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ABSTRACT

The use of digital transmission with narrow light pulses appears

attractive for data communications, but carries with it a stringent

requirement on system bit timing. In this paper we investigate the effects

of imperfect timing in direct detection (non-coherent) optical binary systems

using both PPM and on-off keying for bit transmission. Particular emphasis

is placed on specification of timing accuracy, and an examination of system

degradation when this accuracy is not attained. Bit error probabilities are

shown as a function of timing errors, from which average error probabilities

can be computed for specific synchronization methods. Of significant

importance is the presence of a residual, or irreducible error probability

in both systems, due entirely to the timing system, that cannot be overcome

by the data channel.
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Introduction

The ability to generate extremely narrow, high energy light pulses

from a laser source has made the optical transmission of digital data

extremely attractive for modern communications. This possibility has

fostered an exhaustive exploration of optical communication systems,

from both a theoretical and hardware point of view (e. g. , see [1]). The

use of digital transmission with narrow pulses, however, carries with it

an extremely stringent requirement on system bit timing--!, e. , time

control of the system sampling and integration intervals during each data

bit. For the most part past analytical studies have assumed perfect

system timing, and the degradation caused by timing errors in optical systems

have been virtually ignored. In this paper, we investigate the effects of

imperfect timing in a direct-detection (non-coherent) optical communication

system, with particular emphasis on the specification of timing accuracy,

and an examination of the system degradation when this accuracy is not

attained.

Consider a general optical digital system as shown in Figure la. The

system sends bits of information by transmitting bursts of optical energy.

One of two possible methods are usually used for encoding the bits. In

one the system operates by transmitting a burst of energy in one of two

T sec adjacent time intervals to encode a binary bit. This represents a

two level pulse position modulated (PPM) mode of transmission and is

known to be optimal under various criterion, when constrained in average

transmitter power [2]. Thus, for example, the binary sequence 0110
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would be transmitted by the optical waveform shown in Figure Ib, where

the pulse represents a burst of optical laser energy. We have considered

an energy pulse in the first interval to represent a binary one, and an

energy pulse in the second interval to represent a binary zero. A second

procedure is to use on-off keying, in which the transmitter uses an energy

burst for a one, and transmits no energy for a zero. Thus, the waveform

0110 would be transmitted by the energy waveform in Figure Ic. Note that

if T is the energy pulse width, then in PPM 2T is the bit interval and inform-

ation is being transmitted at a rate 1/2T bits/sec, while in on-off keying T

is the bit interval and the rate is 1/T bits/sec.

The digital receiver for the system is shown in Figure 2. We shall

assume the transmitter and receiver operate diffraction-limited, so that

the transmitted energy corresponds to optical energy in a single spatial

mode of the optical beam. The received optical beam is photo-detected,

and its output is integrated over a T sec interval. The start-stop timing

for this integration is provided by a synchronizing subsystem. In PPM,

the bit decoder makes a comparison of the integrator output after the first

T sec interval of each bit period with that after the second T sec interval,

deciding a one or zero accordingly. In on-off keying a threshold te.st is

made at the end of each bit time T, the bit decision depending upon whether

the threshold is exceeded or not. The latter system requires accurate

knowledge of the expected signal and noise energies in order to properly
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set the threshold, representing a serious disadvantage to on-off operation.

If the output of the photo -detector is modeled [3] as a wideband shot

noise process (detector bandwidth » 1/T), then the integrator output

after T sec of integration, beginning at time t, is proportional to the

shot noise counting process k(t, t+T), where

k(t.. ,t ) = number of photo electrons in (t , t ) (1)
~~ J. £ \. C*

In stating that the integrator value is proportional to (1), we have neglected

additive circuit thermal noise which implies the use of high gain, ideal

photomultipliers in the photodetection operation. The counting process

k(- , • ) of the photo-detector shot noise is a random point process over

the non-negative integers. For the reception of an optical field over (0, T),

with the signal energy E and additive, white Gaussian background noise of

bandwidth B , the probability that the count value k(0, T) equals integer k

is known to be [4]

Prob[k(0,T) =k] ^ P (k;S,N,D) (2)
— JLJ

exp -
1 D/ S \

-J Lk ( d+N0)NjD+k+1 —r l+Nf
L 0 -1 \ ' U" U /

-1
where S = GE/hf = average signal count over (0, T), N = G[exp(hf/kT -1)]

\J 6

= average noise count per mode due to background at temp T , h = Planck's

constant, f = laser frequency, D = 2B T, G = photomultiplier gain, and

L, (x) is the Laguerre polynomial in x of order D and index k:
ic



-4-

D,__ 4 _ V^ /k+D\ (-x)1
 (3)

i=0

The parameter D is the count dimension, or time-bandwidth product.

Physically, D+l is the number of temporal modes observed during the

T sec counting interval. The density P (k;S,N,D) is called a Laguerre

counting density, and is exact for D = 0 and D »1, but is only approximate

for Da* 1. (This is due to the fact that (2) requires equal eigenvalues in

the expansion of the energy function, which is only approximately true for

low values of D. ) The received average signal energy E over the time

interval T can also be written as E = Q T, where Q is the received average
s s

power. We then have, alternatively,

/GQ \
S = U-^- T = u T (4)

/ G Q \

V13/

where |-l is the average counts per sec (count rate) due to the signal.
s

Under typical operating conditions, we generally have N << 1 and

D » 1, and (2) asymptotically approaches the poisson density [4]

Prob[k(0, T) = k] = P (k;S+N)

k
g JS+N)_ -exp[.(S+N)] (5)

where N = DN represents the total noise count in all modes. (For visible

7 6
wavelengths, N. is generally on the order of 10 - 10 counts/mode. An

optical system at 10 microns operating with a one angstrom optical filter

and T = 10 sec, will generate a D of about 400. ) Note that with the poisson

assumption, the count probability depends only upon the sum of the signal
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and noise count. That is, the count statistics do not distinguish between the

effect of signal energy or noise energy, but is determined solely by their

cumulative energy.

Error Probabilities

If we transmit a binary PPM signal with fixed signal energy in the

signalling interval, then the probability of making a bit error is simply

the probability that the count in the non-signalling interval exceeds or

equals that of the signalling interval. (If the counts are equal, an equal

likely random choice is made concerning that particular bit. ) If we denote

k. as the count in the i interval, i = 1,2, of a bit, then the average error -

probability is

PE = |Prob[k > k lone sent] + | Prob[k >k Izero sent]
C* i \. Lt

(6)

+ i {[|Prob k = k |one sent] + ^Prob k = k jzero sent]}
£* J. \. L*

From the symmetry of the transmission method, some of the terms above

combine, and the result simplifies. Thus, for the L/aguerre counting, (6)

becomes

OO 00

PEL(S,N{),D) = YkFjVS 'N0'D)PL (k2 ;0-N0'D) (7)

where y = ^ for k = k,, and is one otherwise. (The ^ factor accounts
k2

for the effect of equal interval counts. ) Note that the error probability

using Laguerre counting, PE , depends explicitly on the count dimension
l_i

D (time -bandwidth product). If the poisson assumption is applicable, the

probabilities in (7) are replaced by those of (5), and we have
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P E ( S , N ) = \ P ( k l f S + N ) P ( k 2 , S + N ) (8)p

We see that the poisson error probability, PE , depends only upon the

parameter D through the total noise count N = DN . The poisson error

probability is easier to compute than that using Laguerre counting, and

parametric studies of (8) have been extensively published [2,5] . A typical

plot of PE is shown in Figure 3 as a function of the signal count S. Some
P

PE points obtained by computing (7) at the same total noise level are super -
L

imposed. Further comparisons of poisson and Laguerre error probabilities,

in terms of the parameters involved, are discussed in Reference [6]. The

primary conclusion is that at low noise levels (N « 1), it can be conjectured

that PET «» PE for moderate (D « 100) dimensions.
L p

When on-off keying is used, and a threshold test is made at the end of

each pulse time T, an error is made whenever the integrator value is on

the incorrect side of threshold. If K is the apriori selected threshold count

value, then the error probability becomes

K 00

PE (S,N) = iV*YJ? ( f c ,S+N)+£V* Y P (k,N) (9)
P f J r\ P £^ K P

k=0 k=K

where again Y = if f°r k = K and is one otherwise. For Laguerre statistics,
K

the probabilities on the right should be replaced by the P terms in (2). For
L

poisson counting the sums in (9) are cumulative poisson probabilities, and

are well tabulated (e. g. see [9]).
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Timing Error Effects in PPM

The primary assumption in (8) is that the bit timing is perfect, and the

decoder counts photo-electrons exactly over the two T sec intervals that

constitute a bit. If a time offset of A sec occurs during a bit period, due

to timing errors in synchronization lock-up, then the counting occurs over

an offset interval. That is, the decoder starts and stops counting over a

T sec interval that is displaced by a A sec from that containing the bit

information, as shown in Figure 4. As a result only a portion of the true

signal energy is included in the signal count, while some signal energy may

contribute to the count in the adjacent interval, causing intersymbol inter-

ference in the form of energy spill-over. The effect of this interference

depends upon the form of the adjacent bit; i. e. , whether it contains signal

energy or not. Assuming a positive timing offset (0 < A < T), the various

effects on the counting statistics are summarized below, where |~l is the
s

average signal count rate in (4). If we let S = |J. T be the average count over
S

Transmitted Subsequent
bit bit

1 0

1 1

0 1

0 0

Prob X(0, T)=k1 Prob X(T, 2T)=k?

P [k.,|a (T-A) + Nl P [k_
p i s p i

P IX, [J (T-A) + N P IX
p i s p ^

P [k, , (a A + N] P [k.
p i s p i

P lk.,|_l A + N] P [k.

, ,N]

, ,N-Ha A]
' s

, ,M T +N]
' s

, , H ( T - A ) + N ]

T due to signal energy, and assume equiprobable bits, the error probability

for a positive timing error A, averaging over all possibilities tabulated above,

is then
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CO 00

PE A =
P • ^

V° Vki
V* Y, P [k. ,S( l-e) + N]P [k N + Se ]
L^J k p 1 p L

CO 00

P [ k 1 , S ( l - c ) + N ] P [ k 2 , N ]

kr°Vki
co co

(10)+ i Y^ V] Yk P [kj.Se +N]Pp[S + N]

V° kl=k2 '

where e = A/T is the percentage timing error. The error probability for

negative time shifts will be identical to the above, when all possibilities are

considered, if we interpret e = | A | / T when A< 0. Note that if each of the

double sum terms in (10) is compared to (8) which assumed perfect timing,

we can rewrite (10) as

PE |A = APE (SJN' )+ |PE ( S " , N ) + i p E (S",N') (11)
P P ' P P

where

S1 = S(l - 2e) (12a)

S" = S(l - e) (12b)

N1 = N + Se (12c)

Thus, timing errors in PPM can be accounted for by merely reinterpreting

the effective signal and noise count per T interval while assuming perfect

timing. Note that the timing errors always act to reduce the effective

signal energy, while increasing the effective noise, the overall result

degrading the error probability. It is important to realize that the fact
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that the spilled over signal energy appears as effective noise energy is

intrinsic in the poisson assumption, and is valid so long as (8) describes

the error probability.

A plot of (11), obtained by digital computation, is shown in Figure 5

for positive or negative timing errors. The results show a relatively

fast increase in PE (system degradation) as the offset |A| is increased.

The system is essentially ruined (PE «.. 5) when e» . 5 or when | A | « T/2.

(This is the point where the effective signal to noise ratios S'/N1 and S"/N',

are equal to or less than unity. )

A lower bound to the system performance as S -»°°is included, obtained

by envoking the fact that at low noise levels poisson error probabilities and

Laguerre error probabilities with the same total noise are roughly equal,

as pointed out before. Since the PE monotonically increases with the
L

parameter D, the use of PE at D = 0 will serve as a lower bound for
L

error probability. When the signal has count S and the additive noise count

is N, (7) with D =0 is

= (13)

By applying a Laguerre identity [8, Eq. 8. 975] and manipulating algebraically,

the above becomes

PEjD=0 = | exp L ;",T | (14)



.001-

0 .2 .3
IAI/T

.4 .5

Figure 6.



-10-

If we substitute the effective S and N from (12) into (14), and use this as

a lower bound for each term in (11), we have

PE IA R* PE |A ^ PE |A=0
P J_J J-J

- S ( l _ - 2 e ) "1 1 f-S(l - e)l
l+ 2 N + 2 e S J + 8 exp |_ 1 + 2N J

Now as S -»

Urn PE | A * I exp - 2 + ̂  exp - v *~ ' (16)

The above lower bound depends only upon e , and is plotted as the S = °°

curve in Figure 5. The result is interesting in that it shows that even as

S -» oo, a relatively sharp system degradation can still be expected. This

can be attributed again to the fact that timing errors cause a portion of the

signal energy to appear as noise energy. Therefore, even though an "infinite"

signal energy is available, there is consequently an "infinite" noise energy

present, whenever e 4 0, the overall result not dependent upon S at all, as

(16) illustrates.

The behavior of PE at different noise counts is shown in Figure 6,
P

for fixed value of S. Again, even with negligible background noise, the

system degrades in a similar fashion with increasing timing error.
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Timing Error Effects With On-Qff Keying

When on-off keyed data bits are transmitted, and threshold tests are

used for bit decisions at the decoder, the effect of timing errors can be

determined by a procedure similar to the PPM case. The actual bit

decisions will be influenced by the adjacent bit (the subsequent bit when

A > 0, the former bit when A < 0), just as in the previous case. If we

consider the four possible combinations of transmitted and adjacent bits,

and the associated error probability for each, the total error probability

when a threshold K is used and an offset A occurs, is then

k oo
P E p A =

k=0 k=K

11 00

k=0 k=K

10 01

where again e = | A | / T and S, N are the received signal and noise counts,

respectively. The symbols below each sum represent the combination of

data bits causing the corresponding error probability, with the left hand

bit the transmitted bit and the other adjacent bit. Comparison of (17) with

(9) allows us to write

PE |A = & PE ( S , N ) + * P E (S ' ,N') (18)
P P P
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where the terms on the right are error probabilities with perfect timing,

and S1 and N1 are defined in (12). We again observe that timing error

effects can be interpreted as degradations in signal energy and increases

in noise energy in a perfectly timed system. Note that timing errors are

exhibited only in the second term in (18), and can be attributed to the last

two terms in (17), where the adjacent bit is opposite from the true bit. The

error probabilities in (18) depend upon the choice of threshold K used for

decisioning. For a given design value of S and N, the threshold K that

minimizes (9) can be determined by differentiation, and shown to be

K = - - -r (19)

With this threshold, (18) is plotted in Figure 7 as a function of timing offset

for several values of S and N. The curves manifest similar behavior as in

PPM, except the degradation is faster, and the curves exhibit crossovers.

That is, at small offsets increasing S decreases error probability, but at

larger offsets the opposite is true. An examination of the sums in

(17) will reveal that for N « 1, S »1 the first three terms tend to zero and

the resulting PE | A is directly attributable to the last term; i. e. , the error

probability when a zero is sent and the adjacent bit is a one. In the limit as

S -» oo, it follows that even though K -» <=° [see Eq. (19)] , this latter probability

becomes exactly one for any e i 0. The overall PE JA therefore becomes .25,

and the result is plotted as the S = °° curve in Figure 7. The behavior of all

these curves can be directly attributed to the fact that optimal on-off keying
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requires proper threshold selection, and timing offsets cause changes in

effective signal and noise energies and, hence, suboptimal operation. As

these effective energies become widely different from the design energies,

the resulting system performance is severely degraded.

Random Timing Errors

The timing error that does in fact occur during a bit interval depends

upon the synchronization subsystem and its performance in maintaining time

lock. This is generally accomplished by tracking a transmitted sync signal

with a locally generated sync signal using a feedback tracking loop for error

control. The timing error A is therefore the tracking error between the

received and locally generated sync signals, and in reality should be considered

as a random process in t. In typical operation, however, the loop tracking

bandwidth is much less than the bit frequency 1/T, and the assumption of a

constant timing error during a given bit interval is essentially valid. The

error is however random, and its statistics will depend upon the tracking

loop model. When sinusoidal sync signals at the bit frequency 1/T are used,

and tracking is accomplished by a phase lock loop following photo-detection,

the steady state probability density of A is given by

(20)

where p (cp) is the density of the loop tracking phase error cp. This latter

density has been investigated for a system using a separate optical channel

(different optical frequency) for transmitting the sync information [?]. When
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the sync channel is in quantum limited operation (high gain photo-multiplication

and negligible background energy) the probability density of the phase error

has been computed and the results shown in Figure 8. The phase error

density depends only upon the parameter

Msc
• •

where B is the tracking loop bandwidth and jj is the average count rate
!_/ 3 C

due to the sync signal, the latter directly related to the received power in

the sync channel. The parameter a is therefore the average number of sync

signal counts occurring in the time period 1/2B . The bandwidth B must
L L

be selected large enough to allow suitable dynamical tracking of the incoming

sync phase shifts (due to doppler, range undertainty, and oscillator phase

jitter). For a S 3, the phase densities are, to a good approximation, given

by

where In(a) ig the imaginary Bessel function.

An average timing error probability PE can be computed by averaging

the PE I A in Figures 5 and 7 over the random timing errors, using the density

p(A) obtained from (20). That is,

00

PE = j [ P E J A ] p ( A ) d A (23)
_00
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The integral in "(23) was evaluated using a point by point integration of the

densities in Figure 8. The results are plotted in Figure 9 for PPM and in

Figure 10 for on-off keying, showing PE as a function of transmitted data

signal count S, for a fixed background noise count N and several signal

counts a in the sync channel. The results indicate the average effect of

imperfect timing, exhibiting the usual fall off in error probability with

increasing signal energy, followed by a flattening (Figure 9) and bottoming

(Figure 10) of performance as S is increased. The values of the minimum

PF. depends upon the tracking loop signal count. In PPM the minimum

asymptotes plotted in Figure 9 are those obtained by averaging the S = »

curve in Figure 5 over the densities in Figure 8. In on-off keying PE

actually begins increasing after achieving a minimum value, even though

S continues to increase. (This is due to the fact that the system is more

"mismatched" in threshold design at the higher values of S. ) This latter

fact tends to favor PPM operation over on-off keying when combating

imperfectly timed systems. This bottoming of PE in both systems is

extremely important since it represents a residual, non-reducible error

probability that depends only upon the sync system, and cannot be overcome

by increasing the bit energy to the data signal. For example, we see from

Figure 8 that with a = 5 and N = . 5 we can never achieve an error probability

_3
less than Z X 10 , no matter how much pulse energy we transmit. To

determine these residual values for other design parameters. The curves

for PE |A must be f i rs t generated then averaged as in (23).
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It may be pointed out that the same residual effect due to imperfect

tracking occurs in the additive Gaussian noise channel (microwave system

instead of optical) when using phase shift keyed binary transmission. In

this latter case, as data signal energy becomes infinite, PE -» 0 as long

as the tracking error is less than TT/2 radians, and PE -» 1 for cp ^ TT/2.

Thus, the residual error probability is simply the probability that the loop

error exceeds IT/2.: In Figure 8 we see that as S -» » we do not obtain zero

PE (except at e = 0), and the residual PE tend to be higher than the compatible

microwave case. That is, to obtain the same residual PE, the optical system

requires more sync power.
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