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The effect of tyre and rider properties
on the stability of a bicycle

Vera E Bulsink1, Alberto Doria2, Dorien van de Belt1 and Bart Koopman1

Abstract

To work towards an advanced model of the bicycle-rider-environment system, an open-loop bicycle-rider model was

developed in the commercial multibody dynamics software ADAMS. The main contribution of this article to bicycle

dynamics is the analysis of tyre and rider properties that influence bicycle stability. A system identification method is used
to extract linear stability properties from time domain analysis. The weave and capsize eigenmodes of the bicycle-rider

system are analysed. The effect of tyre properties is studied using the tyre’s forces and torques that have been measured

in several operating conditions. The main result is that extending simplified models with a realistic tyre model leads to a
notable decrease in the weave stability and a stabilization of the capsize mode. This effect is mainly caused by the twisting

torque. Different tyres and tyre inflation pressures have little effect on the bicycle’s stability, in the case of riding straight

at a constant forward speed. On the other hand, the tyre load does have a large effect on bicycle stability. The sensitivity
study of rider properties shows that body stiffness and damping have a small effect on the weave and capsize mode,

whereas arm stiffness destabilizes the capsize mode and arm damping destabilizes the weave mode.
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Introduction

Bicycling is a healthy,1 effective and popular means of

transportation. Furthermore, it is frequently used for

social and recreational purposes. Even if the develop-

ment of the bicycle was based on a trial-and-error pro-

cess, dynamics of bicycles has drawn the interest of

scientists and engineers for many years. In 1899,

Carvallo and Whipple independently showed with the

use of rigid-body dynamic models that some bicycles

could balance themselves when riding at a certain

speed.2,3 This linear model contained four rigid bodies,

3 degrees of freedom (DOFs) and a simplified tyre–

road contact model: rigid-knife edge, pure-rolling and

no-slip contact. The rider is modelled as a rigid body,

rigidly attached to the rear frame.

In recent years, computer simulation proved to be a

useful tool for studying bicycle dynamics and

stability.4–6 Major contributions were made by

Meijaard et al.4 and Schwab et al.,7 who published and

benchmarked the linearized equations of the Carvallo–

Whipple bicycle model (CWBM). Their studies recently

led to important insights into stability of a rider-less

bicycle, which have been confirmed experimentally.8

The CWBM is able to represent the capsize and

weave modes, which play the main role in uncontrolled

bicycle stability at low speed. Improvement of
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simulation requires extensions of the model such as the

non-linearity of the bicycle dynamics, the passive rider

dynamics and the interaction with the environment (i.e.

tyre–road contact), which increase the complexity of

the system considerably. Some efforts to extend the

CWBM with realistic tyre–road contact models and

rider models have been made. Sharp6 numerically

demonstrated that a more realistic tyre model strongly

influences the weave and wobble modes of the bicycle.

Similarly, Dressel and Rahman9 showed the importance

of upgrading existing bicycle models with the dynamic

properties of tyres. Adding the rider’s dynamics

changes the properties of the system significantly, and

modelling of tyre properties could become even more

important.6 Recently, Plöchl et al.10 gave details of a

linear tyre model that includes self-aligning and twisting

torques. The results showed a significant effect of tyre

and rider properties on the stability of the wobble

mode. Schwab et al.11 incorporated passive properties

of the rider into an open-loop bicycle model, without

increasing the DOFs. They studied different rider pos-

tures, and it was shown that an upright passive rider

could destroy the stability of the system by an unstable

capsize mode. Recently, Doria and Tognazzo12 experi-

mentally determined the passive properties of the rider’s

body and integrated the derived models in the bench-

mark model. Klinger et al.13 combined a realistic tyre

model with a passive rider model and studied the effect

of different postures of the rider on the wobble mode,

in the case of a racing bicycle.

Even if some recent bicycle models were developed

by means of multibody dynamics software that is able

to generate and solve non-linear dynamics equations,11

in most researches, equations were linearized and a lin-

ear stability analysis was carried out. Also, in the field

of motorcycle dynamics,14–16 it is a common practice to

develop, by means of multibody dynamics software,

models that take into account non-linear kinematics

and tyre properties; the full non-linear model is used

for performing time domain handling simulations only,

while a linearized model is used for stability analysis.

This article is part of a research that aims to improve

bicycle safety, with special emphasis on safety of elderly

cyclists. To work towards an advanced model of the

bicycle-rider-environment system, it was chosen to

develop a non-linear model by means of a commercial

multibody dynamics software. Operating in this way, it

is possible to model a complex three-dimensional (3D)

system and eventually simulate complex situations, for

example, the behaviour of elderly cyclists in critical

situations. In the next section, the multibody open-loop

bicycle-rider model will be described; this model was

developed in the software system MSC ADAMS and

included bicycle dynamics, a passive rider model and a

tyre–road contact model. For this last component, a

specific version of the ‘Magic Formula’ tyre model17

was used.

Stability is the main issue of single-track vehicle

dynamics and it is related to safety, because on one

hand uncontrolled unstable behaviour may lead to dan-

gerous conditions, and on the other hand a skilled rider

can obtain nice and quick manoeuvres by controlling

an unstable system. This article focuses on stability

analysis and the non-linear model is used for extracting

linear properties in the case of riding at a constant for-

ward speed. It appeared that for this specific modelling

problem, the linearization within the commercial soft-

ware package yielded rather muddled results; therefore,

a system identification method was used to study the

stability of two eigenmodes: weave and capsize. The

weave mode is a combination of steer rotation and roll

rotation of the whole bicycle, and the capsize mode is

dominated by roll rotation.7

The main contribution of this article to bicycle safety

is the analysis of the parameters that influence stability,

which can be grouped into tyre and rider properties.

The effect of tyre properties is studied using the tyre’s

forces and torques that have been measured in several

operating conditions.18 Regarding the rider’s proper-

ties, the effect of stiffness and damping properties of

the limbs is dealt with. The body is represented with a

lumped element approach using inertial values found in

the literature19 and recently measured stiffness and

damping properties.14,20

Methods

The bicycle-rider model

The bicycle-rider model is in its entirety depicted in

Figure 1. The bicycle’s dynamics is represented by four

rigid bodies (the rear frame, the front assembly, the

rear wheel and the front wheel). A revolute joint at the

steering axis connects the front assembly to the rear

frame. Both wheels are interconnected to the frame by

revolute joints.

The rider’s dynamics is also represented by four

rigid bodies: the pelvis; the upper body containing the

head, trunk and mass of the upper arms; and both legs.

The pelvis is rigidly attached to the rear frame and the

upper body connects to the pelvis with a spherical joint,

at the L4–L5 vertebral joint position. The arms are

modelled as linear spring–dampers between the handle-

bars and the shoulders, similar to Cossalter et al.14 The

linear spring–dampers generate a torsion stiffness and

damping around the steering axis (coefficients Ka and

Ba, respectively). The mass and inertia of the lower

arms are added to the front assembly. In this way, all

rotational DOFs of the upper body are maintained and

the passive dynamics of the rider’s arms on the steering

is taken into account. Passive springs and dampers are
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added to the rider’s joints. The values are adopted from

Doria and Tognazzo12 and are given in Table 3 of

Appendix 1. Each leg is modelled as one rigid part and

has 1 DOF: rotation around the line connecting the hip

and the ankle. This allows for lateral knee movements,

a movement which becomes interesting when rider con-

trol at low speed is considered.21

Hence, the rider model contains 5 DOFs. The

bicycle model has 9 DOFs, due to the modelling of the

tyres as force and torque generators instead of

constraints as being used in the CWBM. These are the

positions (in all three directions) and orientations of

the rear frame (roll, pitch and yaw), the spin angles of

the wheels and the steering angle. Both the bicycle and

rider model are fully parameterized, to enable model-

ling of any bicycle and any rider. Furthermore, it

allows for parameter and optimization studies for

improvement of the bicycle design (and possibly con-

trol) in order to increase safety. The bicycle used in this

study is a regular bicycle with low entry (Twade T3001;

Flexaim, Hengelo, The Netherlands). The geometry

and mass properties of the bicycle are physically mea-

sured using the methods described in Moore et al.22

The geometry and mass properties of the rider are esti-

mated from the total weight and height of the person,

using linear scaling and regression equations.19,23 The

rider model used in this study is based on a male with a

height of 1.80m and a mass of 80 kg. See Appendix 1

and Figure 11 for the parameter values, as used in the

model.

The tyre–road contact model estimates the forces

acting between the road and the tyre. The actual load

distribution in the contact area between the road and

the tyre is recalculated into a set of forces and torques

in one contact point. The inputs and outputs of the tyre

model are given in Figure 2. In the radial direction, the

tyre is considered to behave like a linear spring–dam-

per, with one point of contact with the ground, point C

in Figure 3. Tyre longitudinal and lateral forces and

tyre torques are calculated by means of the Pac MC

(Pacejka motorcycle) model of the package ‘ADAMS/

tyre’, which is based on the so-called Magic Formula

of Pacejka.17,24 In the next section, a more detailed

description of the derivation of the tyre model proper-

ties is given.

Tyre model properties

The tyre model properties are based on the data mea-

sured by Doria et al.18 They measured the tyre proper-

ties of four different bicycle tyres and studied the effect

of working conditions, like the inflation pressure and

Figure 1. The open-loop bicycle-rider model developed in

ADAMS. m1: rear frame; m2: front assembly including lower

arm mass; m3: rear wheel; m4: front wheel; m5: pelvis; m6:

upper body (including trunk, head and upper arm mass); m7: left

leg; m8: right leg; Ka: linear spring–damper representing the

arms; Kw: rotational spring–damper around the longitudinal axis

of the upper body at the waist; Kr: rotational spring–damper

around the sagittal axis of the upper body at the waist; Kp:

rotational spring–damper around the frontal axis of the upper

body at the waist; Kl: rotational spring–damper around the line

connecting the hips and the ankles.

Figure 2. Definition of the inputs and outputs of the tyre–wheel system.
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load, on the mechanical properties of tyres. The charac-

teristics of these tyres are given in Table 1.

For each given tyre, load and pressure, the Magic

Formula coefficients are determined and used as the

input to the model. The nominal load on the tyre, dur-

ing the measurements, was set to 400 and 600N. The

tyre inflation pressure was varied between 2 and 5 bar.

The input for the model in ADAMS is a road prop-

erty file and a tyre property file. The road property file

contains the friction coefficient parameter (mr=1.0)

and dimensions of the road. The dimensions of the

tyre, vertical stiffness (Kz) and damping (Bz) values and

the Magic Formula coefficients are given in the tyre

property file. Both the road and the tyre property file

are included as Supplementary Material, to make it

possible for other ADAMS users to use the developed

bicycle tyre model.

It is worth highlighting that the non-linear descrip-

tion of the tyre’s behaviour, which is requested by

ADAMS, could be useful for future handling simula-

tions. For stability analysis, which is the focus of this

article, a linear tyre model would be enough.

The vertical stiffness Kz of the tyre is based on a

mathematical model that is used for calculating the ver-

tical deflection of the tyre for different tyre inflation

pressures and nominal loads. It is assumed that the

Figure 3. Coordinate systems, forces and torques exerted by the road on the tyre at contact point C, which is defined as the

intersection of the road plane, the wheel centre plane and the plane through the wheel spin axis. (a) Coordinate system xwywzw is

defined in ADAMS (ISO coordinate system: xw axis points towards the forward motion direction, zw axis points upwards and yw axis

completes the tern). (b) Coordinate system xyz is defined in agreement with SAE (x-axis points towards the forward motion

direction, z-axis points downwards and y-axis completes the tern). The forces and torques are measured in the xyz coordinate

system (positive values are shown here) and given in ADAMS in the xwywzw coordinate system. (c) The contact point migrates to

point S due to a camber angle; this effect is represented by the overturning torque.

Table 1. Characteristics of the tested tyres in Doria et al.18

Tyre Size Type Recommended inflation
pressure (bar)

Bead

1 37–622 Diagonal 4.0–6.0 Wire
2 37–622 Diagonal 3.8–5.5 Wire
3 35–622 Diagonal 4.0–6.5 Wire
4 37–622 Diagonal 4.0–6.0 Folding

All tyres originate from different manufacturers; note that tyre 3 has a

smaller width and tyre 4 is a winter tyre, especially developed for

snowy/icy roads.
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contact patch has an ellipsoidal shape and a parabolic

pressure distribution,25 and that the tyre radius outside

the contact patch maintains the unloaded value. The

vertical deflection of the tyre r can be calculated using

half the length of the measured contact patch area l

and the unloaded radius of the wheel rf using the

Pythagorean theorem. Subsequently, the vertical stiff-

ness Kz can be calculated using the deflection and the

known load on the wheel. The numerical value of the

vertical damping Bz of the tyre is chosen sufficiently

large to achieve supercritical responses and is given in

Table 3 of Appendix 1.

For the calculation of the out-of-plane forces and

torques acting by the road on the tyre as a function of

the sideslip angle (a) or camber angle (g), a specific ver-

sion of the aforementioned Magic Formula is used,

whereby the coefficient E (the curvature factor) was set

to 0, see equation (1). Good fitting results were found

using this simplified version of the Magic Formula18

y(x)=D � sin C � arctan B � x� E � B � x� arctan (B � x)ð Þf g½ �

ð1Þ

where y is the output variable Fx, Fy or Tz and x the

input variable a, k or g. The B-coefficient is the stiff-

ness factor, the C-coefficient the shape factor (.0), the

D-coefficient the peak value and the E-coefficient the

curvature factor.

In the linear range, equation (1) becomes

y(x)=B � C � D � x ð2Þ

where B � C � D is the slope of the fitting curve near the

origin.

The lateral force Fy(a,g) at the contact point consists

of two parts, called the sideslip force and the camber

force, which are functions of the sideslip angle a and

camber angle g, respectively. The definitions of sideslip

and camber angles are given in Figure 3. The self-

aligning torque Tz(a) is a multiplication of the lateral

force Fy(a) and pneumatic trail t(a). A cosine version

of the Magic Formula is used to fit the pneumatic

trail.17 The twisting torque is also a function of the

camber angle, whereby a linear relation is assumed.

The fitting relations are given in Appendix 1, together

with the calculated fitting coefficients.

The in-plane forces and torques were not measured

except for the rolling resistance torque Ty. This torque

was measured with the tester machine of Padova

University18 on a rotating wheel, while g and a were

set to 0. The mean and standard deviations of the mea-

sured rolling resistance torques as well as the fitting

equation can be found in Appendix 1 (Table 4).

The forces generated under longitudinal slip k are

not measured by the above-mentioned tester machine.

Therefore, assumptions for the longitudinal force Fx(k)

are made, which are based on motorcycle data (see

Appendix 1). Since the lateral stiffness (Ka) of bicycle

tyres (about 4000N/rad18) is close to the lower limit of

the lateral stiffness of motorcycle tyres,26 the value of

longitudinal stiffness Kk of bicycle tyres is likewise cho-

sen as the minimum value of the longitudinal stiffness

of motorcycle tyres (4800N)26 with the same vertical

load.

Since bicycle wheels are relatively thin and camber

angles remain small, in the model the forces are applied

at one contact point. This point (C) lies at the intersec-

tion of the wheel plane, the road tangent plane and the

plane through the wheel axis (Figure 3(c)). However, in

reality, due to a camber angle and the tyre cross section

with radius rc, the contact point migrates and forces

and torques are measured at a different point, point S

in Figure 3(c).18 For this reason an overturning torque

has to be added.6

The results of the tyre measurements presented in

Doria et al.18 show that the tyre properties are load-

dependent, which is also observed for motorcycle and

car tyres.24 The scaling methods presented in Pacejka24

are used to scale the tyre properties to the nominal load.

The scaling coefficients are given in Appendix 1.

In the following sections, the discussion of the effect

of tyre properties is based on the sign conventions used

for measured data (according to Society of Automotive

Engineers (SAE)).

Analysis of stability

As mentioned in the ‘Introduction’ section, the multi-

body dynamics software was not used for the lineariza-

tion of the equations of motion. Alternatively, time

domain numerical data were analysed by means of a

system identification method. A lateral disturbance is

given to monitor the response of the system. The dis-

turbance is defined as a lateral force of 0.1N lasting for

0.1 s applied at the position of the centre of mass of the

bicycle rear frame.

The system identification toolbox of MATLAB is

used to estimate a state-space model of the bicycle-rider

system from time domain data generated by the

ADAMS model for each defined forward speed. The

input is the lateral disturbance signal, and the outputs

are the steering and roll angle. The time domain results

are fitted with a state-space model with four poles, cor-

responding to the four state variables (roll angle, roll

rate, steering angle and steering rate). The weave and

capsize modes are analysed. The lowest speed at which

weave oscillations of the bicycle are damped (the real

part of the eigenvalue is negative) is called the weave

speed vw (this is the lowest speed at which the weave

mode of bicycle model is stable). Below this speed, the

oscillations increase and the bicycle will fall over.

Capsize speed vc is the highest speed at which capsize is

Bulsink et al. 5

 by guest on January 12, 2016ade.sagepub.comDownloaded from 

http://ade.sagepub.com/


stable. Hence, the system is stable between the weave

and capsize speed.

High-speed stability and the wobble mode are not

analysed, since this research focuses on normal opera-

tions of bicycles ridden by common or elderly people.

Simulations

The ADAMS model and the system identification

method are validated with the CWBMmodel, by imple-

menting the benchmark parameter values. Next, the

Magic Formula tyre model is implemented and com-

parisons are made.

Furthermore, the effect of the following extensions

of the multibody model is tested: Magic Formula tyre

model, rider joint properties, arm mass at the front

assembly, arm damping and stiffness.

The simulations are carried out with tyre properties

of different manufactured tyres and variations in tyre

pressure and load. Subsequently, the effect of single

tyre parameters is investigated, by changing one tyre

parameter at a time (50% and 200%) while keeping the

other parameters at the nominal value.

Finally, the effect of torsional arm stiffness and

damping values is investigated, both with and without

the Magic Formula tyre model.

Simulation results

Comparison tests

As indicated in the previous paragraph, the first step is

taken by setting the parameters of the ADAMS model

such that it resembles quite accurately the CWBM

model with the benchmark parameters.4 Hence, the

rider is modelled as a rigid body stiffly attached to the

rear frame and the rigid-knife edge, pure-rolling and

no-slip contact are simulated by setting the radial and

sideslip stiffness to very high values and the longitudi-

nal force, camber force, twisting torque, self-aligning

torque, rolling resistance torque and overturning tor-

que to 0.

Figure 4(a) and (b) show that the non-linear simula-

tion of the ADAMS bicycle model and the system iden-

tification method are valid between speeds of 4 and

10m/s. Identification at lower speeds was poor, due to

the instability of the bicycle model at these speeds.

Subsequently, the Magic Formula tyre model is

implemented in the CWBM model and comparisons

are made with the stiff tyre case. The tyre model is

based on the measurement data of tyre 2, with an infla-

tion pressure of 4 bar and a nominal load of 400N.

The detailed tyre model with side slip force, camber

force and torques leads to an increased weave speed

vw=7.4m/s and a stable capsize mode in the presented

speed range.

Effect of the extensions of the multibody model

In this section, the full ADAMS multibody open-loop

bicycle-rider model is considered with the properties as

listed in Appendix 1 (Table 3), which refers to the

Twade bicycle and an 80-kg rider. The effect of several

extensions of the model is studied. Table 2 lists the

simulations that are carried out; the tested model exten-

sions are displayed in bold.

Figure 5 deals with the effect of the model exten-

sions on the weave mode and shows both the real (a)

and imaginary (b) parts of the eigenvalues against for-

ward speed.

The new bicycle-rider model with stiff tyre (no slip),

rigid rider and arms off the handlebar (case 1) has a

weave speed of 4.9m/s, a bit higher than the one of the

benchmark models. Capsize speed of the new model

(6.8m/s) is higher than the one of the benchmark mod-

els as well.

When the model is extended, the following results

appear:

� Passive rider joint properties (case 2) have a very

small effect on the weave mode and show no sig-

nificant effect on the capsize mode.
� Arm mass (case 3) has a small effect on the

weave mode; it increases weave frequency and

weave speed. Furthermore, it results in a small

decrease in vc.
� Arm damping (case 4) causes a small increase in

vw and a decrease in the weave frequency. No sig-

nificant effect on the capsize mode was found for

speeds above 6m/s.
� Low-speed stability is not possible with arms that

have realistic stiffness (values are adopted from

Cossalter et al.,14 case 5), owing to the presence

of an unstable capsize mode. However, arm stiff-

ness stabilizes the weave mode.
� The Magic Formula tyre model (case 6) destabi-

lizes the weave mode (weave speed increases to

9.3m/s), but stabilizes the capsize mode. It is

worth highlighting that in Klinger et al.,13 which

considers a linear model of tyre forces and tor-

ques, weave speed is about 9.5m/s and capsize

mode is always stable.
� When the full model is used (which includes the

new tyre model, passive rider and arms), the cap-

size mode is always stable and weave speed

increases a bit more with respect to case 6. This

result means that the stabilizing effect of the tyre

forces and torques on the capsize motion is larger

than the destabilizing effect of arm stiffness.
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Figure 4. Comparison between eigenvalues of the benchmark model found in Meijaard et al.4 and the ones calculated by means of

ADAMS and the identification method in the stiff tyre case and with the ‘Magic Formula’ tyre model: (a) real parts (black: weave

mode, red: capsize mode) and (b) imaginary parts.
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Model sensitivity to tyre properties

The simulations carried out with different manufac-

tured tyres and with the same tyre inflated at different

pressures result in a small change in the weave speed

and weave frequency. Tyre 3 (which is thinner than the

others) shows a small increase in the weave speed

(0.2m/s), and tyre 4, the winter tyre, is a bit more stable

over the entire speed range.

However, the vertical load on the tyre applied dur-

ing the measurements of tyre properties influences the

mechanical tyre properties and therefore also the stabi-

lity of the bicycle. The simulation of the open-loop

bicycle-rider model with the tyre model based on the

measurements with a nominal load of 400N resulted in

a weave speed of 9.7m/s. The simulation with the tyre

model based on the measurements with a higher load

(600N) gave a weave speed of vw=8.3m/s (see

Figure 6).

The next step is an analysis of the sensitivity of the

weave speed to the single tyre properties; Figure 7

shows the results. The variations of 50% and 200% of

the nominal value of one property at a time are consid-

ered, keeping the other parameters constant. On one

hand, cornering stiffness Ka has a small effect on the

weave speed: doubling of the value decreases the weave

speed by less than 1%. On the other hand, camber stiff-

ness Kg has a remarkable effect on the weave speed; if

Kg doubles, weave speed increases by 9%.

Regarding the tyre torques, the twisting torque

shows the largest effect on the weave stability.

Parameter DTT is the coefficient that determines the lin-

ear dependency of the twisting torque on the camber

angle (see equation (18)); when it doubles, weave speed

increases by about 25%. Self-aligning torque has a

small effect on stability, when the trail factor (Dt) dou-

bles, weave speed increases by 4%. Finally, the para-

meter DTx, which determines the linear dependency of

the overturning torque on the camber angle, has a posi-

tive effect on weave stability, when it doubles the weave

speed decreases by 3%.

Since the twisting torque strongly influences weave

stability, this effect is further investigated and the

simulation results are presented in Figure 8(a) and (b).

Figure 8(a) shows the effect on the real part of the

weave mode of the value of DTT, which varies between

0% and 200% of the nominal value. The weave speed

increases when the value of DTT increases. Figure 8(b)

deals with the large effect of DTT on the yaw torque.

The yaw torque is the summation of the twisting torque

(a function of camber angle) and the self-aligning tor-

que (a function of sideslip angle), which work in oppo-

site directions. When the yaw torque is positive, it

generates a torque that tends to move the wheel along

a trajectory with decreasing curvature.

The plots show the yaw torque as a function of side-

slip angle under three constant camber angles (0, 0.07

and 0.17 rad), for the following three cases: 100%, 10%

and 200% of the nominal value of DTT. A high value of

DTT causes a positive yaw torque for high camber and

low sideslip angles. The yaw torque remains negative

for a low DTT value.

Up to now, only the effect of tyre properties on

weave stability has been considered, since with the tyre

model (cases 6 and 7) capsize is always stable. It is

worth highlighting that the simulations show that a low

twisting torque (10% of the nominal value) is enough

to stabilize the capsize mode.

Model sensitivity to rider properties

The rider’s impedance around the steer influences the

stability of the bicycle-rider model as seen in Figure 4.

Hence, it is interesting to study this effect in more depth.

In the literature, a large dispersion on the data of

arm stiffness and damping can be found;12,27 for this

reason, a parametric analysis is carried out.

Implementation of the realistic tyre model alters the

dynamics of the system, as is shown in the previous sec-

tion. Therefore, first, the model’s sensitivity to the

rider’s impedance on the steer is presented considering

stiff, non-slipping tyres (cases 4 and 5), and then the

combined effect of the tyre model and the rider’s impe-

dance on the steer is considered (case 7).

With stiff and non-slipping tyres, arm damping

increases the weave speed and has no significant

Table 2. Performed simulations, with the tested model extensions displayed in bold.

Case Tyre model Rider model Arm model

1 Stiff tyre, no slip Rigid rider No arm modela

2 Stiff tyre, no slip Passive rider No arm model
3 Stiff tyre, no slip Rigid rider Added lower arm mass to front assembly
4 Stiff tyre, no slip Rigid rider Arm damping
5 Stiff tyre, no slip Rigid rider Arm stiffness
6 New tyre model Rigid rider No arm model
7 New tyre model Passive rider Arm stiffness and damping

Added lower arm mass

aThe mass and inertia of the arms are lumped in the rigid rider body.

8 Advances in Mechanical Engineering

 by guest on January 12, 2016ade.sagepub.comDownloaded from 

http://ade.sagepub.com/


influence on the capsize mode (case 4). With stiff, non-

slipping tyres, the system has a very small stability

range between 3.65 and 4.20m/s for a low value of arm

stiffness (case 5 with Kat=3.2Nm/rad). For

Kat. 4Nm/rad, the stability is destroyed by an

unstable capsize mode.

Figure 9 deals with the combined effect of arm

stiffness and tyre dynamics, whereby arm damping is

set to 0. The results indicate that the tyre model

causes the capsize mode to stabilize again at a certain

forward speed, and this speed becomes higher when

arm stiffness increases. For comparison, it is worth

Figure 5. Eigenvalues of several model extensions: (a) real parts (black: weave mode, red: capsize mode) and (b) imaginary parts.
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Figure 6. Eigenvalues for the open-loop bicycle-rider model when tyre parameters are based on measurements with a vertical load

of 400 and 600N, for two different tyres: (a) real parts (black: weave mode, red: capsize mode) and (b) imaginary parts.
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remembering that in case 7, Kat=5.0Nm/rad. Arm

damping destabilizes the weave mode when the tyre

model is used (and arm stiffness is set to 0). Figure 10

shows that the values of damping much larger than the

one of case 7 (Bat=0.9Nms/rad) raise weave speed up

to 11.5m/s.

Discussion

The good match of the results of the multibody

dynamic simulation in ADAMS with the benchmark

model results points out that the time domain simula-

tions and the system identification method are valid. A

limitation of this method is that it negates the possibil-

ity of calculating the eigenvalues over the full speed

range. An unstable weave or capsize mode results in a

simulation time that is too short to enable fitting of the

signals in the time domain. Therefore, only the identi-

fied model that fits the time domain signals well is

shown.

Destabilization of the weave mode and stabilization

of the capsize mode by implementing the realistic tyre

model can be mainly attributed to the twisting torque.

Sharp6 showed some effect of a linear tyre model on

the stability of a bicycle. Notable is that he did not

incorporate the twisting torque into the tyre model. In

return, Plöchl et al.10 and Klinger et al.13 did include

the twisting torque and found a significant effect of

their tyre model on the capsize and weave mode. In

agreement with the results presented in this article,

they found that the capsize mode becomes stable and

the weave mode significantly destabilizes by imple-

menting the realistic tyre model. The sensitivity study

of tyre parameters again confirms that the twisting

torque is the main contributor. The twisting torque

does not align the wheel, but it tends to move the cam-

bered wheel along a trajectory with a decreasing cur-

vature, due to a negative longitudinal slip at the inside

of the contact patch and a positive longitudinal slip at

the outside of the contact patch.26 Together with the

self-aligning torque (that works in opposite direction

and tends to align the wheel), it represents the yaw

torque (for each wheel). If the twisting torque coeffi-

cient (DTT) is high, the yaw torque is already positive

for low sideslip and camber angles. As the weave sta-

bility is closely related to the steer-in-the-fall-mechan-

ism,8 the shift of the stable weave speed to higher

forward speeds for an increased twisting torque can be

explained by the high positive value of the yaw torque

that steers the bicycle into the fall too much.

Furthermore, it was found that already a small twist-

ing torque ensures a stable capsize mode. The capsize

mode is usually a very slow motion and therefore easy

to control for the rider. However, it determines the

sign of the steering torque; at the capsize speed, no

extra steering torque is necessary for a steady forward

motion (straight or during a steady turn).

The large influence of the twisting torque on stabi-

lity was also found for motorcycle models.15 It is worth

highlighting that the influence is large especially at low

speeds, which are the most important for bicycles.

In addition to the twisting torque, the camber stiff-

ness has a large influence on the weave stability. Plöchl

et al.10 reported this as well. Cossalter et al.28 reported

a high influence of the cornering stiffness for high

speeds of racing motorcycles. These findings cannot be

Figure 7. Sensitivity of weave speed to tyre parameters; it is expressed in percentage variation of the weave speed with respect to

the nominal values.
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Figure 8. (a) Sensitivity of the eigenvalues of weave mode to the twisting torque: real parts. (b) Yaw torque against sideslip and

camber angle, for the following three cases: 100%, 10% and 200% of the nominal value of DTT.
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extrapolated to low-speed behaviour of the bicycle.

They also found that different tyres and inflation

pressure cause a large change in stability of a sport-

touring motorcycle.29,30 For example, using different

tyres may cause a change in weave damping ratio

of 47%.28 Similarly, Evangelou29 reported that the

effect of tyre inflation pressure is high for high speeds

of motorcycles. Contradictory, our study shows a

small effect of different tyres and inflation pressures

on the bicycle stability. This fact can be explained

considering the different properties of bicycle tyres

and the different ranges of the variation in inflation

pressure.

The effect of the vertical load on the tyre properties

is more prominent; when using the tyre properties

based on measurements with a higher nominal load,

the weave mode stabilizes. This can be explained by the

decrease in normalized twisting torque when increasing

load, presented in Doria et al.18 This indicates that the

load-dependent tyre properties are important and

should be taken into account in dynamic bicycle mod-

els. Scaling factors are obtained from a small data set18

and presented in Appendix 1 of this article.

Finally, it may be stated that tyre properties change

the dynamics of the bicycle to a large extent and that

they should be taken into account in future dynamic

bicycle models. Moore31 performed the experiments to

identify the Whipple model and found some deficien-

cies that might be attributed to the simplified tyre–road

contact model. To verify this, more validation of

dynamic bicycle models is needed.

Adding the passive joint properties of the bicycle’s

rider does not significantly change the dynamic proper-

ties, compared to the rigid rider model. This is in accor-

dance with previous studies.6,12 However, modelling

the rider’s arms on the steer does drastically change the

dynamic properties.12,13 In Doria and Tognazzo,12 it

was reported that a small amount (25.7Nm/rad) of

passive arm stiffness is able to destroy the stability by

making the steer–roll combination ineffective.

However, in Doria and Tognazzo,12 tyre dynamics

were not considered and this significantly changes the

influence of the rider’s impedance on the handlebars.

The tyre model creates the opposite effect of the addi-

tion of arm stiffness and stabilizes the capsize mode for

high speeds. This might be caused by the twisting tor-

que that generates a yaw torque in the direction of the

fall. In Klinger et al.,13 the tyre dynamics were consid-

ered, but a very small value of passive arm stiffness

(3.2Nm/rad) was used in their basic hands-on model,

and therefore they did not find an unstable capsize

mode.

Combining passive arm damping with the new tyre

model does not change the influence on the bicycle

Figure 9. Effect of arm stiffness on the capsize mode.
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(a)

(b)

Figure 10. Effect of arm damping on the weave mode: (a) real parts and (b) imaginary parts.
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stability, compared to the addition of passive arm

damping alone. In both cases, a clear tendency of a

decreased weave stability is seen. The capsize mode

remains always stable, when the tyre model is used

together with passive arm damping.

Conclusion

In this article, a new parameterized passive bicycle-rider

model developed in the commercially available software

package ADAMS is presented. This is a first step in the

development of an advanced dynamic model to simu-

late problem scenarios of elderly cyclists. Several

improvements of previous models are combined into

one model: the addition of passive rider properties and

tyre dynamics. The simulations with this model showed

that a realistic tyre model has a high influence on the

stability of the system: the weave mode destabilizes and

the capsize mode is always stable.

A sensitivity analysis on the influence of tyre prop-

erties on the weave speed showed that the twisting

torque is the main contributor to the destabilization,

followed by the camber stiffness. Tyre inflation pres-

sure has a small influence on the weave mode, in con-

trast to what was found for motorcycle tyres. The tyre

properties are highly load-dependent, and therefore

bicycle tyre models need to include load-dependent

coefficients.

Extending the benchmark bicycle model with

passive rider properties does not change the dynamics

of the bicycle-rider system a lot when riding at a con-

stant forward speed. Passive arm stiffness and damp-

ing, however, drastically change the dynamics:

passive arm stiffness destabilizes the capsize mode.

The tyre model can, however, counteract this capsize

instability.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) disclosed receipt of the following financial sup-

port for the research, authorship, and/or publication of this

article: This study was supported by a grant from the RVO

NL.

References

1. Pucher J, Dill J and Handy S. Infrastructure, programs,

and policies to increase bicycling: an international

review. Prev Med 2010; 50: S106–S125.

2. Whipple FJ. The stability of the motion of a bicycle. Q J

Pure Appl Math 1899; 30: 312–321.

3. Carvallo M. Theorie de mouvement du monocycle et de la

bycyclette. Ann Arbor, MI: University of Michigan

Library, 1901.

4. Meijaard JP, Papadopoulos JM, Ruina A, et al. Linear-

ized dynamics equations for the balance and steer of a

bicycle: a benchmark and review. P Roy Soc A: Math

Phy 2007; 463: 1955–1982.

5. Moore J and Hubbard M. Parametric study of bicycle

stability (P207). In: Estivalet M and Pierre Brisson P

(eds) The engineering of sport 7. Berlin: Springer, 2008,

pp.311–318.

6. Sharp RS. On the stability and control of the bicycle.

Appl Mech Rev 2008; 61: 060803.

7. Schwab AL, Meijaard JP and Papadopoulos JM. Bench-

mark results on the linearized equations of motion of an

uncontrolled bicycle. J Mech Sci Technol 2005; 19: 292–304.

8. Kooijman J, Meijaard J, Papadopoulos JM, et al. A

bicycle can be self-stable without gyroscopic or caster

effects. Science 2011; 332: 339–342.

9. Dressel A and Rahman A. Measuring sideslip and cam-

ber characteristics of bicycle tyres. Vehicle Syst Dyn

2012; 50: 1365–1378.
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Appendix 1

Bicycle-rider model

Parameters of the bicycle model are given in Figure 11,

and input variables for the passive bicycle-rider model

are given in Table 3.

Tyre model. The Magic Formula fitting formulas and

coefficients of the tyre model are listed here. Equations are

written in the xwywzw coordinate system of ADAMS

(Figure 12). The normalized vertical load increment

dfz=(Fz� Fz0)=(Fz0) is used to scale the parameters to

the vertical load applied during a dynamic simulation. Fz is

the vertical load on the tyre at a certain point during the

simulation. Fz0 is the vertical load on the tyre during the

measurement of the tyre parameters (the nominal load).

Longitudinal force. The Magic Formula fitting formula

for the longitudinal force is given by

Fx(k)=Dx � sin Cx � arctanfBx � kg½ � ð3Þ

Dx =mxFz

And the longitudinal slip stiffness Kk is calculated by

Kk =Bx � Cx � Dx ð4Þ

Lateral force

Fy(a, g)=Dy � sin f (a)+ g(g)ð Þ ð5Þ

whereby f (a) and g(g) are the simplified Magic

Formulas with sideslip angle (a) and camber angle (g)

as the input values (equations (6) and (7)); the same D-

coefficient is used in both relations (Dy). Dy1 is the lat-

eral friction coefficient and the load dependency of the

lateral friction coefficient can be controlled with Dy2
24

f (a)= sin Ca � arctan (Ba � a)ð Þ ð6Þ

g(g)= sin Cg � arctan (Bg � g)
� �

ð7Þ

Dy =my � Fz ð8Þ

my =Dy1 � e
Dy2�dfz ð9Þ

The dependency of the cornering stiffness Ka on the

vertical force is non-linear and controlled by the para-

meters Kamax
(the maximum value of the dimensionless

cornering stiffness) and Kapeak
(the peak stiffness factor)

Ka =Kamax
� Fz0 � sin arctan

Fz

Kapeak
� Fz0

� �� �

ð10Þ

Ba =
Ka

Ca � Dy

ð11Þ

The load dependency of the camber stiffness Kg is linear

Kg =Fz � Kg1 +Kg2 � dfz
� �

ð12Þ

Bg =
Kg

Cg � Dy

ð13Þ

Self-aligning torque. The self-aligning torque is a multipli-

cation of the lateral force with the pneumatic trail t. A

cosine version of the Magic Formula is used to fit the

pneumatic trail t(a)

Tz(a)= � t(a) � Fy(a) ð14Þ

t(a)=Dt � cos Ct � arctan(Bt � a)ð Þ � cos(a) ð15Þ

Bt = Bt1 +Bt2 � dfzð Þ ð16Þ

Dt =
Fz � rf
Fz0

Dt1 +Dt2 � dfzð Þ ð17Þ

where rf is the tyre radius.

Twisting torque. The twisting torque is measured as a

function of camber angle g. This relation is linear, and

therefore the following equation is used to fit these

data, with rf being the wheel radius

Tz(g)=FZ � rf � Dtt � g ð18Þ
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Dtt =Dtt1 +Dtt2 � dfz ð19Þ

Rolling resistance torque. The rolling resistance torque

depends on the vertical force Fz, the radius of the wheel

rf and the rolling resistance coefficient DTy (Table 4)

Ty = � rf � FZ � DTy ð20Þ

Overturning torque. The overturning torque is a function

of camber angle g, radius of the tyre cross section rc and

the vertical force Fz

Tx(g)= � Fz � rc � g ð21Þ

In ADAMS, the parameter QSX2 is used:

QSX2= rc=rf

Fitting coefficients of the tyre model. Fitting coefficients of

the tyre model are given in Table 5.

Figure 12. The equations for the tyre model are written in the

xwywzw coordinate system of ADAMS.

Table 3. Input variables for the passive bicycle-rider model.

Variable Symbol Value

Head angle lf 1.21 rad
Fork offset FO 0.0856m
Fork length Fl 0.5m
Wheelbase W 1.15m
Trail C 0.0407m
Radius rear wheel Rrw 0.35m
Radius front wheel Rfw 0.35m
Saddle x-position Sxp 0.23m
Saddle height Sh 0.7m
Bracket x-position Bxp 0.575m
Bracket height Bh 0.25m
Bracket length Bl 0.3m
Steer length Sl 0.238m
Steer width Sw 0.176m
Back angle BA 0.35 rad
Vertical stiffness and damping of the tyre Kz and Bz 108,970N/m and 5448N s/m

(continued)

Figure 11. Parameters of the bicycle model. The origin of the global coordinate system is defined in the contact point of the rear

wheel with the ground; the orientation is according to the right-handed rule, with the x-axis pointing in forward direction and the

z-axis pointing upwards.
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Table 3. (continued)

Variable Symbol Value

Torsional stiffness and damping around the line
connecting the hip and the ankle

Kl and Bl 1000Nm/rad and 50Nms/rad

Torsional stiffness and damping at the L4–L5
joint (around the sagittal axis)

Kr and Br 1000Nm/rad and 50Nms/rad

Torsional stiffness and damping at the L4–L5
joint (around the longitudinal axis)

Kw and Bw 75Nm/rad and 5Nms/rad

Torsional stiffness and damping at the L4–L5
joint (around the frontal axis)

Kp and Bp 1000Nm/rad and 50Nms/rad

Linear arm stiffness and damping Ka and Ba 525N/m and 100N/m s
Torsional arm stiffness and damping Kat and Bat 5.0Nm/rad and 0.9Nm s/rad
Mass of the rear frame Mrf 8.3 kg
Mass of the front fork Mff 2.42 kg
Mass of the rear wheel Mrw 4.01 kg
Mass of the front wheel Mfw 3.34 kg
Mass moments of inertia of the rear framea Irfxx 0 �Irfzx

0 Irfyy 0
�Irfxz 0 Irfzz

2

4

3

5

0:69433 0 �0:10300
0 1:10461 0

�0:10300 0 0:50975

2

4

3

5 kg=m2

Mass moments of inertia of the front forka Iffxx 0 �Iffzx
0 Iffyy 0

�Iffxz 0 Iffzz

2

4

3

5

0:16778 0 0:06700
0 0:15081 0

0:06700 0 0:04506

2

4

3

5 kg=m2

Centre of mass of the rear frame [xrf, yrf, zrf] [0.32, 0, 0.59]m
Centre of mass of the front fork [xff, yff, zff] [0.98, 0, 0.72]m
Centre of mass of the rear wheel [xrw, yrw, zrw] [0, 0, 0.35]m
Centre of mass of the front wheel [xfw, yfw, zfw] [1.15, 0, 0.35]m
Rider length Lr 1.80m
Rider mass Mr 80.0 kg
Mass moments of inertia of the ridera Irxx 0 �Irzx

0 Iryy 0
�Irxz 0 Irzz

2

4

3

5

10:4737 0 0:10307
0 10:9094 0

0:10307 0 2:17315

2

4

3

5 kg=m2

Centre of mass of the rider [xr, yr, zr] [0.39, 0, 1.06]m
Mass of the lower arms + hands Ma 3.82 kg
Centre of mass of the front fork + lower arms
and hands

[xa, ya, za] [0.815, 0, 0.955]m

Mass moments of inertia of the front
fork + lower arms and handsa

Iaxx 0 �Iazx
0 Iayy 0

�Iaxz 0 Iazz

2

4

3

5

10:36598 0 0:05944
0 0:33823 0

0:05944 0 0:12625

2

4

3

5 kg=m2

aThe definition of the product of inertia in ADAMS is a positive summation: �Ixz =
Ð

xz � dm.32

Table 4. Mean rolling resistance torque (Nm) and standard deviation (inside parentheses).

Load (N) 400 400 400 400
Pressure (bar) 2 3 4 5
Tyre 1 1.029 (0.335) – 0.865 (0.291) –
Tyre 2 1.319 (0.683) 1.046 (0.389) 1.116 (0.290) 1.007 (0.452)
Tyre 3 – – 1.114 (0.262) –
Tyre 4 – – 1.202 (0.395) –
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Table 5. Fitting coefficients of the tyre model.

Coefficient name Name used in the
tyre property file

Explanation Value

Cx PCX1 Shape factor for longitudinal force 1.000 (–)
Dx PDX1 Longitudinal friction mx at Fz0 1.642N
Kx PKX1 Longitudinal slip stiffness at Fz0 12.00N
Ca PCY1 Shape factor for sideslip force 0.990 (–)
Cg PCY2 Shape factor for camber force 1.000 (–)
Dy1 PDY1 Lateral friction my at Fz0 1.642 (–)
Dy2 PDY2 Exponent lateral friction my 20.017 (–)
Kamax

PKY1 Maximum value of cornering stiffness Ka=Fz0 216.07/rad
Kapeak

PKY3 Peak cornering stiffness factor Ka=Fz0 1.011/rad

Kg1 PKY6 Camber stiffness factor Kg 21.444/rad
Kg2 PKY7 Vertical load dependency of camber stiffness Kg 20.510/rad
Bt1 QBZ1 Trail slope factor for trail Bt at Fz0 73.49 (–)
Bt2 QBZ2 Variation of slope Bt with load 287.36 (–)
Ct QCZ1 Shape factor Ct for pneumatic trail 1.000 (–)
Dt1 QDZ1 Peak trail Dt 0.054 (–)
Dt2 QDZ2 Variation of peak trail Dt with load 20.043 (–)
DTT1 QDZ8 Linear dependency of twisting torque on camber 20.134 (–)
DTT2 QDZ9 Variation of the twisting torque with load 0.084 (–)
DTy QSY1 Rolling resistance torque coefficient 0.008 (–)
DTx QSX2 Overturning torque coefficient 0.053 (–)
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