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Abstract—Many studies have shown that it is possible to recog-

nize people by the way they walk. However, there are a number

of covariate factors that affect recognition performance. The time

between capturing the gallery and the probe has been reported to

affect recognition the most. To date, no study has isolated the ef-

fect of time, irrespective of other covariates. Here, we present the

first principled study that examines the effect of elapsed time on

gait recognition. Using empirical evidence we show for the first

time that elapsed time does not affect recognition significantly in

the short-medium term. This finding challenges the existing view

in the literature that time significantly affects gait recognition. We

employ existing gait representations on a novel dataset captured

specifically for this study. By controlling the clothing worn by the

subjects and the environment, a Correct Classification Rate (CCR)

of 95% has been achieved over the longest time period yet consid-

ered for gait on the largest ever temporal dataset. Our results show

that gait can be used as a reliable biometric over time and at a dis-

tance if we were able to control all other factors such as clothing,

footwear etc. We have also investigated the effect of different type

of clothes, variations in speed and footwear on the recognition per-

formance. The purpose of these experiments is to provide an in-

dication of why previous studies (employing the same techniques

as this study) have achieved significantly lower recognition perfor-

mance over time. Our experimental results show that clothing and

other covariates have been confused with elapsed time previously

in the literature. We have demonstrated that clothing drastically

affects the recognition performance regardless of elapsed time and

significantly more than any of the other covariates that we have

considered here.

Index Terms—Aging, elapsed time, gait biometrics, gait recogni-

tion, object recognition, personal identification, time.

I. INTRODUCTION

T HEway we walk, combined with our posture, is known as

gait. Many studies have demonstrated that gait has the po-

tential to become a powerful biometric for surveillance and ac-

cess control [1]–[3]. There is a continuous growth in the number

of surveillance systems in efforts to improve safety and secu-

rity. These systems have yet to include recognition capability.

The major advantages of gait are: noninvasive, hard to conceal

and capable of being acquired at a distance. Gait can be detected

at a very low resolution and therefore it has a unique advantage

over all other biometrics for visual surveillance systems. Re-
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cently, gait has been used as a forensic tool [4], [5] and there

have already been convictions based on the evidence produced

by gait analysis. There are a number of situations in which gait

is the only biometric available from a crime scene.

However, there are a number of covariates (also known as ex-

ploratory variables) that affect gait recognition. Studies quanti-

fying the effect of covariates on the performance of gait recogni-

tion algorithms include [6]–[8]. Covariate factors can be related

either to the subject itself (e.g., different clothing) or to the en-

vironment (e.g., different walking surface). The research in [9]

considers five covariates that affect recognition: viewing angle,

shoe type, walking surface, carrying objects and elapsed time

between sequences being compared. Understanding these fac-

tors is crucial to developing robust and accurate gait recognition

algorithms. The effect of a particular covariate on the recog-

nition performance depends on the algorithm adopted. There

are two main approaches to gait recognition: model-based and

model-free. Model-based approaches use the human body struc-

ture [10]–[12] and model-free methods employ the whole mo-

tion pattern of the human body [13], [14]. In this paper we use

existing model-free approaches to examine the effect of time

and other covariate factors.We use the Gait Energy Image (GEI)

[15] since it is one of the most popular gait representations used

so far and we use the Gait Entropy Image (GEnI) [16] as it is

a recent method and it is believed to be invariant to changes in

covariate factors.

There is a consensus in the literature that the time taken be-

tween recording the gallery and the probe affects recognition

performance the most [9]. Time as a covariate has not been con-

sidered explicitly in many studies mainly due to the lack of suit-

able database. Since gait is a behavioral biometric, an impor-

tant question arises: “Is it possible to recognize someone reli-

ably after a certain period of time has elapsed?” Permanence is

an important characteristic of any biometric. A biometric trait

that changes significantly over time is unlikely to be useful for

recognition in numerous scenarios.

In previous studies considering the effect of elapsed time on

recognition by gait, in [17] a probe consisting of ten subjects

is matched to a gallery containing 115 subjects. The subjects

are filmed 6 months apart and a CCR of 37% is achieved. A

study [9] reported a substantial drop in recognition performance

(at rank 1) from 78% to 3% when shoe and time (6 months)

covariates are introduced, using the Gait Challenge database.

In [18], a different recognition algorithm is used on the same

dataset. Seventy silhouettes are chosen and manually subtracted

from the background. The recognition performance over time

dropped to 10%. In [10], two different recognition algorithms

are employed on the MIT database. Experiments are performed

over two months in an indoor environment with different back-

grounds and lighting. On a dataset of 24 subjects, the recogni-

tion rate varies between 30%–60%.Another study [19] using the
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MIT database shows a performance drop to 45% from 100% for

samples taken on the same day. Experiments on the UMD data-

base reveals a drop in recognition performance to 30% over 3

months using 25 subjects in indoor environment [20]. Clothing

was not controlled in any of these studies.

Many studies, such as [6], [7] and [21], do not consider tem-

poral data and focus solely on data acquired on the same day.

Papers such as [22] treat time (over 6 months) as the most dif-

ficult covariate for gait recognition. They have proposed a new

pattern classification method to solve the elapsed time problem

in gait recognition.

In this paper, we present empirical evidence to show that by

controlling clothing worn by the subjects and the environment

the recognition performance is not affected drastically over 9

months. This is the longest time period yet considered for gait

and we report, rather to our surprise, a much higher recognition

rate than any previous study. We employ existing gait represen-

tations to examine the effects of time and other covariates.

The work presented in this paper does not aim to propose

a new recognition algorithm, but builds on our previous work

[23], and we have extended the database, the techniques, the

analyses and the results to show that elapsed time does not

appear to affect the recognition performance considerably in

the short-medium term as long as some factors (like clothing,

footwear etc.) are kept unchanged. Our work aims to direct the

research community towards solving other gait covariates that

appear to affect performance more considerably than elapsed

time. Consequently, we provide evidence to show that clothing

seems to be the major problem for model-free approaches.

Studies such as [24] and [25] have recently started to approach

this problem. We have used existing gait representations to

obtain our results. Lack of a suitable database has been a

major obstacle for understanding the effects of time. Our novel

database enables researchers to examine each covariate sepa-

rately and discover new algorithms invariant to each covariate.

We show that the ability to recognize someone from a large

distance, at a low resolution is not affected by elapsed time

if all other characteristics are controlled (even though this is

very unlikely to be achieved in the real world). We also con-

sider the effect of walking speed and change of shoes. These

experiments are performed using a relatively small number of

subjects and samples. Therefore, it is important to note that the

primary aim of these experiments is to provide an indication of

whether change in any of these is likely to have a significant

impact on recognition and not to quantify the exact effect on

the performance.

The remainder of this paper is organized as follows: Section II

describes existing temporal datasets and describes our new

multimodal temporal dataset. Section III elaborates on the

methodology used to obtain the results which are presented in

Section IV. Finally, the conclusions are presented in Section V.

II. DESCRIPTION OF DATASETS

A. Existing Temporal Datasets

Table I shows some of the most well-known datasets that con-

tain data sampled at different times. Our new database is shown

TABLE I
SUMMARY OF EXISTING TEMPORAL GAIT DATASETS

at the bottom of the table. It is the largest gait temporal dataset

with the longest time period yet considered for gait recognition.

Other databases add more than one covariate at a time and

therefore it is difficult to quantify the individual effect. Our data-

base allows gait analyses with covariates such as elapsed time,

change of clothing, variations in walking speed and the effect

of footwear by introducing only a single covariate between two

data capture sessions. Such analyses are not possible with any of

the existing datasets. For instance in the Gait Challenge dataset,

three covariates are added simultaneously: clothes, shoes and

time. The UMD database uses different viewing angle for the

data recorded in March compared to the data recorded in June.

Clothing, shoes and background have not been controlled either.

None of the existing databases contains samples over a time pe-

riod of subjects wearing the same clothes and minimizing as

much as possible the effect of other covariates. This is a key dif-

ference between our new database and all the existing ones.

As such, investigating the effect of time in a principled

manner is not possible with any previous dataset. It is impos-

sible to determine whether the recognition performance varies

due to changes of gait over time or due to other factors such

as change in clothes, shoes, background or viewing angle.

Another advantage of our database is the availability of more

than just two acquisition sessions. It is possible to achieve

analysis between ten different time periods.

B. Details of Our Novel Dataset

The data is captured using the University of Southampton

Multi-Biometric Tunnel. The “tunnel” is a constrained environ-

ment that contains 12 synchronized cameras to capture subject’s

gait, a camera to capture face video and a camera to take ear

images. The intended use of the “tunnel” is at airports and other

high throughput environments. It also allows a researcher to per-

form analysis in a controlled environment and therefore facil-

itates the deployment of gait in outdoor surveillance/forensic

scenarios. The data is acquired automatically in a noninvasive

manner as the subject walks through it [26].

A novel and unique database (SOTON temporal) has been

created that enables analyses to be performed over time while

controlling covariates that are known to affect gait recognition

performance. Some of the factors that have been accounted for

and remained unchanged over time are as follows.

1) Environment: Background, lighting, walking surface, po-

sition of cameras (automatically calibrated).

2) Subjects: No major changes in any subject’s life style were

reported. None of the subjects reported any major injuries.
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Fig. 1. Raw data frames from SOTON multimodal temporal database. (a) Ex-
amples of data taken in sessions 1, 2 and 3. (b) Examples of data taken in session
4 (month 9).

Fig. 2. Number of subjects for each acquisition session (time is in months).

3) Other: Twenty samples per subject per session were col-

lected to enable samples of similar speeds to be compared

without explicitly controlling it.

Twenty-five subjects (17 male and 8 female) took part in our

study. The age distribution is between 20–52 years old. Data

was acquired in five sessions spanning 12 months. The same

subjects were used in all sessions. The number of subjects avail-

able for each session is shown in Fig. 2.

The sessions taken in months 0, 1 and 4 consist of 20 sam-

ples per subject where subjects wear white overalls over their

normal clothes. The session in month 9 differs from the previous

three. It consists of ten samples of each subject wearing normal

clothes in addition to ten samples of each subject wearing over-

alls. The last session (month 12) was collected to quantify the

effect of additional clothing types and footwear. During this ses-

sion, subjects were asked to wear two different types of “ordi-

nary” clothes that were different from the clothes that they wore

in the session recorded inmonth 9. Twenty-five samples per sub-

ject were collected, ten for each type of clothes and additional

five of the subjects wearing shoes. The only instruction to sub-

jects is to “walk normally”. Examples of raw data frames are

shown in Fig. 1.

In hindsight, a session taken in month 7 should also have been

collected as it would provide data for differences of 2, 6 and 7

months.

There are 12 cameras available in the Biometric Tunnel,

hence a gait sequence is available from 12 different viewing

angles.

Fig. 3. Example of feature concatenation.

Using our database, it is possible for the first time to isolate

the effect of time and other covariates on the performance of

gait recognition while keeping other things constant.

III. METHODOLOGY

The data processing steps are described below.

Step 1—Data acquisition: A data sample consists of 12

video sequences from different angles sampled at 30 f/s. Ex-

ample of data samples are shown in Fig. 1.

Step 2—Background subtraction: The biometric tunnel

uses partially normalized color space combined with a

uni-modal Gaussian distribution to model the background.

More complex algorithms produce similar results with no

significant improvements.

Step 3—Gait-cycle finder: There are at least two gait cycles

for each sequence as the subjects walk from the start to the end

of the tunnel. By analyzing the silhouettes of a walking subject

the most suitable gait cycle is automatically identified.

Step 4—Signatures computation: Two gait signatures are

used in this study: Gait Energy Image (GEI) and Gait Entropy

Image (GEnI). GEI was chosen because it is a baseline gait sig-

nature and is one of the most widely used approaches in the lit-

erature. Gait is represented as a single gray scale image obtained

by averaging the silhouette extracted over a complete gait cycle.

It is computed over a complete gait cycle. If is the first

image of the cycle and the next image is the average

silhouette can be computed using [15]

(1)

where is the total number of images in the gait period.

Three different views of the GEI have been used in our exper-

iments: top view, side view and front view. Two versions of each

view have been computed: normalized (Norm) and non-normal-

ized (NN). Unlike the non-normalized signature, the normalized

one does not retain the subject’s height and body mass. Pro-

ducing a non-normalized version is possible due to full 3-D re-

construction. The size of the normalized signature is 64 64

pixels and the size of the non-normalized is 50 50 pixels.

Gait Entropy Image (GEnI) is a newer approach which cap-

tures mostly motion information and is suggested to be robust
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Fig. 4. Recognition performance over time for the GEnI signature, two different views of the GEI signature and fusion of three different GEI views (
Fusion of Side, Front and Top view).

to covariate conditions changes. It offers a compact representa-

tion and possess the strengths of SVB Frieze Pattern [16]. GEnI

is computed by calculating Shannon entropy for every pixel

(2)

is the probability that a pixel takes on the th value.

A binary image corresponds to . GEnI is computed using

a binary height normalized image of a walking subject. Conse-

quently, using this signature it is not possible to utilize the ben-

efits of using multiple cameras and producing a non-normalized

version is not possible.

Step 5—Feature concatenation: The feature concatenation

module creates a modified GEI signature by combining side,

front and top view . An example of signature is

shown in Fig. 3.

Step 6—Feature Reduction: The feature reduction module

reduces the size of the signatures and enables us to perform

recognition at different resolutions. The following reduced size

signatures have been used: 50 50, 40 40, 30 30, 20 20,

17 17, 15 15, 12 12, 10 10 and 7 7 pixels.

Step 7—Classification: The gait signatures are used directly

for classification. Improvements in performance could have

been achieved if additional features (e.g., moments) had been

extracted from the gait signatures and feature set selection had

been performed to understand which moments/features con-

tribute most towards recognition. However, since the focus of

this study is not improvement in performance but quantifying

the effect of time and other time-dependent covariates these

improvements are not deemed necessary.

A distance matrix containing all Euclidian distances between

all samples is constructed. The Euclidian distance between two

samples is calculated by using the intensity values of the gait

signatures. The -Nearest Neighbor classifier ( -NN) was ap-

plied using the distance matrix. Experiments for

and are performed.

Step 8—Performance evaluation: The performance evalu-

ation is performed in terms of:

1) Correct Classification Rate (CCR).

2) Receiver operating characteristic (ROC) curve.

3) Equal error rate (EER).

4) Diagram of intra- (within subject) and inter- (between sub-

ject) class distributions.

5) The decidability metric [27] determines how much

overlap there is between two distributions

(3)

where and refer to the intra-class

mean and standard deviation, respectively, and

and refer to the inter-class mean and standard

deviation.

The problem becomes more decidable if their means are

further apart or their variances are smaller. The metric

should be very similar if changes in experimental condi-

tions do not drastically affect the separation in the feature

space.

IV. RESULTS

A. Effect of Time

The combinations of probe and gallery used in this exper-

iment are shown in Table II. Each probe and gallery consists

of ten samples per subject. In this experiment, we only use the

samples of the subjects wearing overalls to provide consistent

clothing over time. The non-normalized version of the signature

(50 50 pixels) is used for this experiment. A 4-fold cross vali-

dation is performed and the highest recognition rates are shown

in Fig. 4. A 2-fold cross validation is performed for experiments

for time differences of 5, 8 and 9months due to a smaller number

of samples with overalls filmed in month 9.

The error-bars for GEI indicate the lowest results

of the 4-fold cross validation. The error bars for the other signa-

tures are not shown for clarity. The standard deviation for the re-

sults of the 4-fold cross validation is between 0.00–0.03. Values
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TABLE II
COMBINATION OF PROBE AND GALLERY

Fig. 5. ROC curve for all combinations of gallery and probe as shown in
Table II.

for the EER and the decidability metric are also shown in

Table II.

The results in Fig. 4 clearly indicate that the CCR does not

fall considerably over time for any of the signatures considered

in this study. The variation of performance over time is sim-

ilar for all signatures considered. The EER and decidability

for GEI (side) and GEI (Front) shown in Table II indicate that

the signatures have a similar discriminatory ability, although the

front view performs slightly better in most cases. However, our

results show that there is a benefit of combining multiple views

to construct a single gait signature. The GEI pro-

duces the lowest EER and the highest for all experiments.

For instance, for a time difference of 1 month the EER is 6.39%

and the is 2.24. Furthermore, using a non-normalized ver-

sion of the silhouettes improves performance. The GEnI uses a

normalized silhouette and the EER are always higher and is

always lower compared to all types of non-normalized GEI sig-

natures. For instance, for a time difference of 1 month the EER

is 14.57% and is 1.90 in the case of GEnI. Although the

statistics ignores moments higher than second order it was con-

sidered adequate for all experiments in this study.

Fig. 5 shows that the ROC curves for all combinations of

gallery and probe (shown in Table II) are very similar and over-

lapping. The curve that significantly differs from the rest is for

a gallery and probe taken on the same day.

Fig. 6. (a) Intra/inter class variation for time difference of 1 month, (b) time
difference of 9 months and (c) time difference of few minutes.

Fig. 6 shows a set of intra/inter class variation diagrams. The

Euclidian distance is plotted on the horizontal axis and the prob-

ability density on the vertical. The diagrams in Fig. 6(a) and

(b) refer to different time periods and (c) refers to probe and

gallery acquired within fewminutes. The distributions in (a) and

(b) are very similar. However, there is less overlap between the

intra-class and inter-class distributions in (c).

There is only a 5% drop in performance over 9 months when

the combination of side, front and top is used. Decidability de-

creases and EER increases for analysis over time compared to

analysis on the same day. There is less overlap between the dis-

tributions in Fig. 6(c) and more area under the ROC curve for

data captured on the same day. It is not clear whether the slight

drop in performance over time can be attributed to time (aging)

itself or to covariate factor(s) that we have yet to consider. How-

ever, our hypothesis is that the variation of performance over

time can be caused by change of clothing underneath the over-

alls, as well as some change due to elapsed time. The best recog-

nition is achieved when comparing similar temperature seasons

(e.g., summer spring). Presumably, subjects wore a similar

style of clothes underneath the overalls. Having subjects wear a

body suit (without clothes underneath) was considered but dis-

carded as it was seen as impractical.
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Fig. 7. Highest CCR achieved by studies over time using various datasets.

The values of CCR, d and EER for the front and side views

are similar over time. There is more dynamic gait information

available when the side view is used, compared to the frontal

view. Therefore, a question is raised how much of the dynamic

information is used for recognition over time in the case of

model-free approaches, such as the GEI and GEnI. Neverthe-

less, the results show that the top view is least suitable for recog-

nition over time.

Achieving higher recognition rates and lower error rates

could have been possible if more sophisticated classification

techniques had been used. Nevertheless, the results presented

in this section show that it is possible to recognize someone

reliably by their gait after a certain time period has elapsed,

if we were able to control several other essential parameters

(like clothing and footwear). Although it is not possible to

compare the results available in the literature due to significant

difference in the datasets used, Fig. 7 provides a clear indication

that “elapsed time” has been confused with other covariates so

far in the literature. The conflating covariates have been the

main reasons for low CCRs in the previous studies that have

employed similar techniques to the ones used here.

B. Effect of Clothes

The main purpose of the experiments presented in this sec-

tion is to provide an indication of why previous studies have

achieved significantly lower recognition rates over time, by em-

ploying similar techniques to this study. The results could be im-

proved if algorithms that are less sensitive to change in clothing

are used. However, this paper does not focus on improving per-

formance of recognition approaches but on understanding the

effect of time on the performance of the baseline algorithm and

a more recent gait representation.

Clothes can affect the overall body shape and certain types

clothing can affect the way a person walks. Previous studies

have indicated that change in clothing can have a negative effect

on the performance of current gait matchers. A study [9] has

reported a recognition rate of just 3% for the combination of the

following covariate factors: clothes, shoes and time. Another

study [7] reported a significant drop in performance (87% to

60%) when subjects wore trench coat on top of their normal

clothes.

The data acquired in months 9 and 12 contain samples of

subjects wearing different types of clothes and enables us to

perform analysis of different type of clothes over time and over

fewminutes. It enables us to quantify the effect of clothes, while

keeping all other covariates unchanged. There are four different

types of clothes, three types of “ordinary” clothes of subject’s

choice and overalls provided as part of this experiment. Refer

back to Section II for details. In this section, “Type I” clothes

refer to the samples collected in month 9. “Type II” and “Type

III” refer to the samples collected in month 12.

Fig. 8. The recognition performance over time. Overall
Overall Normal Clothes Overall .

TABLE III
COMBINATION OF PROBE AND GALLERY

Our clothing analysis consists of three experiments. In the

first one we utilize the temporal data and perform matching over

time with the subjects wearing different clothes. In experiment

2 we use the data acquired in month 9 to investigate the effects

of clothing irrespectively of any other covariate, and finally in

experiment 3 we use the data collected in month 12 to further

quantify the effect as it provides additional clothing types.

Experiment 1: The purpose of this experiment is to perform

matching of samples acquired at different time periods with

subjects wearing different clothes. In addition to the combina-

tions of gallery and probe shown in Table II the combinations

shown in Table III are used. Two-fold cross validation is per-

formed. Only the highest CCRs achieved are shown in Fig. 8.

The highest value for the standard deviation of the CCR is 0.04.

The results presented in Fig. 8 indicate that different types of

clothes can lead to a large drop in performance. The finding is

similar for all signatures considered, but only the GEI (side) and

are shown on the diagram for clarity. It is im-

portant to note that the drop in recognition is consistent with

time.

Experiment 2: The aim of this experiment is to investigate

the effect of different clothes in the case when the time be-

tween recording the gallery and the probe is few minutes and

no other changes in the experimental condition occur. Table IV

shows the combinations of probe and gallery used. Fig. 9 sum-

marizes the results. The horizontal axis shows the combination

of clothing considered. Type I clothes refer to the samples of

subjects wearing “normal” clothes. Very high recognition re-

sults for all views are achieved if the same types of clothes are

matched. However, when different types of clothes are used the

recognition rates can fall to 40%.

One ROC curve in Fig. 10 significantly differs from the

others. Clothing change affects the curve’s shape dramatically.

The remainder of the curves represent samples of subjects

wearing the same clothes but recorded in different sessions.
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Fig. 9. Effect of clothes on the recognition performance. The probe and the
gallery have been taken few minutes apart.

TABLE IV
COMBINATION OF PROBE AND GALLERY

Fig. 10. ROC curve quantifying the effect of clothing.

Fig. 11. Inter/intra class variations for different types of clothes. (a) GEI
(side)—Same clothes %
%, (b) GEI (side)—Different clothes
% %.

Fig. 11 shows the class distributions for the GEI (side) signature

in the case of (a) same clothes and (b) different clothes.

The results demonstrate that high recognition rates can be

achieved if clothes of the same type are matched and very low

rates if “extreme” changes in clothing occur. The experiment

described in part 3 investigates how the recognition rate is af-

fected by change from one type of “ordinary” clothes to another,

as opposed to “extreme” clothing variations such as the overall

suit.

Fig. 12. Effect of different types of clothes on the recognition performance for
various gait matchers.

Fig. 13. EER for different types of clothes.

TABLE V
COMBINATION OF PROBE AND GALLERY

Experiment 3:We use the data captured in month 12 for this

part of the experiment. Table V shows the combination of probe

and gallery used. Fig. 12 summarizes the results. The EER for

different gait signatures is shown in Fig. 13. It can be clearly

seen that the EER increases if the subjects wear clothes that sig-

nificantly differ from each other. The decreases in this case.

The results of this experiment show that the recognition rates

decrease significantly less if different but less extreme clothing

changes occur.

In conclusion, the recognition can be affected significantly

due to clothes change regardless of elapsed time or any other co-

variates. Furthermore, the drop in performance is less significant

if subjects are wearing similar types of clothes. Another study

[7] performed on a different database came to a similar con-

clusion for a model-based approach. The CCR dropped signif-

icantly when subjects wore trench coats. The results presented

in this section are similar for the other studies that have consid-

ered the effect of elapsed time. This is an indication that elapsed

time has been confused with other covariates (mainly clothing)

so far in the literature.

C. Footwear

The combination of probe and gallery used is shown in

Table VI. The data captured in month 12 is used. From

Table VI, it can be concluded that wearing footwear is unlikely

to drastically affect recognition. However, there is an indication
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TABLE VI
COMBINATION OF PROBE AND GALLERY

TABLE VII
COMBINATION OF PROBE AND GALLERY

Fig. 14. EER for the footwear experiment.

that the EER can increase (Fig. 14). Further investigation using

a larger dataset containing a larger variation of shoes is needed.

A study [7] employing a model-based approach reached

similar result to ours. The CCR did not decrease dramati-

cally when subjects’ shoe type changed (except in the case of

flip-flops). Another study [9] using the GEI representation has

also achieved a relatively high recognition rate for a change in

footwear.

D. Speed

A study [28] demonstrated the need for speed adjustment

of gait features. A different study [7] showed that variation in

walking speed can have a negative effect on the performance

of model-based approaches. The recognition performance de-

creased from 87% to 60%.

In this study, we use the combination of gallery and probe

as shown in Table VII. Each gallery and probe consists of 110

samples and all samples are taken only few minutes apart. Other

covariates remain unchanged. The walking speed was not con-

trolled; we are just utilizing the natural variation in the subject’s

speed to perform this experiment. Each acquisition session con-

sists of 20 samples per subject. For each subject, ten samples

with similar walking speed were identified and five were added

to “Gallery 1” and the other five to “Probe 1”. In addition, ten

samples of different walking speed were identified for each sub-

ject and five added to “Gallery 2” and the other five to “Probe

2”. In this experiment we are interested in the relative change

of walking speed between different samples of the same sub-

ject. The smallest variation in walking speed for a subject is

5.8% and the greatest variation for a particular subject is 25%.

Fig. 15. Results of the walking speed experiment.

Fig. 16. Number of features versus Performance, over time. Time periods refer
to the elapsed time between capturing the gallery and the probe.

This data applies for the acquisition session taken in “month

1”. However, it is anticipated that the variations are similar for

the other sessions because there were no changes in the experi-

mental conditions. The results are presented in Fig. 15. There is

a slight drop in performance for all signatures, except for GEI

(Front). It would appear that the side view is mostly affected by

change of speed which is somewhat expected.

Recently, Aqmar et al. [29] proposed a gait representation

that is robust to variations in speed.

E. Number of Features Versus Performance Over Time

A unique advantage of gait is the capability to do recognition

at a distance, at a low resolution. Therefore, it is important to

show how the performance changes with number of features.

In this study, the number of features equates to the number of

pixels in the GEI or GEnI signature. If gait is captured at a dis-

tance there are fewer pixels in the image that can be used for

recognition. Consequently, a decrease in the number of features

is equivalent to an increase in the distance at which the subject is

observed. The rate at which the performance deteriorates with

smaller number of features should be consistent over time. In

other words, if the gallery and probe are acquired month apart

and a recognition performance of is achieved with number

of features then a (where is very small) performance for

the same number of features should be expected if the gallery

and probe are acquired months apart ( any value).
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We have performed an experiment using GEI (side view)

to show whether time has any effect on the ability to do gait

recognition at a lower resolution. The findings are presented

in Fig. 16. We have shown that irrespective of the time differ-

ence (except when the time difference is few minutes) between

the probe and the gallery the degradation of performance as the

number of features decrease is fairly consistent. This is evidence

that gait recognition can be used as a reliable biometrics at a

distance over time. Fig. 16 shows that high performance can be

achieved by using a small number of features. Using only 900

features (30 30) a CCR of 80%–90% can be achieved. How-

ever, a larger database is needed to correctly verify the number

of features needed to achieve a recognition . There is on-

going work in developing gait recognition algorithms capable

of achieving high recognition rates at low resolutions [30]. The

main aim of this experiment is to show that elapsed time does

not play an important role to achieve recognition at various res-

olutions.

V. CONCLUSION

In studies to date, there has been a lack of understanding of

elapsed time on the performance of gait recognition. The goal of

this paper was to study the effect of time on gait recognition by

controlling all covariate factors and removing their influence.

This study analyses various covariate factors using existing ap-

proaches to provide an indication of why previous studies have

achieved low recognition rates over time. Themajor obstacle for

quantifying the effect of time and other factors independently

is the lack of suitable databases and conflating more than one

covariate between different acquisition sessions. We have cre-

ated a novel multimodal temporal database which could be used

for developing and evaluating covariate invariant algorithms. It

is worth noting that the paper does not aim at proposing new

recognition algorithms.

We have shown for the first time that gait per se is time-in-

variant in the short and short/medium term and, thus, can be

used as a reliable biometric trait over time if influential covariant

factors (namely clothing, footwear) were controllable. A similar

recognition performance was achieved over seven different time

periods and a CCR of 95% is achieved over period of 9 months.

We hypothesize that a CCR of nearly 100% could be achieved

if various covariate factors (like clothing, footwear etc.) were

controllable. Unfortunately, this situation is unlikely to occur

in the real world. We have shown that the major problem for

recognition over time can be partially attributed to the change

of clothes. We have shown a dramatic fall in performance in

the case of “extreme” changes in clothes. However, given that

the problem of clothing can be overcome using techniques as in

[25], [31], the issue of gaining/losing weight would still pose a

challenge in the case of model-free approaches, such as the GEI.

Further research is needed to identify an age-invariant feature

subspace for gait by performing feature set selection [25], [32].

A second significant finding is that we have shown that other

authors reported low gait recognition since clothing and other

covariates have been confused with “elapsed time” previously

in the literature. The CCR drops from 100% to 30% for nontem-

poral combination of gallery and probe, which corresponds to

the results achieved by other studies over time.

We have also confirmed that recognition by gait at low res-

olution (at a distance) is not affected by elapsed time. This is

a very significant finding because recognition at a distance is a

major advantage of gait over all other biometrics.

It would appear that shoes and speed are unlikely to affect

recognition performance significantly in the case of model-free

gait representations. However, it is important to note that the

data collected to analyze the effect of these covariate factors

can merely provide indication and not quantify the exact effect.

Experiments performed outdoors were not considered appro-

priate for this study because additional environment related co-

variates would be introduced and it would be difficult to quan-

tify how much recognition changes due to the imperfections of

the extracted silhouettes and how much due to elapsed time or

other subject specific covariates.

Both approaches used in this work are model-free and there-

fore the conclusions in this study should be verified for model-

based algorithms. However, our results show that recognition is

possible over a significant period of time and at a low resolu-

tion. These results bring gait one step closer to being used as a

forensic tool.
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