑥𝑥𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑥𝑥𝑗𝑗(𝑡𝑡)

= ��𝑥𝑥𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑥𝑥𝑖𝑖�𝑡𝑡 − 𝜏𝜏𝑗𝑗𝑗𝑗��

𝑖𝑖

= 0

which implies

𝑥𝑥𝑗𝑗
𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑥𝑥𝑗𝑗(𝑡𝑡) = − � �𝑥𝑥𝑗𝑗

𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑥𝑥𝑖𝑖�𝑡𝑡 − 𝜏𝜏𝑗𝑗𝑗𝑗��
𝑖𝑖϶𝑖𝑖≠𝑗𝑗

> 0.

That is, if the denominator is zero, the node j is not greater than the local average, so 𝑢𝑢𝑗𝑗(𝑡𝑡) = −𝐾𝐾𝑗𝑗sat(𝑦𝑦𝑗𝑗(𝑡𝑡)) =
0 and is therefore not sending out any tasks.

SECTION III. Model Consistency
It is now shown that the model is consistent with actual working systems in that the queue lengths cannot go
negative, and the load balancing algorithm cannot create or lose tasks; it can only move tasks between nodes
[13], [14].

A. Nonnegativity of the Queue Lengths
To show the nonnegativity of the queue lengths, recall that the queue length of each node is given by
qi(t)=xi(t)/tpi. The model is rewritten in terms of these quantities as

(3)

𝑑𝑑
𝑑𝑑𝑑𝑑 (

𝑥𝑥𝑖𝑖(𝑡𝑡)
𝑡𝑡𝑝𝑝𝑖𝑖

) =
𝜆𝜆𝑖𝑖 − 𝜇𝜇𝑖𝑖
𝑡𝑡𝑝𝑝𝑖𝑖

+
1
𝑡𝑡𝑝𝑝𝑖𝑖

𝑢𝑢𝑖𝑖(𝑡𝑡) −�
𝑝𝑝𝑖𝑖𝑖𝑖
𝑡𝑡𝑝𝑝𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑢𝑢𝑗𝑗(𝑡𝑡 − ℎ𝑖𝑖𝑖𝑖).

Given that xi(0)>0 for all i, it follows from the right-hand side of (3) that qi(t)=xi(t)/tpi≥0 for all t≥0 and all i. To
see this, suppose without loss of generality that qi(t)=xi(t)/tpi is the first queue to go to zero, and let t1 be the

time when xi(t1)=0. At the time t1, 𝜆𝜆𝑖𝑖 − 𝜇𝜇𝑖𝑖 = 𝜆𝜆𝑖𝑖 ≥ 0 by the definition of μi and −� (𝑝𝑝𝑖𝑖𝑖𝑖/𝑡𝑡𝑝𝑝𝑗𝑗)𝑢𝑢𝑗𝑗(𝑡𝑡 − ℎ𝑖𝑖𝑖𝑖
𝑛𝑛

𝑗𝑗=1
) ≥

0 for all time by the definition of the uj. Further, the term ui(t1) is negative only if

(4)

𝑥𝑥𝑖𝑖(𝑡𝑡1) >
�� 𝑥𝑥𝑗𝑗�𝑡𝑡1 − 𝜏𝜏𝑖𝑖𝑖𝑖�

𝑛𝑛

𝑗𝑗=1
�

𝑛𝑛 .

By supposition (up to time t1) all the xj(t1−τij)>0 for j≠i and xi(t1)=0 so that ui(t1)=0 as the right side of (4) is
positive at time t1. Consequently, at time t1 all terms on the right-hand side of (3) are nonnegative. Further, xi(t)
cannot go negative in a neighborhood of t1. For if it did, as the right-hand side of (4) is continuous, it follows
that:

https://ieeexplore.ieee.org/document/#deqn3
https://ieeexplore.ieee.org/document/#deqn4
https://ieeexplore.ieee.org/document/#deqn3
https://ieeexplore.ieee.org/document/#deqn4

(5)

𝑥𝑥𝑖𝑖(𝑡𝑡) < 0 <
�� 𝑥𝑥𝑗𝑗�𝑡𝑡 − 𝜏𝜏𝑖𝑖𝑖𝑖�

𝑛𝑛

𝑗𝑗=1
�

𝑛𝑛

for some t∈(t1,t1+δ) with δ>0. Therefore, ui(t)=0 for all t∈[t1,t1+δ] and the right-hand side of (3) is nonnegative
for all t∈[t1,t1+δ] which contradicts xi(t)<0. Note that t1+δ can be taken to be at least as large as the time at
which some xk goes to zero, that is, qk(t1+δ)=0 as the right-hand side of (5) must remain positive for t∈[t1,t1+δ].

If xi(t) goes positive after t1, then the previous argument is repeated at the next time a queue goes to zero. If
xi(t) remains identically zero in the interval (t1, t1+δ), then the argument is also similar in that at time t1+δ, both
xi(t1+δ), xk(t1+δ) are then zero. As the remaining n−2 nodes are still positive, the right-hand side of (5)
continues to hold with both xi and xk zero at time t1+δ and one again gets a contradiction if either xi or xk goes
negative in an interval (t1+δ, t2). Continuing in this manner, it follows that qi(t)=xi(t)/tpi cannot go negative for
all i.

B. Conservation of Queue Lengths
It is now shown that the total number of tasks in all the queues and the network are conserved. To do so, sum
up (3) from i=1,…,n to obtain

(6)

𝑑𝑑
𝑑𝑑𝑑𝑑 (�𝑞𝑞𝑖𝑖(𝑡𝑡)

𝑛𝑛

𝑖𝑖=1

) = �(
𝜆𝜆𝑖𝑖 − 𝜇𝜇𝑖𝑖
𝑡𝑡𝑝𝑝𝑖𝑖

)

𝑛𝑛

𝑖𝑖=1

+ �𝑢𝑢𝑖𝑖(𝑡𝑡)/𝑡𝑡𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1

−��
𝑝𝑝𝑖𝑖𝑖𝑖
𝑡𝑡𝑝𝑝𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑢𝑢𝑗𝑗(𝑡𝑡 − ℎ𝑖𝑖𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

which is the rate of change of the total queue lengths on all the nodes. However, the network itself also contains
tasks in transit between nodes. The dynamic model of the queue lengths in the network is given by

(7)

𝑑𝑑
𝑑𝑑𝑑𝑑 𝑞𝑞neti

(𝑡𝑡) = �
𝑝𝑝𝑖𝑖𝑖𝑖
𝑡𝑡𝑝𝑝𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑢𝑢𝑗𝑗�𝑡𝑡 − ℎ𝑖𝑖𝑖𝑖� −�
𝑝𝑝𝑖𝑖𝑖𝑖
𝑡𝑡𝑝𝑝𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑢𝑢𝑗𝑗(𝑡𝑡).

Here qneti is the number of tasks put on the network that are being sent to node i. This equation simply says
that the jth node is putting tasks on the network to be sent to node i at the rate (pij/tpj)uj(t) while the ith node is
taking these tasks from node j off the network at the rate (pij/tpj)uj(t−hij). Summing (7) over all the nodes, one
obtains

(8)

https://ieeexplore.ieee.org/document/#deqn3
https://ieeexplore.ieee.org/document/#deqn5
https://ieeexplore.ieee.org/document/#deqn5
https://ieeexplore.ieee.org/document/#deqn3
https://ieeexplore.ieee.org/document/#deqn7

𝑑𝑑
𝑑𝑑𝑑𝑑 (�𝑞𝑞neti(𝑡𝑡))

𝑛𝑛

𝑖𝑖=1

= ��
𝑝𝑝𝑖𝑖𝑖𝑖
𝑡𝑡𝑝𝑝𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑢𝑢𝑗𝑗(𝑡𝑡 − ℎ𝑖𝑖𝑖𝑖) −��
𝑝𝑝𝑖𝑖𝑖𝑖
𝑡𝑡𝑝𝑝𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑢𝑢𝑗𝑗(𝑡𝑡)

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

= ��
𝑝𝑝𝑖𝑖𝑖𝑖
𝑡𝑡𝑝𝑝𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑢𝑢𝑗𝑗(𝑡𝑡 − ℎ𝑖𝑖𝑖𝑖) −�
𝑢𝑢𝑗𝑗(𝑡𝑡)
𝑡𝑡𝑝𝑝𝑗𝑗

𝑛𝑛

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

.

Adding (6) and (8), one obtains the conservation of queue lengths given by

(9)

𝑑𝑑
𝑑𝑑𝑑𝑑��𝑞𝑞𝑖𝑖(𝑡𝑡) + 𝑞𝑞neti(𝑡𝑡)�

𝑛𝑛

𝑖𝑖=1

= ��
𝜆𝜆𝑖𝑖 − 𝜇𝜇𝑖𝑖
𝑡𝑡𝑝𝑝𝑖𝑖

�

𝑛𝑛

𝑖𝑖=1

.

In words, the total number of tasks which are in the system (i.e., in the nodes and/or in the network) can
increase only by the rate of arrival of tasks ∑ni=1λi/tpi at all the nodes, or similarly, decrease by the rate of
processing of tasks ∑ni=1μi/tpi at all the nodes. The load balancing itself cannot increase or decrease the total
number of tasks in all the queues.

SECTION IV. Stability of the Controller
The controller in the model (1) is

𝑢𝑢𝑖𝑖(𝑡𝑡) = −𝐾𝐾𝑖𝑖sat�𝑦𝑦𝑖𝑖(𝑡𝑡)�

where the gains Ki>0 are to be specified. Physically, these gains are limited by the bandwidth constraints in the
network. One can also view the pij as controller parameters to be specified subject to the constraints given
previously.

Interestingly, it turns out that the system (1) is asymptotically stable in the sense of Lyapunov for any set of
gains Ki>0 and any set of pij≥0 with ∑ni=1pij=1. Specifically, we have the following theorem.

Theorem
Given the system described by (1) and (7) with λi=0 for i=1,…,n and initial conditions xi(0)≥0, then
(qi(t),qneti(t))→0 as t→∞.

Proof
First note that the qneti are nonnegative since by (7), it follows that

(10)

https://ieeexplore.ieee.org/document/#deqn6
https://ieeexplore.ieee.org/document/#deqn8
https://ieeexplore.ieee.org/document/#deqn1
https://ieeexplore.ieee.org/document/#deqn1
https://ieeexplore.ieee.org/document/#deqn1
https://ieeexplore.ieee.org/document/#deqn7
https://ieeexplore.ieee.org/document/#deqn7

𝑞𝑞neti(𝑡𝑡) = −�
𝑝𝑝𝑖𝑖𝑖𝑖
𝑡𝑡𝑝𝑝𝑗𝑗

𝑛𝑛

𝑗𝑗=1

(� 𝑢𝑢𝑗𝑗(𝜏𝜏)𝑑𝑑𝑑𝑑) ≥ 0.
𝑡𝑡

𝑡𝑡−ℎ𝑖𝑖𝑖𝑖

Under the conditions of the theorem, (9) becomes

(11)

𝑑𝑑
𝑑𝑑𝑑𝑑�(𝑞𝑞𝑖𝑖(𝑡𝑡) + 𝑞𝑞neti(𝑡𝑡))

𝑛𝑛

𝑖𝑖=1

= −�
𝜇𝜇𝑖𝑖(𝑞𝑞𝑖𝑖)
𝑡𝑡𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1

.

Let V(t)=Δ∑ni=1(qi(t)+qneti(t)) and, as the qi(t), qneti(t) are nonnegative, V(t)≥0 and is equal to zero if and only if
qi(t)=qneti(t)=0 for every i. Further, as μi(qi(t))=1 for qi(t)>0 and μi(qi(t))=0 if only if qi(t)=0, it follows that
dV/dt=−∑ni=1μi(qi(t))/tpi≤0. This then implies that

(12)

𝑉𝑉(𝑡𝑡) = 𝑉𝑉(0)−��
𝜇𝜇𝑖𝑖(𝑞𝑞𝑖𝑖(𝑡𝑡))

𝑡𝑡𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑑𝑑𝑑𝑑 ≥ 0

𝑡𝑡

0

is monotonically decreasing. As V(t) is bounded below, we have 𝑉𝑉(𝑡𝑡) ↓ 𝑉𝑉𝑓𝑓 ≥ 0, or

(13)

𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡→∞

��
𝜇𝜇𝑖𝑖
𝑡𝑡𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑑𝑑𝑑𝑑 = 𝑉𝑉(0)− 𝑉𝑉𝑓𝑓 ≥ 0

𝑡𝑡

0

.

The quantity 𝜇𝜇𝑖𝑖�𝑞𝑞𝑖𝑖(𝑡𝑡)� is either 1 or 0 depending on whether 𝑞𝑞𝑖𝑖(𝑡𝑡) is positive or zero, so 𝜇𝜇𝑖𝑖�𝑞𝑞𝑖𝑖(𝑡𝑡)�can be viewed
as a set of pulses of unit height and varying width. The integral ∫ 𝜇𝜇𝑖𝑖(𝑞𝑞𝑖𝑖(𝑡𝑡))𝑑𝑑𝑑𝑑∞

0 is finite by (13) which implies that
the widths of the unit-height pulses making up μi(qi(t)) must go to zero as t→∞. So, even if a qi(t) (=xi(t)/tpi)
continues to switch between zero and positive values, the time intervals for which it is nonzero must go to zero
as t→∞. Summarizing, the qi(t) are nonnegative, continuous functions, bounded by the nonnegative
monotonically decreasing function V(t), and the intervals for which the qi(t) are nonzero goes to zero as t→∞.
More precisely, let 𝐼𝐼𝑡𝑡,ℎ = [𝑡𝑡 − ℎ, 𝑡𝑡] and if we define 𝐸𝐸𝑡𝑡,ℎ = {𝑠𝑠 ∈ 𝐼𝐼𝑡𝑡,ℎ:𝑞𝑞𝑖𝑖(𝑠𝑠) > 0}, then the Lebesgue measure of
Et,h, denoted by m(Et,h), converges to 0 as t→∞ for every h. Further, as ui(t)⩽ 0 is always true and

https://ieeexplore.ieee.org/document/#deqn9
https://ieeexplore.ieee.org/document/#deqn13

𝑢𝑢𝑖𝑖(𝑡𝑡) = −𝐾𝐾𝑖𝑖sat(𝑥𝑥𝑖𝑖(𝑡𝑡) −
� 𝑥𝑥𝑗𝑗(𝑡𝑡 − 𝜏𝜏𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1
)

𝑛𝑛)

= −𝐾𝐾𝑖𝑖sat(𝑡𝑡𝑝𝑝𝑖𝑖𝑞𝑞𝑖𝑖(𝑡𝑡) −

� (
𝑡𝑡𝑝𝑝𝑖𝑖
𝑡𝑡𝑝𝑝𝑗𝑗

)
𝑛𝑛

𝑗𝑗=1

𝑞𝑞𝑗𝑗(𝑡𝑡 − 𝜏𝜏𝑖𝑖𝑖𝑖)

𝑛𝑛
)

it follows that the time intervals for which the bounded functions 𝑢𝑢𝑖𝑖(𝑡𝑡) are nonzero must go to zero as 𝑡𝑡 → ∞.
This follows from the observation that 𝑢𝑢𝑖𝑖(𝑡𝑡) < 0 necessarily implies 𝑞𝑞𝑖𝑖(𝑡𝑡) > 0. Thus, the integral in (10) can be

upper bounded by � |𝐾𝐾𝑖𝑖|𝑦𝑦max𝑑𝑑𝑑𝑑 = |𝐾𝐾𝑖𝑖|𝑦𝑦max𝑚𝑚(𝐸𝐸𝑡𝑡,ℎ𝑖𝑖𝑖𝑖)
[𝑡𝑡−ℎ𝑖𝑖𝑖𝑖,𝑡𝑡]∩𝐸𝐸𝑡𝑡,ℎ𝑖𝑖𝑖𝑖

(recall that 𝐸𝐸𝑡𝑡,ℎ ⊂ 𝐼𝐼𝑡𝑡,ℎ), which converges to

zero as t→∞. Consequently, by (10), 𝑞𝑞neti(𝑡𝑡) → 0 as t→∞.

We now show that the monotonically decreasing function V(t) must go to zero, that is, 𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡→∞

𝑉𝑉(𝑡𝑡) = 𝑉𝑉𝑓𝑓 = 0.

Suppose not, so that Vf>0. As qneti(t)→0, choose t1 large enough so that 0≤∑ni=1qneti(t)<ϵVf for t>t1 where
0<ϵ<1. Since

𝑉𝑉(𝑡𝑡) = �(𝑞𝑞𝑖𝑖(𝑡𝑡) + 𝑞𝑞neti(𝑡𝑡))
𝑛𝑛

𝑖𝑖=1

≥ 𝑉𝑉𝑓𝑓for all 𝑡𝑡

we have

�𝑞𝑞𝑖𝑖(𝑡𝑡) ≥ (1− 𝜖𝜖)𝑉𝑉𝑓𝑓 > 0for𝑡𝑡 > 𝑡𝑡1.
𝑛𝑛

𝑖𝑖=1

For every t>t1, there exists at least one i (which depends on t) for which qi(t)>0. Therefore, � 𝜇𝜇𝑖𝑖(𝑞𝑞𝑖𝑖(𝑡𝑡))/
𝑛𝑛

𝑖𝑖=1
𝑡𝑡𝑝𝑝𝑖𝑖𝑑𝑑𝑑𝑑 ≥ 𝑚𝑚𝑚𝑚𝑚𝑚{1/𝑡𝑡𝑝𝑝𝑖𝑖} for all t>t1. By (11), we then have

(14)

𝑉𝑉(𝑡𝑡) = 𝑉𝑉(𝑡𝑡1) −��
𝜇𝜇𝑖𝑖�𝑞𝑞𝑖𝑖(𝑡𝑡)�

𝑡𝑡𝑝𝑝𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑑𝑑𝑑𝑑 ≤ 𝑉𝑉(𝑡𝑡1) − �min �
1
𝑡𝑡𝑝𝑝𝑖𝑖
� 𝑑𝑑𝑑𝑑

𝑡𝑡

𝑡𝑡1

𝑡𝑡

𝑡𝑡1

.

As the right side of (14) eventually becomes negative, we have a contradiction and therefore 𝑉𝑉𝑓𝑓 = 0. As it has
already been shown that 𝑞𝑞neti → 0 for all i, 𝑉𝑉(𝑡𝑡) → 0 then implies that 𝑞𝑞neti → 0 for all i. This completes the
proof of the theorem.

https://ieeexplore.ieee.org/document/#deqn10
https://ieeexplore.ieee.org/document/#deqn10
https://ieeexplore.ieee.org/document/#deqn11
https://ieeexplore.ieee.org/document/#deqn14

SECTION V. Simulation Results
Experimental procedures to determine the delay values are given in [15] and summarized in [16]. These give
representative values for a Fast Ethernet network with three nodes of τij=τ=200 μs for i≠j, τii=0, and
hij=2τ=400 μs for i≠j, hii=0. The initial conditions were x1(0)=0.6, x2(0)=0.4 and x3(0)=0.2. The inputs were set as
λ1=3μ1, λ2=0, λ3=0, μ1=μ2=μ3=1. The tpi's were taken to be equal to 10 μs.

In this set of simulations, the model (1) is used. Figs. 2 and 3 show the responses with the gains set as
K1=K2=K3=K=1000 and as K1=6667, K2=4167, K3=5000, respectively.

Fig. 2. Constant 𝑝𝑝𝑖𝑖𝑖𝑖 nonlinear output responses with K=1000.

Fig. 3. Nonlinear simulation with constant 𝑝𝑝𝑖𝑖𝑖𝑖 and K1=6666.7; K2=4166.7; K3=5000.

SECTION VI. Experimental Results
A parallel machine has been built to implement an experimental facility for evaluation of load balancing
strategies and parallel databases. A root node communicates with k groups of computer networks. Each of these
groups is composed of n nodes (hosts) holding identical copies of a portion of the database. Any pair of groups
correspond to different databases, which are not necessarily disjoint. A specific record (or DNA profile in our
specific case) is in general stored in two groups for redundancy to protect against failure of a node. Within each
node, there are either one or two processors. In the experimental facility, the dual processor machines use 1.4

https://ieeexplore.ieee.org/document/#deqn1
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-3-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-3-source-large.gif

GHz Athlon MP processors, and the single processor machines use 1.3 GHz Athlon processors. All run the Linux
operating system. Our interest here is in the load balancing in any one group of n nodes.

The database is implemented as a set of queues with associated search engine threads, typically assigned one
per node of the parallel machine. The search requests are created not only by the database clients; the search
process also creates search requests as the index tree is descended by any search thread. This creates the
opportunity for parallelism; search requests that await processing may be placed in any queue associated with a
search engine, and the contents of these queues may be moved arbitrarily among the processing nodes of a
group to achieve a balance of the load.

An important point is that the actual delays experienced by the network traffic in the parallel machine are
random. Work has been performed to characterize the bandwidth and delay on unloaded and loaded network
switches, in order to identify the delay parameters of the analytic models and is reported in [15] and [16]. The
value τ=200 μs used for simulations represents an average value for the delay and was found using the
procedure described in [16]. The interest here is to compare the experimental data with that from the three
models previously developed.

To explain the connection between the control gain Ki and the actual implementation, recall that the waiting
time is related to the number of tasks by 𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝑞𝑞𝑖𝑖(𝑡𝑡)𝑡𝑡𝑝𝑝𝑖𝑖 where 𝑡𝑡𝑝𝑝𝑖𝑖 is the average time to carry out a task. The
continuous time control law is

𝑢𝑢𝑖𝑖(𝑡𝑡) = −𝐾𝐾𝑖𝑖sat�𝑦𝑦𝑖𝑖(𝑡𝑡)�

where 𝑢𝑢𝑖𝑖(𝑡𝑡) is the rate of decrease of waiting time xi(t) per unit time. Consequently, the gain Ki represents the
rate of reduction of waiting time per second in the continuous time model. Also, 𝑦𝑦𝑖𝑖(𝑡𝑡) = (𝑞𝑞𝑖𝑖(𝑡𝑡) −

𝑛𝑛−1� 𝑞𝑞𝑗𝑗(𝑡𝑡 − 𝜏𝜏𝑖𝑖𝑖𝑖))𝑡𝑡𝑝𝑝𝑖𝑖
𝑛𝑛

𝑗𝑗=1
= 𝑟𝑟𝑖𝑖(𝑡𝑡)𝑡𝑡𝑝𝑝𝑖𝑖, where 𝑟𝑟𝑖𝑖(𝑡𝑡) is simply the number of tasks above the estimated (local)

average number of tasks and, as the interest here is the case 𝑦𝑦𝑖𝑖(𝑡𝑡) > 0, consider 𝑢𝑢𝑖𝑖(𝑡𝑡) = −𝐾𝐾𝑖𝑖𝑦𝑦𝑖𝑖(𝑡𝑡). The
implementation must execute the load balancing control law repetitively with a (possibly random) time interval
between balancing actions. With Δ𝑡𝑡 the time interval between successive executions of the load balancing
algorithm, a discrete time control law is defined that removes a fraction of the queue 𝐾𝐾𝑧𝑧𝑟𝑟𝑖𝑖(𝑡𝑡)(0 < 𝐾𝐾𝑧𝑧 < 1) in
the time Δ𝑡𝑡. The rate of reduction of waiting time is −𝐾𝐾𝑧𝑧𝑟𝑟𝑖𝑖(𝑡𝑡)𝑡𝑡𝑝𝑝𝑖𝑖/Δ𝑡𝑡 = −𝐾𝐾𝑧𝑧𝑦𝑦𝑖𝑖(𝑡𝑡)/Δ𝑡𝑡 so that an equivalent
continuous time control law, given the discrete time gain 𝐾𝐾𝑧𝑧 and control interval Δ𝑡𝑡, is

𝑢𝑢(𝑡𝑡) = −
𝐾𝐾𝑧𝑧𝑦𝑦𝑖𝑖(𝑡𝑡)
Δ𝑡𝑡

⟹ 𝐾𝐾𝑖𝑖 =
𝐾𝐾𝑧𝑧
Δ𝑡𝑡 .

(15)

This shows that the gain Ki is related to the actual implementation by how fast the load balancing can be carried
out and how much (fraction) of the load is transferred. In the experimental work reported here, Δt actually
varies each time the load is balanced. As a consequence, the value of Δt used in (15) is an average value for that
run. The average time 𝑡𝑡𝑝𝑝𝑖𝑖 to process a task is the same on all nodes used for the experiments (identical
processors) and is equal 10 𝜇𝜇s, while the time it takes to ready a load for transfer is about 5 μs. The initial
conditions were taken as q1(0)=6000, q2(0)=4000, q3(0)=2000 (corresponding to 𝑥𝑥1(0) = 𝑞𝑞1(0)𝑡𝑡𝑝𝑝𝑝𝑝 = 0.06,
x2(0)=0.04, x3(0)=0.02). All of the experimental responses were carried out with constant 𝑝𝑝𝑖𝑖𝑖𝑖 = 1/2 for i≠j.

https://ieeexplore.ieee.org/document/#deqn15

Fig. 4. Experimental response of the load balancing algorithm. The average value of the gains are (Kz=0.5)
K1=6667, K2=4167, K3=5000 with constant 𝑝𝑝𝑖𝑖𝑖𝑖.

Fig. 5. Experimental response of the load balancing algorithm. The average value of the gains are (Kz=0.3)
K1=2400, K2=7273, K3=2500 with constant 𝑝𝑝𝑖𝑖𝑖𝑖.

Fig. 4 is a plot of the responses 𝑟𝑟𝑖𝑖(𝑡𝑡) = 𝑞𝑞𝑖𝑖(𝑡𝑡) − (� 𝑞𝑞𝑗𝑗(𝑡𝑡 − 𝜏𝜏𝑖𝑖𝑖𝑖))/𝑛𝑛
𝑛𝑛

𝑗𝑗=1
 for 𝑖𝑖 = 1, 2,3 (recall that yi(t)=ri(t)tpi).

The (average) value of the gains were (Kz=0.5) K1=0.5/75 μs=6667, K2=0.5/120 μs=4167, K3=0.5/100 μs=5000.
This figure compares favorably with Fig. 3 except for the time scale being off; that is, the experimental responses
are slower. The explanation for this is that the discrete load balancing implementation is not accurately modeled
in the continuous time simulations, only its average effect is represented in the gains Ki. That is, the continuous
time model does not stop processing jobs (at the average rate tpi) while it is transferring tasks to do the load
balancing. Fig. 5 shows the plots of the response for the (average) value of the gains given by (Kz=0.3)
K1=0.3/125 μs=2400, K2=0.3/110 μs=7273, K3=0.3/120 μs=2500.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-4-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-4-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-5-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-5-source-large.gif

Fig. 6. Experimental response of the load balancing algorithm. The average value of the gains are (Kz=0.2)
K1=1600, K2=2500, K3=2857 with constant 𝑝𝑝𝑖𝑖𝑖𝑖.

Fig. 7. Summary of the load balance time as a function of the feedback gain Kz.

Fig. 6 shows the plots of the response for the (average) value of the gains given by (Kz=0.2) K1=0.2/125 μs=1600,
K2=0.2/80 μs=2500, K3=0.2/70 μs=2857. The initial conditions were q1(0)=6000, q2(0)=4000, q3(0)=2000
(x1(0)=q1(0)tpi=0.06, x2(0)=0.04, x3(0)=0.02).

Fig. 7 summarizes the data from several experimental runs of the type shown in Figs. 4 –6. For Kz=0.1,
0.2,0.3,0.4,0.5, ten runs were made and the settling time (time to load balance) were determined. These are
marked as small horizontal ticks on Fig. 7. (For all such runs, the initial queues were the same and equal to
q1(0)=600, q2(0)=400, q3(0)=200. For each value of Kz, the average settling time for these ten runs was
computed and is marked as a dot on given on Fig. 7. For values of Kz=0.6 and higher (with increments of 0.1 in
Kz), consistent results could not be obtained. In many cases, ringing extended throughout the experiment's time
interval (200 ms).

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-6-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-6-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-7-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-7-source-large.gif

Fig. 8. Kz=0.6—settling time is approximately 7 ms.

Fig. 9. Kz=0.6 These are the same conditions as Fig. 8, but now the ringing persists.

For example, Fig. 8 shows the plots of the queue length less the local queue average for an experimental run
with Kz=0.6 where the settling time is approximately 7 ms. In contrast, Fig. 9 shows the experimental results
under the same conditions where persistent ringing regenerates for 40 ms. It was found the response was so
oscillatory that a settling time was not possible to determine accurately. However, Fig. 7 shows that one desires
to choose the gain to be close to 0.5 to achieve a faster response time without breaking into oscillatory
behavior.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-8-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-8-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-9-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-9-source-large.gif

SECTION VII. Experiments Over PlanetLab
A geographically distributed system was developed to validate the theoretical work for large delays and to
assess different load balancing policies in a real environment. The system consists of several nodes running the
same code. The nodes are part of PlanetLab, a planetary-scale network involving more than 350 nodes
positioned around the globe

 Node 1 Node 2 Node 3
Location University of New

Mexico (US)
Taipei -
Taiwan

Frankfurt -
Germany

Initial Distribution 6000 tasks 4000 tasks 2000 tasks
Average Task Process
Time t𝑝𝑝𝑝𝑝

 10.2 ms

Standard Deviation for
t𝑝𝑝𝑝𝑝

 2.5 ms

Interval between load
balancing instances Δ𝑡𝑡

 150 ms

Interval between 2
comm. transmissions

 50 ms

Fig. 10. Parameters and settings of the experiment.

 Roundtrip delay Data transmission rate Average Transmission of one Task
n1 – n2 215 ms 1.34 KB/s 14 ms
n1 – n3 200 ms 1.42 KB/s 16 ms
n2 – n3 307 ms 1.03 KB/s 20 ms

Fig. 11. Average network delays and transmission rates.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-10-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-10-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-11-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-11-source-large.gif

Fig. 12. Experimental response of the load balancing algorithm under large delays. Gain Kz=0.3 and pij=0.5.

and connected via the Internet (www.planetlab.org). The application used to illustrate the load balancing
process was matrix multiplication, where one task is defined as the multiplication of one row by a static matrix
duplicated on all nodes (3 nodes in our experiment). The number of elements in each row were generated
randomly from a specified range, which made the execution time of a task variable. The network protocol UDP
was used to exchange queue size information among the nodes, and TCP (connection-based) was used to
transfer task data from one machine to another.

To match the experimental settings of the previous sections, 3 nodes were used; node1 at the University of New
Mexico, node2 in Taipei, Taiwan and node3 in Frankfurt, Germany. The pij were set to 1/2 for i≠j. The initial
parameters and settings for the experiment are summarized in the Table given in Fig. 10.

Fig. 13. Experimental response of the load balancing algorithm under large delays. Gain Kz=0.5 and pij=0.5.

Fig. 14. Summary of the load balancing time as function of the gain Kz.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-12-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-12-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-13-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-13-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-14-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-14-source-large.gif

Fig. 15. Experimental response of the load balancing algorithm under large delays. Gain Kz=0.8 and pij=0.5.

Throughout the experiments, network statistics related to transmission rates and delays were collected. The
averages of these statistics are shown in the Table given in Fig. 11. Large delays were observed in the network
due to the dispersed geographical location of the nodes. Moreover, the transmission rates detected between
the nodes were very low mainly because the amount of data exchanged (in bytes) is small. Indeed, the average
size of data needed to transmit a single task was 20 bytes, which caused variability in the observed transmission
rates due to the large communication delays and their variation. In order to observe the behavior of the system
under various gains, several experiments were conducted for different gain values Kz ranging from 0.1 to 1.0.
Fig. 12 is a plot of the responses ri(t) corresponding to each node i where the gain Kz was set to 0.3.

Fig. 16. Experimental response of the load balancing algorithm under large delays. Gain Kz=0.4 and pij=0.5.

Fig. 17. Experimental response of the load balancing algorithm under large delays. Gain Kz=0.8 and pij=0.5.

Similarly, Fig. 13 shows the system response for gain Kz equal to 0.5. Fig. 14 summarizes several runs
corresponding to different gain values. For each Kz=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, ten runs were made, and the
settling times (time to load balance) were determined. For gain values higher than 0.8, consistent results could
not be obtained. For instance, in most of the runs no settling time could be achieved. However, when the
observed network delays were stable, the system response was steady and converged quickly to a balanced

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-15-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-15-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-16-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-16-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-17-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-17-source-large.gif

state when Kz was equal to 0.8 (Fig. 15). As previously mentioned, this scenario was not frequently seen. The
system behaviors in these experiments do not exactly match, and the results obtained in the previous sections.
This is due to the difference in network topology and delays (and very likely due to the random nature of the
delay [17], [18]). For instance, the ratio between the average delay and the task process time is 20
(200 μs/10 μs) for the local area network (LAN) setting and 12 (120 ms/10 ms) for the distributed setting. This
fact is one of the reasons ringing is observed earlier (for Kz=0.6) in the LAN experiment whereas under PlanetLab
the ringing responses were observed starting at Kz=0.8. Interestingly, we have previously observed a similar
behavior, using a Monte Carlo simulation of a 3-node distributed system with random delays in [17] as well as
experiments on a wireless LAN in [18].

Fig. 18. Experimental response of the load balancing algorithm under large variance in the tasks processing time.
Gain Kz=0.3 and pij=0.5.

Fig. 19. Experimental response of the load balancing algorithm under large variance in the tasks processing time.
Gain Kz=0.8 and pij=0.5.

The previous experiments have been conducted under normal network conditions stated in the Table given in
Fig. 11. However, another set of experiments were carried out where the network condition worsens and larger
delays were observed. In particular, the data transmission rate between node 2 (Taiwan) and node 3 (Germany)
dropped from 1.03 KB/s to 407 KB/s. Figs. 16 and 17 show the system responses for gains Kz=0.4 and Kz=0.8,
respectively. These experiments clearly show the negative effect of the delay on the stability of the system.
Nevertheless, we see that with a low gain (Kz=0.4), the settling time is approximately 22 ms. On the other hand,
when the gain was set to 0.8, the system did not reach an equilibrium as shown by the nodes' responses ri(t) in
Fig. 17. At this point, only the effect of delay on the stability of the system was tested. In order to study the
effect of the variability of the task processing time on system behavior, the matrix multiplication application was
adjusted in a way to obtain the following results; the average task processing time was kept at 10.2 ms, but the
standard deviation became 7.15 ms instead of 2.5 ms. Figs. 18 and 19 show the respective system responses for
gains Kz=0.3 and Kz=0.8. Comparing Figs. 12 and 18, we can see that in the latter case, some ringing persists and
the system response did not completely settle out. On the other hand, setting the gain Kz to 0.8 led the system
to accommodate the variances in the task processing time.

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-18-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-18-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-19-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/87/32555/1522233/1522233-fig-19-source-large.gif

The experiments presented in this section support the ones reported in the previous section where a local area
network was used. In particular, high gains were shown to lead to persistent ringing. Conversely, systems with
low gain values lead to slow responses in the load balancing.

SECTION VIII. Summary and Conclusion
A load balancing algorithm was modeled as a nonlinear time-delay system. The model was shown to be
consistent in that the total number of tasks was conserved and the queues were always nonnegative. Further,
the system was shown to be always stable, but the delays do create a limit on the size of the controller gains in
order to ensure performance (fast enough response without oscillatory behavior). Experiments demonstrated a
correlation of the continuous time model with the actual implementation. Future work will consider the fact
that the load balancing operation involves processor time which is not being used to process tasks. There is a
tradeoff between using processor time/network bandwidth and the advantage of distributing the load evenly
between the nodes to reduce overall processing time, which has not been fully captured in the present work.

References
1. E. Altman, H. Kameda, "Equilibria for multiclass routing in multi-agent networks", Proc. 40th IEEE Conf.

Decision and Control, pp. 604-609, 2001-Dec.
2. C. K. Hisao Kameda, J. Li, Y. Zhang, Optimal Load Balancing in Distributed Computer Systems, New

York:Springer-Verlag, 1997.
3. H. Kameda, I. R. El-Zoghdy Said Fathy, J. Li, "A performance comparison of dynamic versus static load

balancing policies in a mainframe", Proc. 39th IEEE Conf. Decision and Control, pp. 1415-1420, 2000-Dec.
4. J. D. Birdwell, R. D. Horn, D. J. Icove, T. W. Wang, P. Yadav, S. Niezgoda, "A hierarchical database design and

search method for CODIS", Proc. 10th Int. Symp. Human Identification, 1999-Sep.
5. J. D. Birdwell, T. W. Wang, R. D. Horn, P. Yadav, D. J. Icove, "Method of indexed storage and retrieval of

multidimensional information", Proc. 10th SIAM Conf. Parallel Processing for Scientific Computation,
2000-Sep.

6. J. D. Birdwell, T.-W. Wang, M. Rader, "The university of Tennessee's new search engine for CODIS", Proc. 6th
CODIS Users Conf., 2001-Feb.

7. T. W. Wang, J. D. Birdwell, P. Yadav, D. J. Icove, S. Niezgoda, S. Jones, "Natural clustering of DNA/STR profiles",
Proc. 10th Int. Symp. Human Identification, 1999-Sep.

8. H. G. Rotithor, "Taxonomy of dynamic task scheduling schemes in distributed computing systems", Inst. Elect.
Eng. Proc. Comput. Dig. Techniques, vol. 141, no. 1, pp. 1-10, 1994.

9. A. Corradi, L. Leonardi, F. Zambonelli, "Diffusive load-balancing polices for dynamic applications", IEEE
Concurrency, vol. 22, no. 1, pp. 979-993, Jan.̵Feb. 1999.

10. M. H. Willebeek-LeMair, A. P. Reeves, "Strategies for dynamic load balancing on highly parallel computers",
IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 9, pp. 979-993, Sep. 1993.

11. C. T. Abdallah, J. D. Birdwell, J. Chiasson, V. Chupryna, Z. Tang, T. W. Wang, "Load balancing instabilities due
to time delays in parallel computation", Proc. 3rd IFAC Conf. Time Delay Systems, pp. 198-202, 2001-Dec.

12. J. D. Birdwell, J. Chiasson, Z. Tang, C. T. Abdallah, M. Hayat, T. Wang, "Dynamic time delay models for load
balancing part I: deterministic models", Proc. CNRS-NSF Workshop: Advances in Control of Time-Delay
Systems, pp. 355-370, 2003-Jan.

13. J. D. Birdwell, J. Chiasson, Z. Tang, C. T. Abdallah, M. M. Hayat, "The effect of feedback gains on the
performance of a load balancing network with time delays", Proc. IFAC Workshop on Time-Delay
Systems (TDS'03), pp. 371-385, 2003-Sep.

14. J. D. Birdwell, J. Chiasson, C. T. Abdallah, Z. Tang, N. Alluri, T. Wang, "The effect of time delays in the stability
of load balancing algorithms for parallel computations", Proc. 42nd IEEE Conf. Decision and Control, pp.
582-587, 2003-Dec.

15. P. Dasgupta, Performance evaluation of fast ethernet ATM and myrinet under PVM, 2001.
16. P. Dasgupta, J. D. Birdwell, T. W. Wang, "Timing and congestion studies under PVM", Proc. 10th SIAM Conf.

Parallel Processing for Scientific Computation, 2001-Mar.
17. S. Dhakal, B. Paskaleva, M. Hayat, E. Schamiloglu, C. Abdallah, "Dynamical discrete-time load balancing in

distributed systems in the presence of time delays", Proc. IEEE Conf. Decision Control, pp. 5128-5134,
2003-Dec.

18. J. Ghanem, S. Dhakal, M. M. Hayat, H. Jerez, C. T. Abdallah, J. Chiasson, "On load balancing in distributed
systems with large time delays: theory and experiments", Proc. IEEE Mediterranean Control Conf.
(MED'04), 2004-Jun.-6‛.

	The effect of time delays on the stability of load balancing algorithms for parallel computations
	Authors

	Abstract:
	SECTION I. Introduction
	SECTION II. Mathematical Model
	A. Specification of the Factors pij
	Remark

	SECTION III. Model Consistency
	A. Nonnegativity of the Queue Lengths
	B. Conservation of Queue Lengths

	SECTION IV. Stability of the Controller
	Theorem
	Proof

	SECTION V. Simulation Results
	SECTION VI. Experimental Results
	SECTION VII. Experiments Over PlanetLab
	SECTION VIII. Summary and Conclusion
	References

