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Abstract

Elston, Levi J., M.S.Egr., Department of Mechanical and Materials Engineering, Wright
State University, 2008. The Effect of Variable Gravity on the Cooling Performance of a
16-Nozzle Spray Array.

The objective of this thesis was to investigate the cooling performance of a 16-nozzle

spray array, using FC-72 as the working fluid, in variable gravity conditions with additional

emphasis on fluid management and flow stability. A flight test experiment was modified

to accommodate a 16-nozzle spray array, which was then tested in the parabolic flight tra-

jectory environment of NASA’s C-9 reduced gravity aircraft. The 16-nozzle array was

designed to cool a 25.4 × 25.4 [mm] area on a thick film resistive heater used to simulate

electronic components. Data was taken and reduced as a result of flight tests conducted

over the course of two flight weeks (each week consisting of four flights, each flight con-

sisting of 40 to 60 parabolas). The flight tests were conducted in order to examine gravity

effects on spray cooling performance and to evaluate a novel liquid-vapor separator de-

sign. The mass flow rate through the 16-nozzle spray array ranged from 13.1 ≤ ṁ ≤ 21.3

[g/s] for the spray cooling analysis and 14 ≤ ṁ ≤ 35 [g/s] for the separator evaluation.

The heat flux at the thick film resistor ranged from 2.9 ≤ q” ≤ 25 [W/cm2], the sub-

cooling of the working fluid ranged from 1.6 ≤ 4Tsc ≤ 18.4 [◦C], the saturation temper-

ature ranged from 37.4 ≤ Tsat ≤ 47.2 [◦C] and the absorbed air content in the working

fluid was C = 10.1%, 14.3%, and16.8% by volume. The spray chamber pressure ranged

from 42 ≤ P ≤ 78 [kPa] while the acceleration ranged from -0.02 ≤ a ≤ -2.02 [g]. Two-

phase cooling was emphasized, but some single-phase data was also collected. A one-
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dimensional model was used to predict the heater surface temperature from the heat input

and mean heater base temperature.

It was found that the cooling performance was enhanced in micro-gravity over terres-

trial and elevated gravity. In addition, a sudden degradation in performance was found at

high mass flow rates in micro-gravity, possibly due to liquid buildup on the surface be-

tween the nozzle impact zones. A high degree of subcooling was found to be beneficial,

but the dissolved air content had little effect on the heat transfer performance either in

micro-gravity or elevated gravity. Also, an improved liquid-vapor separator concept was

implemented to enable flow stability during the micro-gravity portions of the flight. Mul-

tiple liquid-vapor separator concepts were tested during micro-gravity flights until a final

design was settled on. The final separator design went through more rigorous evaluation to

compare performance at multiple fill levels, each with a higher percentage of vapor space

within the reservoir. It was found that, using the final reservoir design, stable flow operation

was achieved in micro-gravity for mass flow rates ṁ = 14, 17.5and21 [g/s].
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Chapter 1

The Effect of Variable Gravity on the

Cooling Performance of a 16-Nozzle

Spray Array

1.1 Introduction

The increasing need for high power electronic devices drives an increase in thermal man-

agement demands due to the inefficiency of electronic components and high density device

packaging. Large amounts of excess heat, at high fluxes, must be removed, transported,

and rejected to an ambient environment using advanced thermal management approaches.

High power technologies often need active cooling methods to remove heat effectively and

keep component reliability, usable life, and operability high. Passive methods, such as

heat pipes, thermal radiation, and natural convection utilizing enhanced surfaces can be

used if the heat flux is small, < 10 [W/cm2]. When higher heat fluxes are generated, ac-

tive cooling techniques must be utilized to prevent component failure. Figure 1.1 shows

the cooling capability bands for various cooling techniques [1]. Many of these techniques,

such as single-phase forced convection, pool boiling, flow boiling, jet impingement, and
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Figure 1.1: Heat Transfer Coefficients: Coolants and Capabilities [1].

spray cooling, have been studied in depth and are currently being used on various types of

systems. Mudawar [1] presented many of the higher heat flux cooling schemes and ranked

their heat transfer attainability, showing that, under terrestrial gravity, two-phase convec-

tion can provide two to three orders-of-magnitude higher heat transfer coefficients over

single-phase convection in addition to maintaining closer temperature tolerances due to the

latent heat of vaporization.

Many of these technologies have also been investigated in a micro-gravity environment.

For instance, Lee et al. [2] investigated the critical heat flux and pool boiling curves for

R-113 onboard the space shuttle, demonstrating a reduction in critical heat flux in micro-

gravity. On the other hand, pulsating heat pipes, examined by Gu et al. [3], showed an

improvement in heat transfer performance in micro-gravity. Kim [4] reviewed the state-of-

the-art of the reduced gravity boiling research, concluding that many parameters (electric

fields, acoustic fields, flow boiling, and non-condensible gases) can have an effect on the

performance, but the mechanisms of the studied parameters are still relatively unclear. The
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focus of the current research concentrates on spray cooling.

Spray cooling is a very promising technology with exceptional versatility in which

many parameters can be adjusted to fit the needs of the application. Spray cooling is con-

sidered one of the most effective methods of high flux heat removal, because the latent

heat of vaporization absorbs large amounts of heat with a minimal change in temperature.

There are two types of spray cooling: Pressure atomized and vapor atomized. In a pressure

atomized spray cooling system, liquid is pumped through a spray nozzle that is designed,

using a swirler, to not only generate a spray cone but also to atomize the droplets into an

even distribution onto the sprayed surface. In a vapor atomized spray cooling system, pres-

surized vapor is introduced into the pressurized liquid flow just before the liquid reaches

the nozzle. The vapor atomizes the liquid into droplets without the use of a swirler.

Many factors contribute to the effectiveness of a spray cooling system, such as mass

flow rate, array nozzle spacing, and subcooling. The phenomena and processes that are

involved in spray cooling are not completely understood, but the thin liquid film formed on

the heated surface plays an important role. The thickness of this film varies both spatially

and temporally. As nucleation occurs on the surface, bubbles grow and eventually burst,

perhaps from excessive size or droplet impact, creating a very short period of time where

the local film is made up entirely of vapor until new spray droplets can re-wet the surface.

In an array of spray nozzles, interactions occur generating uneven film thickness zones.

Glassman et al. [5] investigated ways to reduce the liquid buildup between spray cones by

placing suction tubes in these areas, thereby increasing the overall heat transfer by reducing

the thickness of the liquid film. The effects of bubble growth, coalescence, and popping

were all seen to play a significant role.

Many aspects of spray cooling have been investigated experimentally and numerically,

including mass flow rate, subcooling, different working fluids, binary fluid mixtures, single

nozzle or nozzle arrays, surface roughness (enhancement), flow rate, and nozzle orienta-

tion [6]. Ortiz and Gonzalez [7] investigated the effects of mass flow rate, surface rough-
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ness, degree of subcooling, and impact angle for steady state and transient conditions.

Johnson et al. [8] numerically examined the effect of subcooling and how it enhances the

critical heat flux. Selvam et al. [9–13] numerically modeled the vapor bubble dynamics as

a function of surface tension, gravity, phase change and viscosity as a follow on to previous

numerical spray cooling work including thin film effects, nucleate boiling, droplet impact,

droplet velocity, droplet interaction, and droplet density. The effect of dissolved air content

on spray cooling performance was investigated by Puterbaugh et al. [14, 15]. Specifically,

the sensitivity of CHF with air content was examined for a single nozzle in a terrestrial

environment. The results of Puterbaugh et al. [14, 15] suggested that the amount of dis-

solved air in FC-72 has an insignificant effect on CHF. Kreitzer et al. [16–18] investigated

body force effects on spray cooling by applying a high voltage coulombic, electrostatic,

force to the spray cone, demonstrating small changes in heat transfer performance under

specific conditions. Additionally, Glaspell [19] applied a Kelvin force, a magnetic field, to

the spray, achieving results that provided a maximum heat transfer improvement of 5.2%

at a 6 [kV] electrode voltage.

The critical heat flux, a phenomenon in which the amount of heat exceeds the heat

removal ability of the spray, is a very important design criteria in a spray cooling system.

Chow et al. [20] discussed the experimental background and macrolayer dry-out model

associated with critical heat flux, suggesting an empirical correlation in which the critical

heat flux can be determined using only the Sauter mean diameter of the spray droplets. Lin

and Ponnappan [21] investigated the critical heat flux of various fluids including FC-72,

FC-87, methanol, and water. Lin et al. [22,23] examined orientation effects (heated surface

both vertical and horizontal with the spray facing upward) of a 48-nozzle array using FC-72

in which a 5% increase in critical heat flux, in the horizontal surface case, over the vertical

heated surface was demonstrated. Lin et al. [24] explored the spray cooling performance

of a binary fluid (50% methanol and 50% water) to reduce the freezing point of water to

−40◦C while maintaining convective performance near that of water.
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Sone et al. [25] investigated the effects of reduced and elevated gravity on spray cooling

using water and FC-72 on a MU-300 aircraft. Two separate experiments were conducted,

each using the same non-recirculating flow loop that pumped fluid using a pressurized

syringe of liquid. Experimental difficulties arose during flight testing that restricted the

amount of droplet velocity data obtained, although the data did suggest up to a 20% increase

in droplet velocity in reduced gravity.

The first experimental apparatus used by Sone et al. [25] consisted of a copper block

heater with a polished and Cr-plated cooling face, with the gravity vector normal to this

face. These experiments operated in a transient cooling mode where the block was heated

to a certain temperature, the heat was turned off and the spray cooled the block during each

parabola. At low flow rates, water showed no distinguishable difference in performance,

but at higher flow rates (We > 80), the reduced gravity test showed a significant reduction

in cooling performance. FC-72, on the other hand, resulted in a substantial increase in CHF

and reduction in wall superheat in the reduced gravity test.

The second experimental apparatus used by Sone et al. [25] was an optically transparent

indium tin oxide (ITO) heater that allowed for surface video recording during the flight test.

The experiments were conducted in a steady state operation mode where the heat flux was

held constant during the parabola. Using water as a coolant, a slight degradation in cooling

performance was observed in the reduced gravity environment as opposed to the elevated

gravity. No parabolic tests of FC-72 were completed using the transparent heater.

Yoshida et al. [26] further investigated effects of gravity on spray cooling performance

using a heated copper block and ITO heaters in a non-recirculating flow loop. The work

of Yoshida et al. was an extension of the work done by Sone et al. and therefore used

the same experimental setups. The flight test experiments showed an increase in CHF

for testing with water in micro-gravity, which contradicted the results of Sone et al. [25],

whereas with FC-72 in micro-gravity, Yoshida et al. [26] showed an increase in CHF, which

agreed with Sone et al. [25].
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Baysinger et al. [27] began investigations of micro-gravity spray cooling in the United

States utilizing the NASA KC-135 reduced gravity aircraft. An experiment was assembled

to investigate gravity effects on a single nozzle spraying FC-72 onto a circular indium tin

oxide (ITO) heater mounted atop a cylindrical glass rod. Thermocouples were placed be-

neath the heater and a one-dimensional heat conduction analysis was conducted to estimate

the surface temperature. Significant surface tension flow was observed in and around the

nozzle, containment cap, and chamber walls. In micro-gravity the surface tension forces

became very dominant not only in the spray chamber, but also in the fluid reservoir that

caused significant flow rate dropouts, which led to heater temperature spikes. These flow

variations were also noticed in elevated gravity conditions, but not necessarily for the same

reasons: Perhaps additional pumping head existed due to flow loop elevation differences.

As an extension to this experimental work, Baysinger [28] numerically modeled the ITO

heater and glass post under terrestrial gravity conditions.

The experimental setup by Yerkes et al. [29] is very similar to that described by Baysinger

et al. [27]. A significant change in the experimental setup was related to improving fluid

management and control: A screen was added to the chamber annulus for fluid conden-

sation and containment. Their results demonstrated a decreasing Nusselt number as the

nondimensional grouping (Fr
1
2 Ga)

1
2 increased, suggesting that in micro-gravity the heat

transfer coefficient was higher than at terrestrial or elevated gravity.

Most recently, Michalak et al. [30] further investigated the effect of variable gravity

on spray cooling performance, making more modifications to the experimental setup de-

scribed by both Baysinger et al. [27, 28] and Yerkes et al. [29]. This included changing to

a thick film resistive heater that provided the capability to reach higher superheat temper-

atures without failing. The flight test results showed similar trends as those presented by

Yerkes et al. [29]: At a constant heat flux the heater surface temperature was reduced as the

gravitational body force decreased, for all flow rates and subcooling amounts examined.

The data from Michalak et al. [30] also contained partial gravity tests: Lunar (one-sixth
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[g]) and Martian (one-third [g]). Although the cooling performance enhancement for the

partial-gravity tests was not as great as the micro-gravity case, an improvement was still

apparent. The amount of subcooling in the spray also showed an effect demonstrating

an enhancement in the reduced acceleration effect with increasing subcooling. Neither

Baysinger et al. [27,28], Yerkes et al. [29], or Michalak et al. [30] investigated acceleration

effects on critical heat flux. In addition, they did not track the amount of dissolved air in

the test apparatus.

It has been assumed that the high momentum flux of droplets impinging upon a heated

surface drives the heat transfer and associated critical heat flux, such that body forces were

assumed not to play a significant role in heat transfer [6]. Previous research has shown

that many factors contribute to the cooling performance of a spray cooling system and it

is difficult to isolate a single parameter. Additionally, single nozzle spray cooling under

variable-gravity research has shown that, depending on the working fluid, geometry, and

various operating conditions, the cooling performance in micro-gravity can be noticeably

higher than in accelerations greater than one [g]. Finally, research involving spray arrays

in a variable gravity environment does not exist. This work investigated various param-

eters that affect the cooling performance of a 16-nozzle spray array in variable-gravity

conditions. The objective of the flight test experiment was to show the effects of gravity,

flow rate, liquid subcooling, and dissolved air content on array spray cooling performance

under the following parameter ranges: 13.1 ≤ ṁ ≤ 21.3 [g/s], 2.9 ≤ q” ≤ 25 [W/cm2],

1.6≤4Tsc ≤ 18.4 [◦C], 37.4≤ Tsat ≤ 47.2 [◦C], C = 10.1%, 14.3%, and16.8%, 42≤ P≤

78 [kPa], and -0.02≤ a≤ -2.02 [g].

1.2 Experimental Setup

The 16-nozzle spray array experiment consisted of five major components: The support

structure, array spray chamber, liquid-vapor separator, heat rejection loop, and data ac-
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quisition system. The experiment was designed to fit in a package that would contain all

necessary components while maintaining safety requirements and functionality in a vari-

able gravity environment. A test equipment data package (TEDP), shown in Appendix

G, was generated according to the guidelines set by NASA [31], which defined the stan-

dards to design, construct, and qualify a reduced-gravity flight test experiment. The support

structure was designed to meet NASA structural requirements while allowing accessibility

to modify components throughout the system. The array spray chamber contained sixteen

individual spray nozzles, a resistive heater, and a wick-sump system. The liquid-vapor sep-

arator ensured that only liquid was introduced to the nozzle inlet. The heat rejection system

recirculated the working fluid, FC-72, that acquired, transported, and rejected heat. Lastly,

the data acquisition system not only recorded data from all of the devices in the system, but

also included fault monitoring, safety assurance, and control indication.

Each of these components were a part of an existing experimental setup [27–30] that

was designed to fly on board the NASA C-9 Reduced Gravity Platform. Modifications

were made to accommodate the spray array. First, the single nozzle spray chamber was re-

placed with a much smaller, lightweight, 16-nozzle array chamber. Also, a one [kW] power

supply was mounted for the extra power needed for the larger area heater, and additional

temperature cutoffs were installed to monitor for spikes in the heater temperature distribu-

tion. Lastly, due to the above modifications, the structure was re-evaluated for strength and

flight-worthiness.

The design of the experiment was such that the overall cargo footprint was minimized

while keeping the total height well below a standard “standing” operating level. The ex-

periment size was restricted by the cargo door size on the aircraft. The experiment also

had to be able to plug directly into the aircraft’s power outlets (110 [VAC]). The total ex-

perimental weight, nearly 320 [kg], is in part due to the stringent structural requirements

which required the experimental package, including each individual component, to be able

to withstand the directional loading detailed in Table 1.1. A factor of safety of two was
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Direction forward aft lateral upward downward
Loading 9g 3g 2g 2g 6g

Table 1.1: Reduced Gravity Office User’s Guide Loading Requirements.

applied to increase the margin of error. Pull tests using a load cell (Imada DPS-110) were

completed on all components at a loading of up to 18 [g].

The experimental package framework was designed starting with a 12.7 × 1219.2 ×

1830 [mm] aluminum baseplate. The rigidity of the frame came from the network of T-

slotted aluminum extrusions (80/20, Inc.). Extrusion-bracket tests were performed to de-

termine their strength when the frame integrity analysis was conducted. In addition to

the component strength pull tests, a step-by-step analysis was completed to determine how

best to attach the rig to the airplane by determining the number of bolts and their placement,

in accordance with the bolting grid defined by NASA. A detailed analysis of the support

structure was created as a requirement for flight onboard the aircraft, as shown in Appendix

G.

The 16-nozzle array and chamber are shown in Figure 1.2. The spray chamber housed

the 16-nozzle array, thick film resistive (TFR) heater, aluminum foam surround, a pressure

transducer port, and seven thermocouples. Liquid FC-72 entered the 16-nozzle assembly

through a plenum via a 6.35 [mm] port atop the acrylic case. Liquid droplets were sprayed

onto a TFR heater mounted to a phenolic base and any deflected or condensed liquid was

then wicked into the aluminum foam surround. The foam provided an inlet to the scavenge

ports while reducing the amount of liquid pooling on the heater surface. The enclosure was

sealed to an acrylic case with a compressed o-ring. The outer dimensions of the chamber

were 87.9 × 109.2 × 76.2 [mm], with a wall thickness of 15.24 [mm]. The nozzle array

head consisted of 16 individual nozzles, covering a 25.4 × 25.4 [mm] area. The individual

nozzles were assembled in a four-by-four array with 6 [mm] even spacing. No attempt was

made to optimize the 16-nozzle array with respect to spacing. The design of the array of

nozzles was based on the single nozzle design in which each individual nozzle operated by
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Layer Position
Thickness

(mm)

Thermal
Conductivity

(W/m-K)
Ceramic Substrate top (sprayed surface) Lc = 0.643 kc = 27

Resistive Layer (heater) middle Lr = 0.008 kr = 1.04
Glass Cover bottom Lg = 0.040 kg = 1.04

Table 1.2: Thick Film Resistor Layer Information [19].

passing liquid through a swirler that rotated the fluid centrifugally so that when the fluid

entered the sapphire orifice (Bird Precision), it generated a spray cone. The exit of the

nozzle plate was located 21.2 [mm] from the heated surface being sprayed. Additional

figures further describing the array design are contained in Appendix A.

A single nozzle was characterized using a phase Doppler anemometer. Droplet diame-

ter, Sauter mean diameter, and droplet velocity were recorded for the desired range of flow

rates and pressure drops. Functional relationships for both droplet diameter and droplet

velocity as a function of flow rate were determined using a fourth-order polynomial fit, as

shown in Figure 1.3. Additional nozzle characterization plots are presented in Appendix

A.

Heat was generated using a thick film resistor (Mini Systems, Inc.) with an area of

25.4× 25.4 [mm]. The heater was made of a deposited polymer film (resistive layer) sand-

wiched between a glass cover plate (sprayed surface) and an insulating substrate (ceramic

layer). Thicknesses and thermal conductivities of each layer are shown in Table 1.2. Elec-

trical connections to the heater were made by soldering a 0.127 [mm] nickel strap to the

heater connection pads. The nickel strap allowed for flexibility from thermal expansion

while minimizing stresses.

Separating the heater from the phenolic base was a thin bed of silicon high-temperature

RTV that served three purposes: It adhered the heater to the base so that the heater did

not move or shift during spray cooling, transport, or reduced gravity, it allowed the heater

to expand or contract during heating and cooling without a fixed mount that could induce

a crack or other failure, and it minimized thermal expansion stresses, such as a bending
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Figure 1.2: Array Spray Chamber: (a) Disassembled; (b) Three-Dimensional Array Spray
Chamber Design; and (c) Upper Portion of Spray Chamber.
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moment due to heating, that would be created if the heater was bolted in place.

The chamber was instrumented with ten type E thermocouples as well as a pressure

transducer. Thermocouples were placed in the inlet and both outlet lines of the chamber as

well as inside the aluminum containment foam that read an average chamber temperature,

which was used to determine saturation conditions within the chamber. Two additional

thermocouples were drilled at specific depths beneath the heater surface to calculate the

heat loss through the phenolic base which was not associated with spray cooling. The

last three thermocouples, directly touching the bottom surface of the thick film resistance

heater, gave a rough temperature distribution across the backside of the heater, supplying

temperature uniformity data associated with array spray interactions. Three type E minia-

ture thermocouples, 0.508 [mm] diameter, were fitted into individual machined channels to

allow the heater to sit flat on the phenolic. The end of each interface thermocouple was bent

to allow direct contact to the bottom of the heater substrate. In addition, an epoxy was used

to fix the thermocouple tip to the heater bottom to prevent thermocouple re-positioning dur-

ing thermal expansion. Two additional type E thermocouples protruded into the chamber

to measure average surrounding fluid temperatures.

An accurate surface temperature measurement was required to evaluate spray cooling

performance. To avoid disturbing the flow across the surface of the heater, three type E ther-

mocouples were positioned on the bottom of the heater to calculate an average temperature

on the bottom of the heater. Using a one-dimensional heat conduction analysis, detailed in

Appendix C, as well as the heater materials and thicknesses from Table 1.2, a functional

relationship was generated to determine the heater surface temperature, Tsurf, as shown in

eqn. (1.1). The heat loss fraction f , the percentage of the heat lost through the bottom of

the heater and not removed via the spray, was determined by analysis of steady state heat

transfer data obtained during baseline (terrestrial) testing, as shown in Appendix C.3. This

fraction was approximated by a linear relationship with heater input power, shown in eqn.
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(1.2), with a maximum heat loss of approximately 5.2%.

Tsurf =
Q
A

(
−

(1− f )Lg

kg
− Lr

2kr
+

f Lr

kr
+

f Lc

kc

)
+T int (1.1)

f =−0.00016101Q+0.05239716 (1.2)

To assist in containing the spent liquid that drained from the surface during micro-

gravity, low density aluminum foam, shown in Figure 1.2(c), was machined to fill the

volume that was not directly between the nozzle head and the heated surface. Liquid exited

the chamber via two ports on either side by the reduced pressure created by a downstream

sump pump. During reduced gravity, surface tension resulted in the liquid collecting within

the foam structure, allowing for the liquid to flow out the exit ports.

The purpose of the reservoir, Figure 1.4, was to contain excess fluid, reduce the pressure

surges associated with pumping, and isolate the vapor from the transport lines feeding the

nozzle pump. It consisted of a transparent container with an inlet at the top and an exit at

the bottom. The most important component of the reservoir was the internal liquid-vapor

separator, which was a structure consisting of very high surface area vanes which contained

the liquid flow while the vapor was forced radially outward. The vapor resided along the

outer walls of the chamber while the liquid was pulled out of the central axis exit port and

pumped to the array nozzles. The liquid-vapor separator is explained in greater detail in

Chapter 2.

Figure 1.5 shows the flow loop schematic for the experiment. The liquid exited the

reservoir and entered a magnetically-coupled positive-displacement gear pump (Tuthill

Corp.). The gear pump was specifically chosen to pump the working fluid at the required

flow rates with sufficient pressure, determined from the phase Doppler anemometer char-

acterization. Next, liquid was pumped through a 15 [µm] in-line filter before it reached a

turbine flow meter. After the flowmeter, the liquid passed by a pressure transducer, which

measured the high pressure side of the pump, or inlet to the 16-nozzle array. An inline
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Figure 1.4: Liquid-Vapor Separator.

pressure switch was a safety device to cut off power to the entire system upon an over-

pressure spike of 690 [kPa]. The bypass valve was an electrically actuated three-way valve

that allowed liquid to either flow through or bypass the preheater and the 16-nozzle array.

Under normal operation the bypass valve was set to allow flow through a 12.7 [mm] di-

ameter, 305 [mm] long tubular preheater. The preheater was fabricated using copper pipe

wrapped with a nichrome heater wire and covered in fiberfrax insulation. The preheater

contained a twisted metal ribbon that more efficiently heated the liquid prior to the nozzle

inlet. The preheater could also be used to heat the liquid to vary the subcooling before

it entered the nozzle array. Next, liquid entered the spray chamber through a 6.35 [mm]

stainless steel tube and exited via two 12.7 [mm] stainless steel tubes that were at a reduced

pressure. Immediately after exiting the chamber, the liquid was directed through a series

of three liquid-air heat exchangers (Lytron Corp.). Just downstream of the heat exchangers

resided a scavenge pump, with a pressure transducer on either side, which fed two-phase
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Figure 1.5: FC-72 Flow Loop Schematic.

fluid into a 140 [µm] filter and finally back to the reservoir. The scavenge pump worked

with the nozzle pump mentioned earlier to generate a push-pull system that created some

redundancy as well as reliability and controllability.

3M Fluorinert FC-72 was chosen as the working fluid because of its low toxicity level,

dielectric property, and its low boiling point (56 [◦C] at 1 [atm]), which allowed most com-

ponents to be at “touch temperature”. Although the amount of dissolved air in FC-72 can

reach nearly 50% by volume, the amount of air was varied between 10.1≤ C≤ 16.8%.

The amount of air in the system was determined using aire-ometer measurements gathered

via FC-72 sample extraction, as detailed in Appendix E.4. The amount of dissolved air was

reduced using a vacuum-based membrane filter attached to the system. If the amount of

dissolved air was too low, ambient air was bled into the system, allowed to reach equilib-

rium throughout the system, and the air content was measured again. The components used
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in the removal of air from the system are described in Appendix E.5.

The data acquisition system consisted of a laptop computer connected via a GPIB-to-

USB adapter to a data acquisition unit (Agilent Model 34970A). The various instrumen-

tation devices used for this experiment were thermocouples, pressure transducers, flow

meters, voltmeters, precision resistors (to accurately measure current via voltage drop),

and an accelerometer. In addition to the data acquisition unit, a calibrated reference point

(Hart Ice Point Calibrator Model 9101) for the thermocouples was used rather than the data

acquisition system’s built-in reference. This allowed for a steady state thermocouple ref-

erence with a ±0.005 [◦C] stability. The data acquisition software used the manufacturer’s

calibration information for the accelerometer, voltmeters, precision resistor, flow meters,

and pressure transducers.

An uncertainty analysis was performed to be able to accurately report the data and de-

termine the error ranges. The uncertainty was made up of precision error and bias error.

The bias error, summarized in Appendix B, was the uncertainty associated with the instru-

ments used to record the data including the associated calibration error. The precision error

was due to the scatter of the data.

The bias error associated with the flow meter, thermocouples, heat flux, accelerometer,

pressure transducers, and air content are summarized in Table 1.3. The thermocouple bias

error was taken from the thermocouple calibration using a RTD and readout (Hart Scientific

Models 5628 and 1502A), temperature bath (Hart Scientific Model 6330), and the data

acquisition system. The uncertainty associated with each device as well as the maximum

deviation from the linear curve-fit were combined to generate the temperature bias error.

The heat flux was estimated via two voltage measurements. The first voltage was measured

across the resistive heating element in which the uncertainty in this reading was only that

associated with the data acquisition system. The second measured voltage was across a

precision resistor in series with the heater. This was used to calculate the electrical current

through the heater with errors associated with the data acquisition voltage measurement and
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Bias Error σ:         
Type Error Total (Example: Case 01)
RTD ± 0.006 [°C]

RTD readout ± 0.009 [°C]
curvefit ± 0.063 [°C]

voltage1 (DAQ) ± 0.062 [V]
voltage2 (DAQ) ± 0.0055 [V]

resistor ± 0.00002 [Ω]
heater length ± 0.0000254 [m]
heater width ± 0.0000254 [m]
manufacturer ± 0.039 [g/s]

curve-fit ± 0.655 [g/s]

T

Precision Error

q" ± 0.258 [W/cm2] ± 0.00015 [W/cm2]

± 0.078 [°C] ± 0.63 [°C]

± 0.694 [g/s] ±  0.31 [g/s]m&

a manufacturer ± 0.025 [g] ± 0.025 [g] ± 0.02 [g]
P manufacturer ± 1.72 [kPa] ± 1.72 [kPa] ± 1.11 [kPa]
C manufacturer ± 2.0 % ± 2.0 % ± 1.3 %

gph 0.371 0.022
g/s 0.655380998 0.038863563

0.694244561

m&

Table 1.3: Summary of the Uncertainty Analysis.

the precision resistor uncertainty. The heater area was calculated by measuring the length

and width using calipers; therefore, the uncertainty was that associated with the calipers.

Lastly, the accelerometer, pressure transducers, flow meter, and air content precision error

was assumed to be as stated by the manufacturer.

The precision error was the deviation in the data sets. The micro-gravity (or 1.8 [g])

portion of each parabola consisted of only eight to fourteen data points that included some

data scattering. To report this scatter the small groups of data were taken as an average data

point plus/minus one standard deviation of the data.

Flight tests with the 16-nozzle array were completed using NASA’s C-9 Reduced Grav-

ity Aircraft. The C-9 performed parabolic flight trajectories to control the acceleration field

seen onboard. Two full flight weeks of testing were completed at NASA JSC Ellington

Field. Each flight week consisted of four flights, usually one per day. Each flight consisted

of a short amount of time after takeoff to travel to the approved flight zone, which allowed
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time for some experimental setup before the forty-sixty parabolas would take place. Each

parabola consisted of approximately 25 [s] of micro-gravity and 30 [s] of elevated grav-

ity. In addition to the standard parabolas, 2.0 [g] turns were requested after each set of ten

parabolas so that the experiment would have enough time at an elevated gravity to reach

steady state at several heater power settings.

Five parameters that were varied throughout the course of the flight weeks were ac-

celeration (a), heater power (Q), mass flow rate (ṁ), subcooling (∆Tsc = Tsat−Tin), and air

content (C). During each parabolic maneuver a heater power was set. Typically, this setting

was maintained for two to three parabolas to achieve some repeatability in the data. During

a group of parabolas, usually ten or twenty, the flow rate and subcooling were maintained

constant, while only the heater power was varied. The flow rate and subcooling settings

would only be adjusted once or twice over the course of an entire flight so that the effects

of acceleration on heat transfer could be investigated.

1.3 Results and Discussion

The objective of the 16-nozzle array flight test experiment was to show the effects of el-

evated or reduced gravity, mass flow rate, liquid subcooling, and dissolved air content on

array spray cooling performance. To simplify the analysis, each flight was broken up into a

series of cases, as shown in Table 1.4. Each case, defined as a portion of the flight in which

the only parameter adjusted was the heater power, provided a means to look at the data in

such a way that minimized the effects of the other parameters.

To investigate the effect of gravity on spray cooling performance the experimental con-

ditions were held constant as the plane went through a variable-gravity maneuver (parabola).

During each parabola the heater power, mass flow rate, subcooling, and air content were

held constant while the acceleration changed from micro-gravity to elevated gravity. After

approximately two or three parabolas, the heater power was increased approximately five
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case #      [g/s] ΔT sc [°C] T sat [°C] a  [g] C  [%]

1 14.0 14.2 42.1 -0.02 10.1%
2 14.1 11.3 41.6 -0.98 10.1%
3 13.8 12.6 40.7 -1.87 10.1%
4 14.0 14.2 41.2 -1.92 10.1%
5 18.0 15.1 42.3 -0.02 10.1%
6 18.2 13.6 41.4 -1.00 10.1%
7 17.7 12.9 40.5 -1.86 10.1%
8 18.0 14.6 40.9 -2.02 10.1%
9 21.3 15.3 43.4 -0.02 10.1%

10 21.2 13.9 40.9 -1.05 10.1%
11 21.1 12.7 41.3 -1.88 10.1%
12 20.9 14.8 40.6 -1.89 10.1%
13 14.5 18.4 39.7 -0.02 10.1%
14 14.5 18.0 39.9 -1.00 10.1%
15 14.0 16.1 37.4 -1.88 10.1%
16 14.1 18.1 39.9 -1.90 10.1%
45 13.1 6.39 43.0 -0.01 14.3%
46 13.7 3.01 42.4 -0.99 14.3%
47 13.5 4.86 41.7 -1.77 14.3%
49 16.4 9.86 42.8 -0.01 14.3%
50 18 3 9 58 42 6 1 01 14 3%

Fl
ig

ht
 #

1
Fl

ig
ht

 #
2

ig
ht

 #
5

m&

50 18.3 9.58 42.6 -1.01 14.3%
51 17.6 8.93 41.8 -1.78 14.3%
52 18.0 8.88 41.8 -2.00 14.3%
53 14.1 12.4 43.4 -0.01 14.3%
54 14.7 11.0 42.6 -0.98 14.3%
55 14.7 11.2 42.3 -1.75 14.3%
56 15.3 11.5 41.8 -1.85 14.3%
57 15.5 15.5 45.0 -0.01 14.3%
58 18.5 16.9 46.5 -1.02 14.3%
59 18.5 15.9 45.3 -1.74 14.3%
61 13.5 17.8 46.1 -0.01 16.8%
62 13.7 14.5 44.8 -1.01 16.8%
63 14.0 16.0 44.7 -1.86 16.8%
64 14.5 15.7 43.8 -1.92 16.8%
65 16.5 17.9 46.0 -0.01 16.8%
66 17.0 16.8 45.3 -0.98 16.8%
67 17.6 16.9 45.3 -1.84 16.8%
68 18.2 17.0 45.4 -1.88 16.8%
69 13.7 8.96 47.2 -0.01 16.8%
70 13.8 8.29 45.3 -0.98 16.8%
71 13.7 7.71 45.5 -1.72 16.8%
73 17.4 9.86 46.6 -0.01 16.8%
74 17.9 7.65 45.1 -1.04 16.8%
75 18.3 7.86 45.4 -1.70 16.8%

Fl
ig

ht
 #

7
Fl

ig
ht

 #
8

Fl
i

Fl
ig

ht
 #

6

Table 1.4: Nominal Parameter Values.
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to ten watts. This pattern was repeated until the spray cooling system was near CHF, at

which point the heater power was reduced and then increased in small steps to examine the

behavior of the system near CHF while undergoing gravitational transients.

Figures 1.6-1.7 explains how the experiment was operated and examines how the cool-

ing performance was impacted by changes in acceleration. Figures 1.8-1.13 show the sur-

face superheat dependence on acceleration, mass flow rate, degree of subcooling, and dis-

solved air content in both an elevated and micro-gravity environment.

An example data set, shown in Figure 1.6(a), depicts the data collected during seven

parabolas. The acceleration, a, is shown towards the bottom of the plot with the axis

on the right-hand side, where micro-gravity is shown to be near a = 0.0 [g] and elevated

gravity is shown near -2.0 [g] (note that the acceleration shown is strictly the magnitude

of the vector pointing in the same direction as the spray, normal to the heated surface).

The mass flow rate, ṁ, is shown toward the top of the graph with the axis on the right-

hand side. The heat flux transferred to the spray was incremented as follows: (1− f )q” =

2.90, 5.89, 8.88, and11.76 [W/cm2]. In this case, two parabolas at each heater setting were

recorded before the next increment in heat flux. The subcooling and air content were both

held constant during this block of data. As expected, the heater surface temperature, Tsurf,

increased with heat flux. However, Tsurf showed a significant dependence on acceleration.

Looking in more detail at the section between times A and B in Figure 1.6(a), with minimal

flow rate fluctuations, a constant heat flux, and a transition from elevated gravity to micro-

gravity, the cooling performance was enhanced resulting in a surface temperature reduction

of approximately 13 [◦C] which was similar to the degree of subcooling (∆Tsc = 11.8±

1.9 [◦C]). Also, between times C and D, a similar enhancement, with a surface temperature

reduction of approximately 15 [◦C], was noted at a higher heat flux. In fact, the surface

temperature decreased during each transition to micro-gravity, and then increased under

elevated gravity. This performance dependence on acceleration was witnessed by others:

Yerkes et al. [29] and Michalak et al. [30] both showed a decrease in surface temperature

21



in micro-gravity over terrestrial and elevated gravity.

Figure 1.6(b) displays the data traces of two parabolas with the heater input set to a

higher value of (1− f )q” = 20.48 [W/cm2]. Initially, the acceleration was a = −1.91 [g],

and the surface temperature was constant at approximately Tsurf = 71[◦C]. At point E,

the aircraft experienced a transition to micro-gravity, at which time the surface temper-

ature increased dramatically. When the interface temperature reached Tint = 120 [◦C], a

temperature-activated relay opened the heater circuit, thereby disconnecting power to the

heater, preventing damage to the heater. This type of event is indicative of CHF, where

a run-away surface temperature is experienced. The spray continued to cool the heater

surface until the temperature fell below the limit on the relay, at which time the heater

was re-energized at the same heat input prior to the event. The data acquisition cycle time

was approximately 2.2 [s] and therefore the temperature could surpass the relay trip-point

and fall before the data acquisition unit could record an interface temperature exceeding

120 [◦C]. After point F, where the acceleration field was steady at a =−0.01 [g], the system

returned to equilibrium where the surface temperature decreased to a significantly lower

level (Tsurf = 62 [◦C]). It is interesting to note that prior to point E, when a =−1.91 [g], CHF

was not actually reached. It was only during the transition from elevated gravity to micro-

gravity that a CHF event was tripped. When the aircraft transitioned from micro-gravity

back to elevated gravity (point G), a CHF event once again tripped until the point at which

the acceleration became steady at a = −1.91 [g] (point H). At this time, the system again

reached equilibrium and the surface temperature reached the previous level (Tsurf = 71[◦C]).

However, after a short time, the surface temperature again suddenly increased (point I). This

shows that the heat input of (1− f )q” = 20.48 [W/cm2] is indeed very close to CHF for

a =−1.91 [g] and possibly tripped CHF as a result of a small perturbation in acceleration.

This behavior was deemed to be in a meta-stable region, where small changes in the accel-

eration field can result in either stable operation or trip a CHF event. At point J, the aircraft

again experienced steady micro-gravity, and after the heater was re-energized, the system
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Figure 1.6: Transient Data Traces of Surface Temperature, Acceleration, Heat Flux, and
Nozzle Mass Flow Rate (ṁ = 13.81± 0.32 [g/s], ∆Tsc = 11.78± 1.93 [◦C], C = 10.1%±
1.3%): (a) Stable Operation; (b) CHF Events ((1− f )q” = 21.17±0.04 [W/cm2]).
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returned to equilibrium where the surface temperature settled back to the previous temper-

ature of Tsurf = 62 [◦C]. Again upon transition from micro-gravity to elevated gravity (point

K), a CHF event was tripped, repeating the behavior seen at point G.

Figure 1.7(a) presents the heat flux convected away from the surface versus the differ-

ence between the heater surface temperature and the saturation temperature of the working

fluid, FC-72. Positive values of Tsurf−Tsat indicate two-phase heat transfer, while negative

values indicate single-phase heat transfer. In general, the temperature difference increased

with heat flux until CHF was approached. Near this point, the temperature difference did

not change appreciably. This behavior was typical of the two-phase process for spray cool-

ing [7, 20–22, 25, 26]. Of particular interest in this figure is the behavior of the data with

respect to gravity: For terrestrial and elevated gravity (a = -0.98, -1.87and-1.92 [g]), the

results were nearly identical. For micro-gravity, however, the surface superheat was much

less at a given heat flux, indicating a significant enhancement in heat transfer in micro-

gravity. CHF was also higher (by approximately 3 [W/cm2]) for micro-gravity than for

terrestrial and elevated gravity.

The performance enhancement in micro-gravity could be explained by the fluid man-

agement system in which the fluid was more easily wicked away from the surface in the

absence of gravity, allowing for deeper spray penetration. Yerkes et al. saw a similar trend,

but at a much smaller magnitude using a single nozzle. Figure 1.7(b) examines the data

in Figure 1.7(a) by casting it in nondimensional terms suggested by Yerkes et al. [29].

For a constant (1− f )G∆ the dimensionless temperature difference, θsurf, is vastly differ-

ent when (Fr
1
2 Ga)

1
2 is varied. Also, for the higher values of (Fr

1
2 Ga)

1
2 the dimensionless

surface temperature is less dependent on (Fr
1
2 Ga)

1
2 .

Figure 1.7(a) also illustrates the previously mentioned meta-stable region, which occurs

above a certain heat flux threshold. Transients from gravitational forces drive the system to

an onset of critical heat flux resulting in a sudden temperature increase for a constant heat

flux. The horizontal line, A-A, designates the maximum heat flux that does not show the
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Figure 1.8: Surface Superheat vs. Acceleration.

behavior induced by gravitational transients. Any heat flux above this line could potentially

reach CHF in a transient acceleration environment. If the acceleration is stable, the critical

heat flux when a = −0.98,−1.87, and − 1.92 [g] is near q” = 22 [W/cm2], while CHF

when a =−0.02 [g] is near q” = 25 [W/cm2]. Meta-stability poses a significant problem if

an aircraft system is designed to be in that meta-stable region: Premature CHF can occur

and lead to catastrophic failure.

The effect of acceleration on the temperature difference between the surface and sat-

uration is shown in Figure 1.8, where each line represents a different heat flux. Figure

1.8 shows that the surface superheat at terrestrial and elevated gravity are very similar,

exhibiting no significant variation due to gravitational body forces. In micro-gravity, how-

ever, a dramatic surface temperature drop occurred, displaying a significant performance

enhancement. The micro-gravity cooling performance enhancement obtained agrees with

the trends found by Sone et al. [25], Yoshida et al. [26], Baysinger et al. [27, 28], Yerkes et

al. [29], and Michalak et al. [30].
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Figure 1.9 presents the surface superheat for three nominal mass flow rates (ṁ =14,

17.5, and 21 [g/s]. In Figure 1.9(a), where a = -0.02[g], the surface superheat decreased

slightly and then increased significantly with mass flow rate. This increase in the superheat

was more pronounced as the heat input increased. In general, a decrease in the surface

superheat with increasing mass flow rate is expected, due to the increased impact velocity

of the droplets. The dramatic increase in the surface superheat at the highest flow rate may

be due to liquid buildup in the array nozzle interaction zones, as described by Glassman

et al. [5]. Figure 1.9(b) shows the surface superheat under elevated gravity (a = -1.72[g]).

The decrease in the superheat with increasing mass flow rate is again noted, but the sudden

increase in the superheat is not present in this case. This may be due to an improvement

in the ability of the liquid to exit the heater surface, which is provided by the body force

on the liquid. This somewhat reinforces the assumption that the sudden increase seen in

Figure 1.9(a) is due to liquid buildup on the heater surface. It is possible that a similar

increase in the superheat would also be seen for the elevated gravity case at higher mass

flow rates.

Figure 1.10 also illustrates the above mentioned cooling performance due to variation

in mass flow rate. Figure 1.10(a) shows that when the mass flow rate was increased from

ṁ = 14 [g/s] to ṁ = 17.5 [g/s] a similar surface superheat reduction occurred for both ele-

vated and micro-gravity. Figure 1.10(b) shows that when the mass flow rate was increased

from ṁ = 14 [g/s] to ṁ = 21 [g/s] the surface temperature decreased in elevated gravity but

increased in micro-gravity, as shown in Figure 1.9. It is important to note that even though

a cooling performance degradation was seen in micro-gravity, the surface superheat was

still lower than the elevated gravity case at the same flow rate. The reduction in cooling

performance in micro-gravity due to a high mass flow rate was most likely due to excessive

liquid buildup on the heater surface, preventing the deep penetration of droplets that oc-

curred in the lower flow rate cases. The micro-gravity cooling performance enhancement

seen at lower flow rates diminishes at higher flow rates, suggesting that as the mass flow
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Figure 1.9: The Effect of Flow Rate on the Surface Superheat (∆Tsc = 13.73± 2.33 [◦C],
C = 10.1%±1.3%): (a) a =−0.02±0.01 [g]; (b) a =−1.72±0.34 [g].
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continues to increase the cooling performance in micro-gravity would not be appreciably

different than in elevated gravity.

Figure 1.11 shows the effect of liquid subcooling on the surface superheat. This case

is for a mass flow rate of ṁ = 14.0 [g/s], which, as shown in Figure 1.9, is not affected

by liquid buildup on the heater surface. For the micro-gravity case (Figure 1.11(a)), the

surface superheat decreased with increasing subcooling for all values of heat input. In fact,

it appears that the slope of the heat flux lines are nearly constant throughout for the micro-

gravity case. In the elevated gravity case shown in Figure 1.11(b), however, the slope of

the surface superheat with respect to subcooling varies with heat input: At low heat flux

values, the surface temperature drops as subcooling increases, but at high flux values, the

surface superheat is nearly constant over the range tested. While bubble dynamics may

have played a role in the cooling performance variation due to acceleration, the physical

mechanisms related to the heat transfer improvement are not well understood.

Figure 1.12 presents the effect of subcooling on the cooling performance in both el-

evated and micro-gravity. The four curves on the left-hand side of the plot were taken

from micro-gravity test data while the three curves on the right-hand side were taken from

elevated gravity test data. In elevated gravity, there was little change in the cooling per-

formance due to variation in the degree of subcooling as seen in Figure 1.11(b). The

micro-gravity curves show that an increase in subcooling translated to a steady decrease

in the surface superheat as shown in Figure 1.11(a). Also note that as the amount of sub-

cooling decreases in micro-gravity the cooling performance curve nears that of the elevated

gravity case, suggesting that when the degree of subcooling approaches zero, the cooling

performance enhancement seen in micro-gravity diminishes.

FC-72 has the capability of absorbing up to 48% air by volume. It was suspected that

the effect of dissolved air may have also impacted the cooling performance in micro-gravity

[29]. However, since air molecules are small enough to fit interstitially, the density change

less is than 0.1% between air saturated and degassed FC-72. It was not clear what effect
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Figure 1.10: The Effect of Flow Rate on the Surface Superheat in Elevated and Micro-
Gravity (∆Tsc = 13.73±2.33 [◦C], C = 10.1%±1.3%): (a) ṁ = 14and17.5 [g/s]; (b) ṁ =
14and21 [g/s].
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Figure 1.11: The Effect of Subcooling on the Surface Superheat (ṁ = 14.01± 0.93 [g/s],
C = 14.3%±2.2%): (a) a =−0.01±0.01 [g]; (b) a =−1.75±0.03 [g].

31



18

20
a = -0.01 [g] a = -1.75 [g]

16

18

12

14
W
/c
m

2 ]

8

10

(1
‐f
)q
"

a=0 Tsc=14

(1
‐f
)q
” 
[W

ΔTsc [°C]
14 [°C]

4

6
a=0, Tsc=14
a=0, Tsc=12
a=0, Tsc=10
a=0, Tsc=8

0

mdot=14.01 [g/s]

14 [ C]
12 [°C]
10 [°C]
8 [°C]
10 [°C]

0

2
a=1.75, Tsc=10
a=1.75, Tsc=8
a=1.75, Tsc=6

10 [°C]
8 [°C]
6 [°C]

‐10 ‐5 0 5 10 15 20 25 30

Tsurf‐TsatTsurf‐Tsat [°C]

Figure 1.12: The Effect of Subcooling on the Surface Superheat in Elevated and Micro-
Gravity (ṁ = 14.01±0.93 [g/s], C = 14.3%±2.2%).

absorbed air had on heat transfer in elevated or micro-gravity. Puterbaugh [15] determined

that there was no significant variation in CHF due to dissolved air in FC-72 when saturation

pressure was held constant. This suggested that the effect seen by previous researchers

could have been a result of varying saturation pressure.

Figure 1.13 shows the effect of air content on the surface superheat. Air content

amounts of C=10.1%, 14.3%, and 16.8% were examined in micro-gravity and elevated

gravity. Figure 1.13(a) shows a slight decrease in the surface superheat with increasing

air content, especially at lower heat flux values. Figure 1.13(b), however, shows that the

surface superheat increased slightly with air content in elevated gravity. This variation

is considered to be within experimental uncertainty and quite small in comparison to the

effects of acceleration, mass flow rate and liquid subcooling.
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33



1.4 Conclusions

The effects of variable gravity on the spray cooling performance of a 16-nozzle array, using

FC-72, were investigated. An experiment capable of flying on NASA’s reduced gravity air-

craft was modified to accommodate the 16-nozzle array chamber with a 25.4 × 25.4 [mm]

heater. The reduced gravity portions of the flight test showed a very repeatable surface

temperature reduction from the terrestrial and elevated gravity portions. The effect of ac-

celeration, mass flow rate, degree of subcooling, and air content on the cooling performance

of the array were studied:

1. In stable acceleration fields, micro-gravity exhibited a significant decrease in sur-

face superheat over terrestrial gravity. Elevated gravity had no appreciable effect

in surface superheat when compared with terrestrial gravity. Although the cooling

performance appears to be enhanced due to the reduction of body forces, the data

suggests that for an aircraft that undergoes a transient variation of acceleration, a

meta-stability condition can occur and will influence the onset of critical heat flux.

This can result in a runaway temperature condition leading to electronic component

damage or failure.

2. Although cooling performance was enhanced when the mass flow rate increased from

ṁ = 14 [g/s] to ṁ = 17.5 [g/s] in both elevated and micro-gravity, the cooling per-

formance was degraded when the mass flow rate increased from ṁ = 17.5 [g/s] to

ṁ = 21 [g/s] in micro-gravity only. This was possibly due to liquid buildup in the

nozzle interaction zones, where the liquid thickness is much greater than that directly

under the spray.

3. An increase in subcooling dramatically decreased the surface superheat in micro-

gravity for all heat fluxes evaluated. In elevated gravity, the subcooling reduced the

surface superheat for low heat fluxes and had little effect at high heat fluxes. This

may have been due to bubble dynamics on the heater surface.
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4. An increase in the amount of dissolved air in the working fluid decreased the surface

superheat slightly in micro-gravity, but no significant effect was seen in elevated

gravity. A larger variation in air content dissolved in the working fluid, FC-72, may

have shown more of an effect.
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Chapter 2

Qualitative Evaluation of a

Liquid-Vapor Separator Concept in

Micro-Gravity Conditions

2.1 Introduction

In a terrestrial closed-loop spray cooling system, the reservoir is used for several purposes.

It separates the liquid from the vapor by gravity so that only liquid is delivered to the spray

nozzle(s). This ensures a steady flow of liquid to the item being cooled. The reservoir also

provides for a certain amount of liquid that is readily available during transient conditions,

such as start-up or shutdown. Finally, the reservoir simplifies the working fluid filling

procedure by making the amount of working fluid less critical to optimizing performance.

Due to the nature of variable gravity testing, control of the liquid-vapor separation pro-

cess is required in order to maintain heat transfer performance. Phase separators can be

generalized into two basic types: Active and passive. An active separator uses some exter-

nal power to generate separation whereas a passive separator does not. For many applica-

tions, a passive separator is preferred because no additional system power is consumed and
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fewer support components are required, reducing complexity and total system weight. The

most simplistic phase separator is a container with liquid and vapor in a gravitational field.

The more dense liquid phase will separate from the less dense vapor phase due to buoyancy

forces where a liquid pickup can be put at the gravitational “bottom” and a vapor pickup, if

needed, at the gravitational “top”. Issues arise when gravity is no longer available or in the

case of variable gravity in which the direction of the gravitational vector changes. Surface

tension and centrifugal forces often overcome variable acceleration forces in aircraft and

in spacecraft. A popular active separator type is a cone or cylinder that is rotated and uses

centrifugal acceleration to separate the fluid. The primary drawbacks associated with this

type of separator are the power requirement, rotary sealing, and reliability.

Shoemaker and Schrage developed a passive free vortex separator (FVS) that uses cen-

trifugal forces to separate phases [32]. This cylindrical type of separator works by injecting

a two-phase mixture with a tangential component creating a centrifugal flow field in which

the more dense liquid flows along the outer edge, allowing the vapor to collect in the center.

To simplify the separation testing, removing condensation/evaporation possibilities, water

and air were used as the two phases. The success of the separator was a function of many

variables that could be tailored to a specific setup. The injector caused different two-phase

flow patterns in the separator, which determined the ability to successfully separate the liq-

uid and gas phases. Furthermore, Schrage et al. dynamically modeled the use of a passive

cyclonic separation device (CSD) for phase separation, concluding that the separation pro-

cess can be seen as a collection of individual bubbles with predictable behavior [33]. The

CSD worked very similarly to the FVS previously mentioned, utilizing the centrifugal force

generated by a fluid rotating around a cylinder or cone. Barbu et al. investigated acoustic

gauge monitoring, a method to check the amount of liquid and gas inside a non-transparent

separator, to properly analyze a passive fluid momentum driven vortex separator, utiliz-

ing the same fundamental separator theory as Shoemaker and Schrage [32] and Schrage et

al. [33], used on NASA’s Immobilized Microbe Microgravity Waste Water Processing Sys-
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tem (IMMWPS 2003) and Packed Bed Reactor Experiment (PBRE) space flight systems

(PBRE 2005) [34].

Kuravi et al. designed a passive centrifugal tube separator that was tested using water

and air as the liquid and gas phases [35]. Helical tubes, with holes on the outer surface,

were the basis for the separator. As the fluid traveled through these tubes, centrifugal forces

would force the liquid to the outer edge, and therefore, out of the tubes. The wettability of

the tube material, tube diameter, and hole size all contributed to its operability. Issues with

this separator type involved liquid collection and if the amount of liquid in the line was too

low, gas would then exit the holes.

Weislogel and Lichter [36] developed analytical models to design passive vane liquid-

vapor separators utilizing capillary flow in interior corners. This style of separator utilized

capillary forces to drive the vapor out of a “V” shaped corner. Also, Weislogel et al. [37–39]

completed fundamental micro-gravity research on simple vanes utilizing multiple exper-

iments onboard the International Space Station to correlate with numerical simulations.

This work has provided a framework to understand the capillary flow processes involved

in micro-gravity. Some of the benefits to vane separators is having an integrated reservoir

with the separator, less pump work required (no momentum driven separation), and having

no moving parts or seals (life cycle failure). Disadvantages of vane separators stem from

unresolved problems described by Weislogel such as optimizing the critical corner flow

velocity, partial wetting, contact angle hysteresis, and other effects [40].

The issue with many of these passive separator types is the additional pumping power

required to push the fluid through a cyclonic or centrifugal separator due to the wall fric-

tion associated with separation. The preferred separator would be one that would not re-

quire any additional components and power to operate, minimize the amount of additional

mass/volume added to the system, and minimize the amount of additional pumping power

needed. The research provided in this paper discusses the evolution of a separator sub-

jected to variable gravity that was needed to enable the efficient performance of an array
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spray cooling system under the following parameter ranges: 14 ≤ ṁ ≤ 35 [g/s], 3.0 ≤

4Tsc ≤ 18.4 [◦C], 37.4≤ Tsat ≤ 47.2 [◦C], 42≤ P≤ 78 [kPa], and -0.02≤ a≤ -2.02 [g].

2.2 Experimental Setup

The liquid-vapor separator is perhaps the most easily overlooked yet critical component

to making the variable gravity two-phase recirculating experiment function. The purpose

of the liquid-vapor separator is to contain excess fluid, reduce the pressure surges associ-

ated with pumping, and isolate the vapor from the transport lines. For a terrestrial system,

keeping the liquid and vapor separated is quite simple. When a two-phase system is in-

troduced into a reduced gravity environment, surface tension forces can overcome grav-

itational forces, resulting in surface tension flow which can result in the forcing of fluid

away from the “bottom” of the reservoir, making a fixed liquid drain port no longer useful.

Spray cooling systems will no longer perform properly if the drain port does not supply a

continuous liquid feed.

The reservoir in the spray cooling experiment is where the liquid-vapor separator was

installed for testing. The fluid entering the reservoir in this experiment was typically a

saturated mixture of liquid and vapor. The configuration of the liquid-vapor separator has

evolved as flight test experiments were performed. Initially, the reservoir was made of a

stainless steel container that was filled with stainless steel wool to act as a wick to contain

the liquid, as shown in Figure 2.1. Fluid entered via a port on the top of the cylindrical

reservoir and exited via a long 6.35 [mm] stainless steel tube approximately 6.35 [mm] from

the bottom of the reservoir. In addition, a sight glass indicated the fill level of the reservoir

under terrestrial gravity conditions. Figure 2.1(b) displays the flow rate dependence on

acceleration for four parabolas in series while the system tried to maintain a steady flow rate

of approximately ṁ = 8 [g/s]. During flight testing, reduced gravity flow instabilities issues

arose, shown in Figure 2.1(b), in part due to inefficient fluid management in the reservoir as
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described by Yerkes et al. [29]. When the system entered micro-gravity, the liquid feed was

interrupted and the flow rate quickly dropped dramatically until gravity became available

again to regain a steady flow rate. This cycle of steady flow during elevated gravity and

inconsistent flow during micro-gravity was present in each parabola.

A second generation of reservoir was designed, shown in Figure 2.2(a), which used the

same stainless steel cylindrical housing but with a modified internal configuration. The inlet

port was not changed, but the stainless steel wool was replaced with a vane structure, shown

in Figure 2.3(a), which was made of stainless steel shim stock. The vane structure was

designed to utilize capillary forces in interior corners, as Weislogel et al. [36–40] suggested,

to contain the liquid to the central core of the liquid-vapor separator, as shown in Figure

2.3(b), while allowing for liquid flow along the length of the vane structure. The capillary

action created a force that kept the liquid inward, forcing vapor outward. At the bottom

of the vane structure a tube that was the outlet of the reservoir was bent and positioned

directly beneath the vane structure, catching the liquid as a funnel. Although quite an

improvement over the stainless steel wool reservoir, the second generation reservoir had

too much sloshing, which allowed vapor to enter the outlet tube. Figure 2.2(b) shows

the flow rate performance as the system experienced variable-gravity for five parabolas in

series while the system tried to maintain a steady flow rate of approximately ṁ = 8 [g/s].

When the experiment entered the micro-gravity portion of the first parabola, the flow rate

would drop out after a few seconds and would regain steady flow until the next micro-

gravity portion. During each elevated gravity portion, the reservoir would begin to refill,

but could not reach the fill level seen during the prior micro-gravity portion before another

micro-gravity portion started. The successive reduction in fill level created quicker and

more extended flow dropouts until the system could not supply the reservoir with sufficient

liquid to continue operation.

Figure 2.4(a) shows the third generation reservoir which included a stainless steel mesh

wick placed at the bottom of the metallic vane structure. This wick contained the liquid
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Figure 2.1: Initial Flight Test Reservoir: (a) Cross-Sectional View; (b) Raw Test Data.
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Figure 2.2: Second Generation Reservoir: (a) Cross-Sectional View; (b) Raw Test Data.
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after it passed along the vane’s central axis during sloshing, allowing for a continuous liquid

feed, but was not positioned directly beneath the vane structure core. The reservoir inlet

tube was a significant distance away from the vane structure which induced a nozzle cone

effect, which didn’t concentrate inlet fluid onto the vane core. This design introduced more

flow instability than the previous reservoir, as shown in Figure 2.4(b).

Finally, as shown in Figure 2.5, the stainless steel reservoir was changed to allow the

fluid inlet to make direct contact with the inlet of the vane structure. This modification

removed the disconnection between the fluid entering the reservoir and the inlet of the

vane structure resulting in flow expansion before reaching the vane. With an inlet tube that

made direct contact with the vane structure, this problem should be minimized. The fourth

generation of the reservoir did not undergo any flight testing.

The final liquid-vapor separator configuration, mounted within the variable-gravity ar-

ray spray cooling experiment, Figure 2.7, contained a very high surface area vane structure,

as shown Figure 2.6. This vane structure was designed using three-dimensional modeling

software and generated using an ABS plastic rapid prototyping machine. To verify proper

operation, the vane was housed within a transparent acrylic tube with caps on each end, al-

lowing for flow visualization that was synchronized with the flight data. The top cap had an

inlet port that injected fluid (mostly liquid) onto the center of the vane structure, allowing

surface tension forces to hold the liquid central to the circular reservoir, as shown in Figure

2.8(a). This capillary action subsequently forced the vapor within the entrained fluid to

exit radially through small pores in the inner tube of the vane structure to an open space

between the vanes and the inner wall of the reservoir. At the end of this vane structure was

the bottom end-cap which was funnel-shaped to an exit port that fed nearly 100% liquid to

the nozzle. During operation under elevated gravity, the liquid-vapor separator functioned

like any other terrestrial reservoir with the inlet on the top and outlet on the bottom. During

micro-gravity, the liquid-vapor separator collected the liquid in the center as it traveled to

the exit port leaving the vapor to fill the surrounding volume. Figure 2.8(a) displays, for a
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Figure 2.4: Third Generation Reservoir: (a) Cross-Sectional View; (b) Raw Test Data.
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Figure 2.5: Final Stainless Steel Liquid-Vapor Separator Iteration.
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flow rate of ṁ = 8 [g/s], stable operation during micro-gravity and elevated gravity.

Figure 2.6: Liquid-Vapor Separator Internal Vane Structure (Isometric and Top Views).

Reservoir Inlet

Vane StructureVane Structure

Reservoir 
OutletOutlet

Figure 2.7: Final Liquid-Vapor Separator Mounted.
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Figure 2.8: Final Reservoir: (a) Cross-Sectional View; (b) Raw Test Data.
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Fill Level

Fill Level

Figure 2.9: Reservoir Fill, Flight 3 (left) and Flight 4 (right).

2.3 Results and Discussion

Flight testing the liquid-vapor separator was completed using NASA’s C-9 Reduced Grav-

ity Aircraft. Flights 3 and 4 (corresponding to the last two flights in the June 2007 flight

week) investigated the effect of reservoir liquid fill on the sustained operability of the noz-

zle pump. The flow rate was recorded during each parabola to verify stable operation. The

spray system was drained of some working fluid to allow additional vapor space in the

reservoir for the Flight 3 experiments. In addition, prior to Flight 4 the system was fur-

ther drained to increase the amount of vapor space in the reservoir. Figure 2.9 shows the

approximate fill level for Flight 3 and Flight 4.

Flow rates were varied throughout the course of a flight in which the system expe-

rienced micro, terrestrial, and elevated gravity. Testing was completed at four different

flow rate settings for each reservoir fill (Flight 3, 4). The flow rates examined were:

ṁ≈ 14, 17.5, 21, and 30 [g/s]. Additionally, two reservoir fills were examined: ~66% and

~33%, determined by a qualitative visual inspection. Also, the array heater was turned off

for these tests, but the nozzle preheater was operated at prescribed inlet temperatures.

Although the flight trajectories for the reservoir tests included both micro-gravity, ter-
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restrial, and elevated gravity data, only micro-gravity data was analyzed. This was due to

the fact that when the induced gravity was at or above terrestrial, liquid-vapor separation

was driven by the gravitational body force and capillary/surface tension forces did not play

a significant role. Each parabola contained approximately eleven to fourteen data points.

The average and standard deviation of each parabola’s data points were calculated to com-

pare flow stability.

Figures 2.10 and 2.11 show the reservoir volume being occupied by vapor space in a

micro-gravity environment. Due to the inconsistencies in flight testing and uncontrollable

dynamics, the exact same acceleration vector could not be maintained for each parabola.

This inconsistency is reflected in the variation of reservoir vapor space shown in Figures

2.10 and 2.11. The camera was positioned on the aft side of the reservoir, because micro-

gravity acceleration vector typically pointed forward, to photograph the vapor space and its

fluctuation due to acceleration, flow rate, and fill level.

Figures 2.12-2.15 show samples of flow stability through a group of parabolas for spec-

ified flow rate regimes (ṁ ≈14, 17.5, 21, and 30 [g/s]). It can be seen that for the lowest

flow setting, ṁ≈ 14 [g/s] shown in Figure 2.12, the flow rate was very consistent for both

of the tested fill levels, with the approximate fill level pictured to the right of each plot.

When the flow rate increased to ṁ ≈ 17.5 [g/s], shown in Figure 2.13, occasional flow

dropouts occurred. The flow rate dropouts had a longer duration in the lower fill case. As

the flow further increases to ṁ ≈ 21 [g/s], shown in Figure 2.14, more frequent dropouts

occurred and the effect of the reservoir fill displayed a more prominent role. At the reduced

fill level, Flight 4, nearly every micro-gravity segment produced a flow rate dropout, where

in the higher fill level, Flight 3, dropouts occurred less frequently with shorter loss-of-flow

durations. The highest tested flow rate setting, ṁ≈30 [g/s] shown in Figure 2.15, produced

very consistent flow rate dropouts in the micro-gravity portion of each parabola. The flow

rate recovered during the micro-gravity portion of the parabolas more consistently at the

higher fill level, although the lower fill level showed a sustained flow for a longer time at
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Figure 2.10: Micro-Gravity Vapor Space in Reservoir, Flight 3.
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Figure 2.11: Micro-Gravity Vapor Space in Reservoir, Flight 4.

52



(a)

0

5

10

15

20

25

750 850 950 1050 1150 1250 1350
Time (s)

-2

0

2

4

6

8

10

Nozz
le
flow
rate
(g/s)

Acce
l x-
axis
(g)

Flight #3

time [s]

Fl
ow

 R
at

e 
[g

/s
]

A
cc

el
er

at
io

n 
[g

]

Nozzle Flow Rate
Acceleration
Nozzle Flow Rate
Acceleration

Fill Level

(b)

0

5

10

15

20

25

200 300 400 500 600 700 800
Time (s)

-2

0

2

4

6

8

10

Nozz
le
flow
rate
(g/s)

Acce
l x-
axis
(g)

Flight #4

time [s]

Fl
ow

 R
at

e 
[g

/s
]

Ac
ce

le
ra

tio
n 

[g
]

Nozzle Flow Rate
Acceleration
Nozzle Flow Rate
Acceleration

Fill Level

Figure 2.12: Flow Stability in a Transient Gravitational Environment (ṁ ≈ 14 [g/s]): (a)
Flight 3; (b) Flight 4.

the onset of each parabola.

Figure 2.16 further describes the flow rate stability as a function of flow rate and fill

level in micro-gravity. The average and standard deviation of each parabola’s data set are

plotted to demonstrate flow rate variation. When a dropout occurred the standard deviation

increased significantly, but the flow rate average also decreased, thus shifting the target flow

rate to the left. Figure 2.16 demonstrates that for the low flow rate case, ṁ = 14 [g/s], the

flow rate was very stable in higher fill case (Flight 3) and was suitably stable in the lower

fill case (Flight 4). The flow stability for medium and high flow rates ,ṁ = 17.5and21 [g/s],
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Figure 2.13: Flow Stability in a Transient Gravitational Environment, (ṁ≈ 17.5 [g/s]): (a)
Flight 3; (b) Flight 4.
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Figure 2.14: Flow Stability in a Transient Gravitational Environment, (ṁ ≈ 21 [g/s]): (a)
Flight 3; (b) Flight 4.
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Figure 2.15: Flow Stability in a Transient Gravitational Environment, (ṁ ≈ 30 [g/s]): (a)
Flight 3; (b) Flight 4.
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Figure 2.16: Flow Stability as a Function of Flow Rate and Fill Level

showed a decrease in flow stability for both fill cases (Flights 3 and 4) in which the micro-

gravity flow stability was not as dependent on flow rate as other factors, such as parabola

duration, liquid return flow rate (to reservoir), and acceleration inconsistencies.

2.4 Conclusions

The effectiveness of a liquid-vapor separator for a two-phase spray-cooling thermal man-

agement system was examined. The vapor (or liquid) percentage entering pumps and noz-

zle heads has a significant impact on the flow rate and cooling performance. The ABS plas-

tic core of the reservoir enabled steady operation, in terms of flow rate, of the spray cooling

system during gravitational transients and micro-gravity conditions. In some cases, the

reservoir would drain during micro-gravity without refilling during each 25 [s] parabola,

resulting in loss of flow conditions toward the end of each parabola, which was magnified

at higher flow rates. The separator was evaluated at multiple vapor space fill levels and

demonstrated steady operation for the lower flow rates.
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2.5 Future Work

Improvements through future work would include optimization of the vane structure using

analytical and numerical modeling. Weislogel et al. [36–39] has done modeling work to

suggest that tapered geometries would increase flow stability during pump surges/dropouts

while allowing for high flow rates driven by capillary forces. Additionally, since the vane

structure was created using a rapid prototyping machine (ABS plastic) there was a certain

amount of surface roughness perpendicular to the vane structure length that may induce

pinning of the meniscus. Surface modifications could be made to reduce this effect while

enhancing overall operability.
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Appendix A

Experimental Setup: Additional Figures
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Figure A.1: Experimental Test Setup
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Figure A.2: Array Spray Chamber Mounted to Experiment
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Figure A.4: Thermocouple Placement Underneath Heater

65



Pressure
Transducer To Data Acquisition

Pressure 
Port

Transducer

Phenolic Base

Thermocouple
Reference
Junction

To Data Acquisition

TFR 
Heater

Figure A.5: Chamber Instrumentation Diagram

TC Name TC1 TC2 TC3 TC4 TC5
Placement Heater Heater Heater Chamber Phenolic

Description
Interface
Tempera-

ture

Interface
Tempera-

ture

Interface
Tempera-

ture

Fluid Tem-
perature

12.7 mm
below TFR

TC Name TC6 TC7 TC8 TC9 TC10

Placement Phenolic Chamber Drain Drain
Nozzle
Inlet

Description
6.35 mm

below TFR
Fluid Tem-

perature

Chamber
Outlet

Tempera-
ture

Chamber
Outlet

Tempera-
ture

Nozzle
Inlet Tem-
perature

Table A.1: Chamber Thermocouple Locations

Figure A.6: NASA’s C-9 Reduced Gravity Aircraft and In-flight Trajectory
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Figure A.7: Section View Design of Array Spray Chamber

Figure A.8: Single Nozzle Design
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Figure A.9: 16-Nozzle Array Layout

Figure A.10: Swirler Insert Design
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Figure A.11: Sapphire Orifice Design
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Figure A.12: Single Nozzle Characterization - Sauter Mean Diameter vs. Flow Rate
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Figure A.13: Single Nozzle Characterization - Droplet Diameter vs. Pressure Drop
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Appendix B

Calibration and Uncertainty Analysis

B.1 Flow Meter

B.1.1 Calibration Setup

The calibration of the flowmeter was performed using a simple stopwatch, 3000 mL flask,

100mL graduated cylinder, and a Mettler PL4400 scale. The Tuthill magnetically coupled

gear pump, model DDS.99PPPV2NN37000, pumps the fluid, air saturated FC-72, through

a 15 micron in-line filter. Then, fluid flows through a Sponsler MF90-CB-PH-A-4X-V flow

meter which is attached to a signal conditioner. The Omega, FTB9504, signal conditioner

converts the frequency signal to a voltage (0-10 VDC) that can be read by an Agilent

34970A data acquisition unit. After the flowmeter, the fluid is then rerouted out of the rig

and to a large flask which acts as a reservoir. From that flask, the fluid then is return to

the above mentioned gear pump. The flow schematic for the calibration is shown in Figure

B.1.

B.1.2 Calibration Procedure

To begin the setup, a large flask was filled with approximately 3.5 liters of FC-72 and

placed next to an empty 100 mL graduated cylinder. An inlet and outlet tube were placed
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Figure B.1: Flowmeter Calibration Setup

inside the flask of FC-72. The outlet tube pulled FC-72 out of the flask, and sent it through

the flow loop. The same fluid was then put back into the flask via the inlet tube. To begin

the experiment, a desired flow rate was chosen. Then, the pump was adjusted to achieve a

flow rate as close as possible to the desired flow rate, according to the data logger software

on the laptop connected to the spray cooling system. Once the flow rate seemed to be fairly

stable and near the desired rate, the data acquisition scan was started on the laptop. Within

the next couple of seconds, the spray tube was removed from the flask and quickly placed

into the graduated cylinder, at which time the stopwatch was started. After a length of time,

dependent upon the desired fill mark on the graduated cylinder and therefore the magnitude

of the flow rate, the inlet tube was returned to the flask and the time was stopped. The data

acquisition was stopped and saved approximately ten seconds after the return of the spray

tube to the flask. Then, the volume and mass of the FC-72 in the graduated cylinder were

measured and recorded, along with the trial name and number, exact time duration, desired

flow rate, and data acquisition file name. Then, the measured flow rate, average computer

voltage, and average computer flow rate were calculated and recorded. The FC-72 from the

graduated cylinder was poured back into the flask and the experiment was repeated. Trials

for desired flow rates from 2.1 to 13.67 mL/s (2 to 13 gph) were performed, with five trials
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per desired flow rate. The uncertainty of readability for the graduated cylinder is ± 5 mL.

The uncertainty of readability for the scale is ± .05 g. The uncertainty in the stopwatch

recording is ±.5 s.

B.1.3 Uncertainty Analysis

Although many factors were considered to try to reduce the amount of uncertainty in the

flowmeter and thermocouple calibrations, there is still enough error that a detailed analysis

must be completed. The uncertainty associated with the flowmeter calibration is attributed

to:

1. Time-human reaction/stopwatch

2. Volume-graduated cylinder error and readability

3. Mass-scale error

4. Regression-difference between linear fit and data points

The error associated with the mass flow rate is:

4ṁtotal =4ṁmass/time +4ṁregression (B.1)

ṁ =
m
t

(B.2)

which gives the uncertainty for the mass and time error:

4ṁmass/time =

√[(
∂ ṁ
∂m

)
dm
]2

+
[(

∂ ṁ
∂ t

)
dt
]2

(B.3)

where
∂ ṁ
∂m

=
1
t

(B.4)
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time
(s)

mass
(kg)

mass flow
rate (kg/s)

recorded
mass

flow rate
(kg/s)

Eqn B.6
(kg/s)

Eqn B.3
(kg/s)

4ṁtotal
Eqn. B.1

(kg/s)

%
error

210.0 1.4908 .007099 .00716 6.05 e-5 1.707 e-5 7.75 e-5 1.09%
135.0 1.4470 .010719 .01082 1.040 e-4 3.987 e-5 1.438 e-4 1.34%
105.9 1.5547 .014671 .01418 4.955 e-4 6.938 e-5 5.649 e-4 3.85%
74.99 1.3906 .018544 .017661 8.825 e-4 1.238 e-4 1.006 e-3 5.43%
65.02 1.4495 .022293 .02125 1.04 e-3 1.716 e-4 1.211 e-3 5.43%

Table B.1: Mass Flow Rate Calibration Example

and
∂ ṁ
∂ t

=−m
t2 (B.5)

The instrument errors are:

dm =±.5g =±.0005kg

dt =±.5s

To determine flow rate linear regression:

4ṁregression =| ṁactual− ṁpredicted | (B.6)

Sample calibration data are shown in Table B.1. The maximum total error, 4ṁtotal , is

6.3%. This error percentage is taken pervasively as a conservative approach. Figure B.2

shows the mass flow rate uncertainty containing error bars at 6.3%.

The error associated with the volumetric flow rate is:

4V̇total =4V̇volume/time +4V̇regression (B.7)

V̇ =
V
t

(B.8)

which gives the uncertainty for the mass and time error:
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Figure B.2: Mass Flow Rate Calibration Uncertainty

4V̇volume/time =

√[(
∂V̇
∂V

)
dV
]2

+
[(

∂V̇
∂ t

)
dt
]2

(B.9)

where
∂V̇
∂V

=
1
t

(B.10)

and
∂V̇
∂ t

=−V
t2 (B.11)

The instrument errors are:

dV =±5mL =±.000005m3

dt =±.5s

To determine flow rate linear regression:

4V̇regression =| V̇actual−V̇predicted | (B.12)
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time
(s)

volume
(m3)

volumetric
flow rate

(m3

s )

recorded
volumetric
flow rate

(m3

s )

Eqn B.12
(m3

s )
Eqn B.9

(m3

s )

4V̇total
Eqn. B.7

(m3

s )

%
error

210.0 8.85 e-4 4.21 e-6 4.25 e-6 3.59 e-8 2.58 e-8 6.17 e-8 1.47%
135.0 8.59 e-4 6.36 e-6 6.43 e-6 6.17 e-8 4.39 e-8 1.06 e-7 1.66%
105.9 9.28 e-4 8.76 e-6 8.46 e-6 2.96 e-7 6.27 e-8 3.59 e-7 4.09%
74.99 8.29 e-4 1.11 e-5 1.06 e-5 4.85 e-7 9.94 e-8 5.85 e-7 5.29%
65.02 8.66 e-4 1.33 e-5 1.27 e-5 6.21 e-7 1.28 e-7 7.49 e-7 5.62%

Table B.2: Mass Flow Rate Calibration Example
Flowmeter Calibration Uncertainty Analysis-Volumetric
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Figure B.3: Volumetric Flow Rate Calibration Uncertainty

Sample calibration data are shown in Table B.2. The maximum total error, 4V̇total , is

6.5%. This error percentage is taken pervasively as a conservative approach. Figure B.3

shows the mass flow rate uncertainty containing error bars at 6.5%.

76



B.2 Thermocouples

B.2.1 Calibration Setup

The significant thermocouples were calibrated using a Hart Scientific Ice Point Calibrator

(model # 9101), a Hart Scientific Calibration Bath (model # 6330), and a Hart Scientific

Precision platinum RTD (5628 and 1502A). The ice point was used as a precision reference

that would be exactly the same no matter the ambient environment. The calibration bath

was filled with silicon oil and was controlled using the rig’s laptop with an RS-232 connec-

tion. An additional RS-232 connection to the RTD was read-only. This value was taken as

the absolute temperature and this temperature was used to calibrate the other thermocouples

as well as determine the bath’s steady state.

Each thermocouple within the test chamber was calibrated before its installation. In

addition, the thermocouples in the preheater, the chamber inlet, and the chamber outlet

lines were also calibrated.

B.2.2 Calibration Procedure

To perform the calibration, a program, using a temperature ramp and decay, was written

using Visual Basic for Applications by Richard Harris of University of Dayton Research

Institute. This program would interface with the rig’s data acquisition unit, the calibration

bath, and the RTD, all through the laptop computer. The basic logic of the software was

written in such a way as to reduce the program’s complexity, whilst keeping the data accu-

rate. A temperature was set on the calibration bath; not a precise setting, but held constant

for a time long enough to reach steady state, then a data point was taken for all thermo-

couples and the RTD. After 2.5 hours, enough time to reach steady state, the RTD and

all thermocouples in the calibration bath would record a final data point for that tempera-

ture setting. Next, the temperature bath would increase in temperature to the next set point

and this process would repeat all the way to 120◦C. Afterwards, a very similar process took
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place during the cooling portion of the calibration. The last data point before the calibration

bath set temperature was changed and the 4T
4t for the last time increment was recorded for

the calibration. The data was fitted linearly and associated residuals were calculated. If any

connections were changed/modified or if a thermocouple needed replaced, this procedure

was redone.

B.2.3 Uncertainty Analysis

The uncertainty associated with the thermocouple calibration comes from:

1. RTD-instrument error

2. Steady State-temperature gradients (bath, thermocouples, RTD)

The error associated with the thermocouple calibration is:

4Ttotal =4TRT D +4Treadout +4Tregression (B.13)

where

4TRT D = .006◦C (B.14)

4Treadout = .009◦C (B.15)

and

4Tregression =| Tpredicted−TRT D | (B.16)

Table B.3 shows a sample thermocouple calibration data set. The RTD temperature and

computer recorded temperature are used to achieve a linear fit for the data.

Tpredicted = mTrecorded +b m = slope b = intercept (B.17)

Then, the original recorded temperature is plugged into the linear fit equation to generate

an equation predicted temperature. The difference between the predicted temperature and
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the RTD temperature is recorded as the regression error, Eqn B.16. Eqns B.14, B.15, and

B.16 are added to equal the total thermocouple error, Eqn B.13.

79



R
T

D
Te

m
pe

ra
tu

re
(◦

C
)

R
ec

or
de

d
Te

m
pe

ra
tu

re
(◦

C
)

Pr
ed

ic
te

d
Te

m
pe

ra
tu

re
(◦

C
)

R
eg

re
ss

io
n

E
rr

or
B

.1
6

(◦
C

)
To

ta
lE

rr
or

B
.1

3
(◦

C
)

34
.7

5
34

.8
2

34
.7

7
0.

01
23

0.
02

7
39

.7
5

39
.8

3
39

.7
7

0.
01

95
0.

03
5

44
.7

4
44

.8
0

44
.7

3
0.

00
31

0.
01

8
49

.7
4

49
.8

0
49

.7
4

0.
00

16
0.

01
7

54
.7

2
54

.7
8

54
.7

0
0.

01
98

0.
03

5
59

.7
1

59
.7

7
59

.6
9

0.
01

56
0.

03
1

64
.7

2
64

.8
3

64
.7

5
0.

02
73

0.
04

2
69

.6
9

69
.7

6
69

.6
8

0.
01

04
0.

02
5

74
.7

1
74

.7
9

74
.7

0
0.

00
28

0.
01

8
79

.6
9

79
.8

1
79

.7
2

0.
02

36
0.

03
9

84
.6

7
84

.7
8

84
.6

8
0.

00
58

0.
02

1
89

.6
9

89
.7

7
89

.6
7

0.
01

81
0.

03
3

94
.6

6
94

.7
8

94
.6

7
0.

01
76

0.
03

3
99

.6
8

99
.7

9
99

.6
8

0.
00

47
0.

02
0

10
4.

65
10

4.
76

10
4.

65
0.

00
29

0.
01

8
10

9.
64

10
9.

76
10

9.
64

0.
00

79
0.

02
3

11
4.

67
11

4.
80

11
4.

67
0.

00
20

0.
01

7
11

9.
63

11
9.

74
11

9.
61

0.
01

64
0.

03
1

99
.6

7
99

.8
0

99
.6

9
0.

01
28

0.
02

8
74

.7
1

74
.7

8
74

.6
9

0.
01

21
0.

02
7

53
.0

9
53

.1
3

53
.0

6
0.

02
97

0.
04

5

L
in

ea
rfi

te
qu

at
io

n
(E

qn
B

.1
7)

:T
pr

ed
ic

te
d

=
.9

99
12

53
34

T r
ec

or
de

d
−

.0
24

02
96

93

Ta
bl

e
B

.3
:S

am
pl

e
T

he
rm

oc
ou

pl
e

C
al

ib
ra

tio
n

D
at

a
Se

t

80



B.3 Heat Flux to Spray

The heater power is determined via the use of two voltmeters. The first voltmeter, V1,

measures the voltage drop across the heater. The second voltmeter, V2, measures the voltage

drop across a precision resistor that is in series with the heater. V2 is used to calculate the

current, I. Therefore, the heat (power) generated (consumed) by the heater is:

Q̇ = V1I = V1
V2

R
(B.18)

q” =
V1V2

AheaterR
(B.19)

q”spray = (1− f )q” = (1− f )
V1V2

AheaterR
(B.20)

where (from Eqn C.30)

f =−.0002144q”+ .0588504 (B.21)

q”spray = [1− (−.0002144q”+ .0588504)]q” (B.22)

simplifying and substituting in for q”

q”spray = .0002144(q”)2 + .9411496q” (B.23)

q”spray = .0002144
(

V1V2

AheaterR

)2

+ .9411496
(

V1V2

AheaterR

)
(B.24)

So, the uncertainty with the heat removed by the spray is comprised of the error in

measurement.

4q”spray,total =4q”measurement (B.25)

The measurement error is calculated by

4q”measurement =

√√√√√
[(

∂q”spray
∂V1

)
dV1

]2
+

[(
∂q”spray

∂V2

)
dV2

]2

+
[(

∂q”spray
∂R

)
dR
]2

+
[(

∂q”spray
∂Aheater

)
dAheater

]2 (B.26)
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where
∂q”spray

∂V1
= .0004288V1

(
V2

AheaterR

)2

+ .9411496
(

V2

AheaterR

)
(B.27)

and the data acquisition measurement error, from Agilent, is a function of the voltage and

full scale error shown as

dV1 =±(.002V1 + .0006(100V ))V (B.28)

∂q”spray

∂V2
= .0004288V2

(
V1

AheaterR

)2

+ .9411496
(

V1

AheaterR

)
(B.29)

dV2 =±(.0015V2 + .0004(10V ))V (B.30)

∂q”spray

∂R
=−.0004288

1
R3

(
V1V2

Aheater

)2

− .9411496
(

V1V2

AheaterR2

)
(B.31)

dR =±.02% =±.00002Ω (B.32)

∂q”spray

∂Aheater
=−.0004288

1
A3

heater

(
V1V2

R

)2

− .9411496
(

V1V2

A2
heaterR

)
(B.33)

dAheater =±1.8339e−6m2 from Eqn B.44 (B.34)

Table B.4 shows the calculation for determining the total heat as well as the values

for determining the heat transferred to the spray and its associated uncertainty, further ex-

plained in Figure B.4.
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Figure B.4: Uncertainty of Heat Transferred to Spray

B.3.1 Uncertainty Analysis

The area and associated area uncertainty used in the uncertainty calculation for q” was also

derived.

A = L ·W (B.35)

4A =

√[(
∂A
∂L

)
dL
]2

+
[(

∂A
∂W

)
dW
]2

(B.36)

L = W (B.37)

A = L2 (B.38)

4A =

√[(
∂A
∂L

)
dL
]2

+
[(

∂A
∂L

)
dL
]2

=

√
2
[(

∂A
∂L

)
dL
]2

(B.39)

∂A
∂L

= 2L (B.40)
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dL = .0000254m (B.41)

L = 1.005in = .025527m (B.42)

A = .00065163m2 (B.43)

4A =
√

2 [(2 · .025527) .0000254]2 = 1.8339e−6m2 (B.44)
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Appendix C

Heater Losses: One-Dimensional Heat

Conduction Model

C.1 Description/Motivation

The experimental spray chamber, which houses the heater, does not remove heat from the

thick film resistive heater purely by the spray. There are heat losses due to the conductivity,

although very low, of the phenolic (G6) that the heater is mounted on. This phenolic base

not only transfers heat to the ambient air through its thickness, but also via contact with

the mixing post-spray fluid outside of the heater area and the outer edges of the phenolic as

well, described in better detail in Figure C.1.

The thermocouples instrumented into the chamber and simplification were the main rea-

sons why a 1-D analytical solution was needed to determine the heater downward losses,

Qd . In addition, no thermocouples were placed laterally through the phenolic base to de-

termine the side losses, Qs. Qu, the upward heat loss/gain between the phenolic base and

fluid entrained in the aluminum foam, was taken to be zero due to, once again, lack of

thermocouples as well as a low heat transfer coefficient with T −T∞ near 0.

There is an array of 3 thermocouples sandwiched between the interface of the heater
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Phenolic      Base     

Spray head

Aluminum Foam Aluminum Foam

Inlet tube

Outlet 
tube

Outlet 
tube

Heater

Qd

Qs Qs

Qu Qu

Figure C.1: Possible Heat Losses Not Due to Spray

Layer Position
Thickness

(mm)
Thermal Conductivity

(W/m-K)
Ceramic Substrate top (sprayed surface) 0.643 ≈27

Resistive Layer (heater) middle 0.008 ≈1.04
Glass Cover bottom 0.040 ≈1.04

Table C.1: Resistive Heater Properties

and the phenolic base which can be averaged to get an approximate interface temperature.

There are 2 thermocouples in the phenolic below the heater, spaced 6.35 [mm] (0.25 [in.])

and 12.7 [mm] (0.5 [in.]) beneath the bottom surface of the heater.

C.2 One-Dimensional Analytical Model

The thick film resistive heater is made of 3 layers, a ceramic substrate, a thin resistive film,

and a glass cover plate. The details of each layer are presented in Table C.1.

A 1-D conduction model was needed to calculate a spray surface temperature that could

be used to calculate the heat transfer coefficient associated with the spray nozzles. The

analysis was broken into 3 layers; ceramic, resistive, and glass. An assumed fraction, f , of

the input heat was determined to be lost downward, while the remaining heat, Q(1− f ), is

assumed to be taken away by the spray.
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Figure C.2: 1-D Model Governing Equations and Boundary Conditions

The governing equations and boundary conditions are detailed in Figure C.2.

The temperature distribution through the ceramic layer is derived from:

∂ 2T
∂ z2 = 0 (C.1)

which gives a linear distribution of the form

Tc(z) = c1z+ c2 (C.2)

and
∂Tc

∂ z
= c1 (C.3)
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applying boundary conditions

∂Tc

∂ z
(z = Lc) = q2” =

f Q
kcAc

= c1 (C.4)

Tc(z = 0) = Tint = c2 (C.5)

combining C.4 and C.5

Tc(z) =
f Q

kcAc
z+Tint (C.6)

evaluating at Tc(z = Lc) = T2 gives

T2 =
f Q

kcAc
Lc +Tint (C.7)

The temperature distribution through the resistive layer is derived from:

∂ 2T
∂ z2 +

g
kr

= 0 (C.8)

which gives a parabolic distribution of the form

Tr(z) = c1z2 + c2z+ c3 (C.9)

and
∂ 2T
∂ z2 = 2c1 (C.10)

but, from the governing equation

∂ 2T
∂ z2 =−g

k
=− Q

k ·V
(C.11)

which gives

c1 =− Q
2kr ·V

= (C.12)
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simplifying

c1 =− Q
2krLrAr

(C.13)

c2 can now be found using
∂Tr

∂ z
= 2c1z+ c2 (C.14)

applying boundary conditions

∂Tr

∂ z
(z = 0) =

q2”
kr

=
f Q

krAr
= c2 (C.15)

c3 can be found using using C.7 from above

Tr(z = 0) = T2 =
f Q

kcAc
Lc +Tint = c3 (C.16)

combing C.13, C.15, and C.16

Tr(z) =− Q
2krLrAr

z2 +
f Q

krAr
z+

f Q
kcAc

Lc +Tint (C.17)

evaluating at Tr(z = Lr) gives

T1 =− QLr

2krAr
+

f QLr

krAr
+

f Q
kcAc

Lc +Tint (C.18)

The temperature distribution through the glass layer is derived from:

∂ 2T
∂ z2 = 0 (C.19)

which gives a linear distribution of the form

Tg(z) = c1z+ c2 (C.20)
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and
∂Tg

∂ z
= c1 (C.21)

applying boundary conditions

∂Tg

∂ z
(z = 0) =−q2” =−(1− f )Q

kgAg
= c1 (C.22)

Tg(z = 0) = T1 =− QLr

2krAr
+

f QLr

krAr
+

f QLc

kcAc
+Tint = c2 (C.23)

inserting C.22 and C.23

Tg(z) =−(1− f )Q
kgAg

z− QLr

2krAr
+

f QLr

krAr
+

f QLc

kcAc
+Tint (C.24)

evaluating at Tg(z = Lg) = Tsur f gives

Tsur f =−
(1− f )QLg

kgAg
− QLr

2krAr
+

f QLr

krAr
+

f QLc

kcAc
+Tint (C.25)

The solution to surface temperature is further simplified when

Ac = Ar = Ag = A (C.26)

giving

Tsur f =−
(1− f )QLg

kgA
− QLr

2krA
+

f QLr

krA
+

f QLc

kcA
+Tint (C.27)

and simplifying gives the final solution

Tsur f =
Q
A

(
−

(1− f )Lg

kg
− Lr

2kr
+

f Lr

kr
+

f Lc

kc

)
+Tint (C.28)
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C.3 Determination of the Heat Loss Fraction

To determine the fractional heat loss downward through the heater, a simple 1-D calculation

shows the heat flow by using a linear difference between the two thermocouples within the

phenolic. These thermocouples, spaced 6.35 [mm] (0.25 [in.]) apart (z-direction), provide

a basis for this analysis.

The values/properties needed for this analysis are:

1. phenolic thermal conductivity kphen = 0.29 W
m−K

2. cross sectional area of phenolic base Aphen = 13.51in2 (.008716m2)

3. distance between thermocouples4z = 1/4” (.00635m)

4. downward temperature difference4T (C)

5. total heat input Q̇(W )

To generate a correlation between the heat loss fraction and the heat input, a steady state

temperature difference must be found for each heat input. A baseline data set, terrestrial

gravity, was used instead of flight test data because baseline data runs allowed the chamber

to reach a near steady state condition, 4T was plotted against time to determine steady

state values for heater powers ranging from 0− 120W (Figure C.3). Next, using equation

C.29, an assumed downward heat loss was calculated for each steady state point, shown in

Table C.2.

q” =−k
4T
4z

(C.29)

When Q̇ = 0, d4T 6= 0, therefore a correction of .15◦C was added to each 4T in

Table C.2. To generate a correlation between the heat input, Q, and the downward heat

loss percentage f , they were plotted against each other to demonstrate a linear relationship,

shown in Figure C.4.
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Downward heat loss
as a function of heater power
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Figure C.3: Heat Loss Indicator (dT vs. time)

Qinput(W ) 4T (◦C) Qdown(W ) %loss

0 .08
10 1.27 .51 5.07%
20 2.49 .99 4.95%
30 3.60 1.43 4.78%
40 4.48 1.78 4.46%
50 5.54 2.21 4.41%
60 6.51 2.59 4.32%
70 7.22 2.87 4.10%
80 8.12 3.23 4.04%
90 8.76 3.49 3.87%

100 9.12 3.69 3.63%
110 9.48 3.77 3.43%
120 9.79 3.90 3.25%

Table C.2: Downward Heat Loss
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Linearized Heat Loss
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Figure C.4: Linear Correlation Between Total Heat and Downward Heat Loss

f =−.00016101Q̇(W )+ .05239716 (C.30)

Equation C.30 can be applied to C.28 to give an estimation for Tsur f .
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Appendix D

Nondimensionalization

D.1 Nondimensional Heat Input

The terms used for non-dimensionalization for heat input were determined as follows:

b = lengthscale =
W
2

= hal f widtho f heater

A = W 2

g =
Q
V

=
Q

LrA
=

Q
LrW 2

4=
Lr

b
=

2Lr

W

G =
gb2

kr(Tsat−T∞,wall)
=

Q
(W

2

)2

LrW 2kr(Tsat−T∞,wall)
=

Q
4Lrkr(Tsat−T∞,wall)

The nondimensional heat input is:

G4=
Q

4Lrkr(Tsat−T∞,wall)
2Lr

W
=

1
2Q

krW (Tsat−T∞,wall)
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D.2 Nondimensional Ratio of Inertia and Acceleration to

Viscous Forces

Inertial Force:

Finertial = ρv2D2

Gravitational Force:

Fgravitational = ρaD3

Viscous Force:

Fviscous = µvD

grouping
(Finertial)

3
4 (Fgravitational)

1
4

Fviscous
⇒ (ρv2D2)

3
4 (ρaD3)

1
4

µvD

rearranging

ρv
1
2 D

5
4 a

1
4

µ
⇒

(
ρ2vD

5
2 a

1
2

µ2

) 1
2

⇒

( v2

aD

) 1
2 ρ2D3a

µ2

 1
2

where

Fr =
v2

aD
and Ga =

ρ2D3a
µ2

therefore (
Fr

1
2 Ga

) 1
2 =

( v2

aD

) 1
2 aD3ρ2

µ2

 1
2

D.3 Other Nondimensional Terms

The nondimensional temperature is:

θ =
(T −T∞,wall)

(Tsat−T∞,wall)
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The Weber number is used as a nondimensional flow rate:

We =
ρv2D

σ

97



Appendix E

Procedures for Experimentation

E.1 FC-72 Fill Procedure

1. Start up the rig.

2. Before purging, the valve positions should be:

(a) drain closed

(b) toggle between normal flow and bypassed flow

(c) nozzle pump open

(d) toggle between bottom and top sump valves

(e) toggle between bottom and top nozzle

3. Purge the system: inlet nitrogen into drain/fill valve A near drain pump using tube A

4. Open drain/fill valve B for nitrogen exit.

5. Hook the roughing vacuum pump to the following locations using tube B:

(a) drain/fill valve A

(b) drain/fill valve B
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(c) 3/8” 4-way joint connection on chamber

6. Turn the valves to the following positions:

(a) drain open

(b) toggle between top and bottom nozzle

(c) top sump open

(d) nozzle pump open

(e) toggle between normal flow and bypass

(f) bottom sump open

(g) hand valves open

7. Turn on the roughing vacuum pump and let it run until most of the liquid is out of
the system. Let it run overnight if need be. Close the hand valves and remove the
roughing pump. For the rest of the valves, refer to the roughing pump valve positions.

8. Connect the turbo vacuum pump the same way the roughing pump was connected.
Turn the pump on and press the start switch. Let the pump run until it’s reading
around 1x 10 ^ -3 Torr.

9. Before filling, turn the valves to the following positions:

(a) drain closed

(b) bottom nozzle

(c) top sump closed

(d) nozzle pump open

(e) bypass on

(f) bottom sump closed

(g) hand valves open

10. Close valve 3 and open valves 1, 2, and 4. Refer to Figure E.1 for valve clarification.

11. Turn the hot plate on high. As the FC-72 approaches its boiling point, turn the heater
down to low.
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Figure E.1: Fill Procedure Setup/Schematic A

12. Boil the FC-72 for three minutes, then turn on the roughing pump. After boiling, turn
off the hot plate.

13. Close valves 1 and 4. Open valve 3. Leave valve 2 as is. Turn off the roughing pump.

14. Allow the FC-72 liquid to siphon into the polycarbonate flask. Then, close valves 2
and 3. Open valve 4. This will prevent a pressure build up in the Pyrex flask

15. Using Figure E.2, connect the polycarbonate flask to the turbo pump and the top shelf
of the rig.

16. Valve 1, valve 3, and the hand valve located below the drain/fill location should be
closed. Valve 2 should be open. Turn the turbo pump on.

17. Close valve 2. Invert the polycarbonate flask. Open valve 1, valve 3, and the hand
valve. FC-72 from the flask will begin to siphon into the system.

18. Once the FC-72 stops going in, close valve 1 and valve 3. Turn off the turbo pump,
remove the tube assembly, and pour leftover FC-72 into the black FC-72 barrel.

E.2 Test Cards and Test Plan Matrix

Test cards, shown in Figure E.3, and the test plan matrix, shown in E.4; outline the format

of the test plan and experimental operating conditions that will be targeted during experi-

mental testing.
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Figure E.2: Fill Procedure Setup/Schematic B

Test Procedure Comments:

1. Each heat setting lasts 2-3 parabolas (typically 40 parabolas…if 
more, heat load steps and frequency are adjusted accordingly 
to CHF) 

2. Multiple heat loads can be made during an extended 2.0-g turn
3. Hand recorded experimental data records are taken 

continuously to record parabola number, flow rate, heat load, 
etc.

RUN NO: 

Responsible PI:

TAA:

Array-06192007-1
Flight Information
Tail Number: N932NA
Estimated Take-off time: 0930
Estimated Landing time: 1200
Estimated Flight time: 2.7 hr
Estimated # of Parabolas: 57

Classification
Data: Unclassified
Video: Unclassified

Variable Gravity Array Spray Cooling Experiment
CARD NO: RUN NO: Array-06192007-1

TEST POINT CONDITIONS

Operating Conditions
1. Flow rate (gph): 8, 10, 12
2. Subcooling (C): 15
3. Nozzle reheat (C): 25-30
4. Chamber pressure (psia): 8.5-9.0
5. Heat input range to CHF (W): 20-160

6. Working fluid: FC-72
7. Air content: ~10%
8. Saturation Temp (C): 42.5
9. ______________:
10. ______________: 

1st 10 Para 2nd 10 Para 3rd 10 Para

2.0-g Turns

Heater Power 
(W)

20-100 120-CHF 20-100 120-CHF

Flyers:
Name Organization

1. Kirk Yerkes AFRL/PRP
2. Rebekah Puterbaugh AFRL/PRPS
3. Lt Chris Del La Pena AFRL/PRPS

Heater Power 
(W)

Heater Power 
(W)

Heater Power 
(W)

Flight Conditions

Parabola# Acceleration (g)
1-57 + Turns 0.001-2.0

SPAR-1

Date: 19 June 07

4th 10 Para
Heater Power 
(W)

5th 10 Para 6th 10 Para
Heater Power 
(W)

Heater Power 
(W)

(8gph) (10gph)

20-100 120-CHF

(12gph) (12gph)

(8gph) (10gph)

1. 100-130 (8gph)
2. 120-150 (8gph)
3. 110-150 (10gph)
4. 140-147 (10gph)

Figure E.3: Example Test Card
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Proposed Test Plan Matrix June Flight Week-Array

Vertical1. Heater 
orientation

5-15°C5°C15°C10°C4. Subcooling

30-60°C5. Vapor Sat. Temp. 
(°C)

0-160 
(~ 2-20W increments)

3. Heater power, W
(run until steady 
periodic conditions 
satisfied)

8, 10, 122. Mass flow rate, 
(gal/hr)

Flight 4
40-60 parabolas

Flight 3
40-60 parabolas

Flight 2
40-60 parabolas

Flight 1
40-60 parabolas

Figure E.4: Example Test Plan Matrix

E.3 Experimental Test Procedure

The Standard Operating Procedure (SOP), as outlined in Appendix E.3.1, for the test equip-

ment is subdivided into six areas comprised of:

1. Loading checklist

2. Pre-test checklist

3. Testing checklist

4. Post-test checklist

5. Leak shut down procedure

6. Emergency shut down procedure.

NASA is responsible for proper mounting of the test equipment in the aircraft with as-

sistance from Air Force personnel, as requested, to address specific experimental require-

ments. Prior to each series of experiments during a flight, the pre-test checklist is executed

and the system air content is adjusted by either venting air into the system or by using a

vacuum pump to extract the air from the system. Partial pressure calculations can be used
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to quantify the air content in addition to the extraction of working fluid samples (refer to

Appendix E.4) for post flight analysis of air content. In addition, prior to each flight the

experiment is powered up to a standby mode allowing for the ice point reference to become

temperature stabilized and to verify system conditions prior to flight. When possible, and

with NASA permission, the experimental apparatus is allowed to remain in this standby

mode to minimize the time required to initiate experiments during flight.

The experimental procedure is initiated once the aircraft reaches an appropriate alti-

tude. This consists of mounting cameras, data laptop, and executing the testing checklist.

Operation of the experimental apparatus requires a primary operator, back-up operator and

data recorder, and support personnel to operate video recording apparatus and to serve as

backup operators. Real time flight test data consisting of flow rates, three-axis accelerom-

eters, heater temperatures, saturation pressure, flow system pressures, and heat loads are

obtained with an integrated data acquisition system and laptop. Experiments are controlled

manually by varying the heat load while maintaining flow rate and subcooling through a

control panel affixed to the experiment. Hand recorded data, shown in Appendix E.3.3,

consisting of critical flow rates and temperatures are also taken during the course of the

experiment. When available, video is taken by using a high speed video system and digital

cameras affixed to the experimental apparatus. Initially, the data acquisition system and

video are time queued and allowed to remain on throughout the flight test.

A typical aircraft flight path will consist of multiple parabolas consisting of a reduced-

g, high-g (1.8 g) portion, and an occasional turn (Since there are multiple experiments, the

NASA pre-flight will stipulate the total parabola goal, range, and any experiment specific

requirements during the flight, including high-g turns. This is repeated until the fuel reserve

conditions are met.). The number of parabolas prior to a turn is determined by the wind, air

traffic, and parabola type. During this flight path, the flight test will consist of varying the

heat load in predetermined increments (Test Plan Matrix, Appendix E.2) over the course

of a single or multiple parabola(s) until a steady-periodic condition is observed. At a fixed
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heat load, the flow rate and subcooling is monitored and controlled as required to meet the

pre-flight objectives. The heat load is increased until a CHF event occurs at which point the

heat load is decreased and incrementally increased at a finer increment until another CHF

event occurs. The number of heat load increments prior to a turn is approximated such that

several parabolas prior to a turn a CHF event occurred. In this manner extended 2.0-g turns

allow high-g data to be obtained at or near a CHF event.

At the conclusion of the experimental procedure, the post-test checklist is executed.

Once the test equipment is shutdown, the cameras and data laptop are stowed appropriately

for aircraft landing.

The air content of the system can be adjusted between flights, if needed, by executing

the FC-72 Membrane Filter Procedure as outlined in Appendix E.5. This procedure is

used to quickly adjust the air content an undetermined amount up or down. After such an

adjustment, the Fluid Sample Extraction Procedure (Appendix E.4) is once again initiated.

E.3.1 Standard Operating Procedure

1. Loading Checklist

(a) Verify that all mounting bolts are tight.

(b) Verify power connections, 115 VAC 60 Hz.

2. Pre-test Checklist

(a) Ascertain that the coolant and water systems are filled with sufficient liquids.

(b) Plug in cords for the four AC circuits, 20 amp capacity for circuits 1 and 3 and
15 amp capacity for circuits 2, and 4.

(c) Turn on Breakers 1, 2, 3 and 4, verify green indicators for each.

(d) Verify that all toggle switches are in the off (down) position and all potentiome-
ters are at 0 (fully counterclockwise).
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(e) Press the Start button and verify red indicators for the pumps and target heaters
and red and blue indicators for the flow bypass.

3. Testing Checklist

(a) Turn on the laptop computer, log in and start the data acquisition program.

(b) Verify system pressures are appropriate for coolant temperature.

(c) Turn on the water pump and set the flow rate as indicated on the computer
display using the potentiometer; verify green indicator.

(d) Turn on the coolant pumps and set the flow rates as indicated on the computer
display using the potentiometers; verify green indicators and flow rate on the
digital readouts.

(e) Switch the bypass toggle switches to the up position and verify spray in the
chamber.

(f) Set the preheater PID controllers to the desired temperature and set the alarm
cutout temperatures.

(g) Switch the PID controllers on; verify green indicators.

(h) When the fluids are at operating temperature, the preheater indicators will be
cycling.

(i) Verify that the over-temperature PID controller alarm settings are correctly ad-
justed.

(j) Turn on the video cameras and place them in record mode.

(k) Turn on the target heater switches and verify green indicators.

(l) Set the target heater wattage using the potentiometers.

(m) Take data as appropriate to the flight test plan.

4. Post-test Checklist

(a) Switch off target heaters and set potentiometers to the 0 position.

(b) Switch off preheater switches.

(c) Switch bypass toggle switches to the down position.

(d) Switch off all pumps and set potentiometers to the 0 position.

(e) Switch off video cameras.
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(f) Stop data acquisition and shut down computer.

(g) Switch off the four Breakers.

5. Leak Shut Down Procedure

(a) Identify the location of the leak and use the pump to isolate FC-72 away from
leak into either the chamber or the fluid reservoir and close the appropriate
valves.

(b) Hit Panic button to shutdown the system and allow the system to come to a low
pressure equilibrium.

(c) Assess source of leak for fixability. If fixable, (e.g., wrong valve is open), seal
leak; otherwise.

(d) Use either absorbent PIGs or Kimwipes to mop-up leak. Place wet materiel into
zip lock baggie or vent tank.

6. Emergency Shut Down Procedure

(a) Hit Panic button.

(b) Ensure all power is off.

(c) Visually verify and contain any leaks using absorbent PIGs or Kimwipes. Place
wet materiel into zip lock baggie or vent tank.

E.3.2 Emergency Procedure

The fluid flow and heating power of the system will be shut off when the “Emergency Off”

push-button switch on the right hand side of the control panel is depressed. Power will

not be restored to the system until this switch is manually reset and the “Start” button is

pressed.

All heater circuits are protected from an over-temperature situation with analog relays

that have been calibrated to a defined temperature. In the event of a relay failure in a
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Elapsed 
Time Parabola # FC-72 

Flow
Power 
(Q=VI)

Average 
Int. Temp

Nozzle 
Temp

Chamber 
Pressure

Average 
Chamb. T Reh In Reh Out Amb. TC

(s) (#) (gph) (W) (oC) (oC) (psia) (oC) (oC) (oC) (oC)

Comments

Figure E.5: Hand Recorded Data Sheet

powered state, the heater can be shut off by removing power to its DC power supply using

a toggle switch on the control panel (denoted as Array Heater).

The fluid flow circuits are protected from an over-pressure situation with pressure sensi-

tive switches. If one of these switches encounters a pressure over the calibrated set pressure,

the entire system will need to be reset. In addition, bypass valves and each pump has indi-

vidual control switches to shut off or redirect portions of the flow system in the event of a

leak.

E.3.3 Data Sheets

E.4 Fluid Sample Extraction Procedure

To determine the percent of air which is dissolved in the test fluid, an Aire-ometer is used.

The function of the Aire-ometer is to pull a temporary vacuum on the test fluid, forcing the

air out of solution, so that the amount of dissolved air in the test fluid can be measured. The

air is measured on a percentage basis.
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Elapsed Time Parabola
Number

Gravity
(0=Micro; L=Lunar; M=Martian Comments

Figure E.6: Camera Hand Recorded Data Sheet

1. Start up the spray cooling flight package and begin data acquisition. Turn Pump 1
(Nozzle) and Pump 3 (Scav) on. After letting the rig equilibrate for approximately
ten minutes, record the temperature and pressure within the chamber.

2. Flip the nozzle flow switch on the control panel down into bypass position. Check
the pressure of Pump 1 Out using the data acquisition monitor. If this pressure is not
below 20 psia, adjust the throttling valve on the test rig to decrease the pressure.

3. Locate the three-way valve attached to the hand drain on the rig. Connect the syringe
to the open port on the valve (see Figure E.7). Ensure the valve is completely closed
before attaching.

4. The FC-72 currently contained in the tubing between the hand drain and three-way
valve has been exposed to air. As a result, the specified fluid must be removed from
the system. Open the hand drain on the rig. Bleed the air-exposed FC-72 out through
the Tygon drain tube and into the accumulation beaker. Close the hand drain.

5. Point the blue three-way valve arm toward the Tygon drain tube (see Figure E.7),
closing that connection. Open the hand drain. Allow 1 to 2 mL of FC-72 to enter
the syringe, and close the hand drain. Turn the valve arm toward the hand drain (see
Figure E.7). Expel the contents of the syringe through the Tygon drain tube and into
the accumulation beaker. Doing so should remove any remaining air located in the
syringe.

6. Turn the valve arm toward the drain tube (see Figure E.7). Open the hand drain.
Allow 4 to 5 mL of FC-72 to enter the syringe, and close the hand drain. Turn the
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valve arm back toward the hand drain (see Figure E.7). Unscrew the syringe and
remove it from the three-way valve.

7. Return the nozzle flow switch on the control panel to normal flow.

8. Connect the syringe to the three-way valve on the Aire-ometer, shown in Figure E.8.
Turn the blue three-way valve arm on the Aire-ometer toward the unused channel.
The open line on the Aire-ometer is indicated by the green dot on the stopcock. The
drain line is open when the green dot is pointed upwards, while the inlet line is open
when the dot is pointed downwards. Open the drain line, which is attached to the
calibrated goose neck.

9. Turn the hand crank in the counterclockwise direction, allowing the mercury to rise to
the bottom of the stopcock. Place the stopcock in the horizontal, or closed, position.

10. Open the inlet line. Draw a sample of FC-72 by turning the hand crank clockwise.
After drawing approximately 0.5 mL of fluid, open the drain line. The current sample
has been exposed to air located in the inlet tube, and must be discarded. Turn the
hand crank counterclockwise to return the mercury line to the bottom of the stopcock,
removing the waste FC-72. Place the stopcock in the closed position, and then reopen
the inlet line.

11. Turn the hand crank clockwise, drawing in FC-72 until the mercury level is approx-
imately 1.3 cm below the 1 mL calibrated mark. Open the drain line. Turn the hand
crank counterclockwise, bringing the mercury level up to the 1.0 mL mark. Close
the stopcock. Read the pressure gauge, noting the reference pressure.

12. Turn the hand crank clockwise, bringing the mercury level down to 4.0 mL. Let the
system equilibrate for 1 minute, then turn the hand crank counterclockwise until the
pressure gauge is once again reading the reference pressure. Repeat step 12 two
more times, ensuring all the air has been removed from the FC-72. When reading
the manometer to determine the percentage of air present in the sample, the major
graduations indicate 0.1 mL, or 10% increments, while the minor graduations indi-
cate 0.02 mL, or 2% increments. Take the reading from the bottom of the FC-72
meniscus.

13. Open the drain line and turn the hand crank counterclockwise, returning the mercury
level to the bottom of the stopcock. Place the stopcock in the horizontal position. For
additional samples, repeat steps 11-13.

E.5 FC-72 Membrane Filter Procedure

1. See Figure E.9 for membrane filter set up and connection to flight package. On
the membrane filter cylinder, the side labeled “Vacuum” should be connected to the
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Figure E.7: Sample Extraction Schematic-A

Figure E.8: Aire-ometer used for measuring air content percentage.
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roughing pump. The side labeled “In” should be attached to the hand drain/fill loca-
tion on the bottom shelf of the rig, and the side labeled “Out” should be connected to
the hand drain/fill location on the top shelf of the rig.

2. Start up the rig.

3. Rig Valve Positions:

(a) Drain Closed

(b) Bottom Nozzle

(c) Top Sump Closed

(d) Nozzle Pump Open

(e) Normal Flow

(f) Bottom Sump Open

4. Turn on Pump 1 (nozzle) and Pump 3 (scav).

5. Turn on the roughing pump.

6. Open the plug valves attached to the membrane filter.

7. Open the flow valves on the rig, located below the hand drain/fill locations.

8. To read the flow rate, use the drain flow rate reading as well as the nozzle flow rate
reading.

E.6 Heater Replacement Procedure

Items needed:

1. Combination wrenches 7/8”,13/16”1/2”9/16”7/16”

2. Allen wrench 5/32”

3. Gaffers tape

4. Phillips screwdriver

111



Figure E.9: Membrane Filter Diagram

5. Small flat screwdriver

6. Replacement heater

7. Exacto knife

8. High temp. solder

9. Soldering Flux

10. Q-tips

11. High heat soldering iron

12. Nickel strap (.004” x .125”, x 3”)

13. High temp. RTV silicon

14. Vacuum grease

15. Plugs 1/2”x2

16. Plug 1/4”

17. Heater set screws x4

Procedure
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1. Unbolt the heater unit from the flight package and disconnect the thermocouples
attached to the heater unit.

2. Turn the valves to the following positions:

(a) drain closed

(b) array nozzle closed

(c) top sump closed

(d) nozzle pump closed

(e) normal flow on

(f) bottom sump closed

3. Cap off the nozzle inlet and outlets on the heater unit.

4. Remove heater unit from the flight package and place on a bench top.

5. Disassemble array chamber and disconnect power leads on the heater array.

6. Remove heater by cutting away the RTV silicon carefully in order to not harm the
thermocouples underneath heater. Clean off excess RTV silicon from the heater.

7. Solder new connections for replacement heater’s power leads.

8. Position four screws near each corner of the replacement heater and reapply RTV
silicon. Remove the four screws after the RTV silicon is reapplied.

9. Reconnect the new heater’s power leads.

10. Reassemble array block together and apply a new layer of vacuum grease along
groove in array chamber.

11. Reinstall the heater unit to the flight package, reconnecting the inlet and outlet leads.

12. Connect membrane filter and pump/remove air from the heater system. See FC-72
Filter Membrane Procedure.
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Appendix F

Additional Experimental Plots

The following plots are very similar to those found in Chapter 1.3, but were not included

to minimize main body length.
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Figure F.1: Meta-Stable CHF Regions, Heat Flux Input vs. Surface Temperature Differ-
ence: (a) Cases 45-47; (b) Cases 69-72.
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Figure F.2: Meta-Stable CHF Regions, Dimensionless Heat Flux Input vs. Dimensionless
Surface Temperature Difference: (a) Cases 45-47; (b) Cases 69-72.
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for Micro, Terrestrial and Elevated Gravity for Cases 01-04
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Figure F.4: Dimensional and Non-dimensional Steady State Heat Flux Transferred to Spray
for Micro, Terrestrial and Elevated Gravity for Cases 05-08
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Figure F.5: Dimensional and Non-dimensional Steady State Heat Flux Transferred to Spray
for Micro, Terrestrial and Elevated Gravity for Cases 09-12
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Figure F.6: Dimensional and Non-dimensional Steady State Heat Flux Transferred to Spray
for Micro, Terrestrial and Elevated Gravity for Cases 13-16
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Figure F.7: Effect of Acceleration and Flow Rate on the Surface Temperature Difference
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Figure F.8: Effect of Subcooling on Cooling Performance: (a) ṁ = 13.66±0.57 [g/s]; (b)
ṁ = 13.60±0.58 [g/s].
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Figure F.9: Effect of Subcooling on Cooling Performance: (a) ṁ = 16.94±1.21 [g/s]; (b)
ṁ = 17.31±1.16 [g/s].
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Figure F.11: Variation of Surface Temperature Difference with Subcooling (ṁ = 17.29±
1.22 [g/s]): (a) a = 0.01±0.01 [g]; (b) a = 1.79±0.08 [g].
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Figure F.12: Effect of Acceleration and Flow Rate on the Surface Temperature Difference:
(a) ∆Tsc = 12.19±1.70 [◦C]; (b) ∆Tsc = 13.35±1.58 [◦C].
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Figure F.13: Effect of Acceleration and Flow Rate on the Surface Temperature Difference:
(a) ∆Tsc = 16.75±1.27 [◦C]; (b) ∆Tsc = 16.73±1.09 [◦C].
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Figure F.15: Dimensional and Non-dimensional Steady State Heat Flux Transferred to
Spray for Micro, Terrestrial and Elevated Gravity for Cases 45-47
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Figure F.16: Dimensional and Non-dimensional Steady State Heat Flux Transferred to
Spray for Micro, Terrestrial and Elevated Gravity for Cases 49-52
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Figure F.17: Dimensional and Non-dimensional Steady State Heat Flux Transferred to
Spray for Micro, Terrestrial and Elevated Gravity for Cases 53-56
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Figure F.18: Dimensional and Non-dimensional Steady State Heat Flux Transferred to
Spray for Micro, Terrestrial and Elevated Gravity for Cases 57-59
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Figure F.19: Dimensional and Non-dimensional Steady State Heat Flux Transferred to
Spray for Micro, Terrestrial and Elevated Gravity for Cases 61-64
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Figure F.20: Dimensional and Non-dimensional Steady State Heat Flux Transferred to
Spray for Micro, Terrestrial and Elevated Gravity for Cases 65-68
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Figure F.23: Dimensional and Non-dimensional Steady State Surface Temperature for Mi-
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Figure F.25: Dimensional and Non-dimensional Steady State Surface Temperature for Mi-
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Figure F.26: Dimensional and Non-dimensional Steady State Surface Temperature for Mi-
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cro, Terrestrial and Elevated Gravity
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Figure F.29: Dimensional and Non-dimensional Steady State Surface Temperature for Mi-
cro, Terrestrial and Elevated Gravity
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Figure F.30: Dimensional and Non-dimensional Steady State Surface Temperature for Mi-
cro, Terrestrial and Elevated Gravity
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Figure F.37: Effect of Dimensionless Subcooling on Cooling Performance: (a) We =
38.23±1.88; (b) We = 38.43±1.99.
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Figure F.38: Effect of Dimensionless Subcooling on Cooling Performance: (a) We =
95.85±44.60; (b) We = 105.39±38.09.
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Appendix G

Test Equipment Data Package

This section contains the document that had to be generated to get approval from NASA

officials six weeks prior to flight testing. It is shown in a direct version; exactly how it was

presented to NASA officials.
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TEST EQUIPMENT DATA PACKAGE 
FOR 

THE VARIABLE GRAVITY  
SPRAY COOLING ARRAY EXPERIMENT 

Kirk Yerkes, Levi Elston 
Air Force Research Laboratory, Propulsion Directorate 

Wright Patterson Air Force Base 
1950 Fifth Street 

WPAFB, OH 45433-7251 
PH (937) 656-4428 

FAX (937) 656-7529 
E-mail: kirk.yerkes@wpafb.af.mil, levi.elston@us.af.mil  

 
25 July 2007 

152



 i

Change Record 
Version Date Owner Description 
Basic 7 May 2007 Levi Elston Initial release 
Rev 2 25 July 2007 Levi Elston Added triple temperature cutoff circuit 
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Revisions 

Rev. 2 - 25 July 2007 

System Weight 

Original TEDP listed weight as 642 pounds.  Upon arrival at GRC, rig weighed in at 742 
pounds.  Additional items were placed on rig including brackets, 80/20 channel, wiring, 
laptop power supply, and handle bars.  Several structural  

Rev 1 
pg # 

Rev 2 
pg # 

Change 

N/A i Added Change Record and Revisions Sheet   
i iii Changed flight dates to 10 Sept 07 – 14 Sept 07 
i iii Removed John Nairus from Flyer Names List and added Casandra 

Applin 
i iii Removed request for high speed camera support 
1 1 Removed John Nairus from Flight Manifest and added Casandra Ap-

plin 
17 17 Corrected missing reference of Figure 16 to Figure CGG 
34 34 Corrected confusing direction for Leak Procedure, added “proceed to 

step 4” 
N/A 46 Added “Array Triple Over-temp Cutoff Circuit” Diagram 
93 92 Adjusted “Calibration Work Instruction” pressure calibration limit 

from 14.7 psia to 100 psia 
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C-9 Quick Reference Data Sheet 
Principle Investigator: Kirk Yerkes, PhD 
 
Contact Information:   AFRL/PRP 

1950 Fifth Street 
WPAFB, OH 45433-7251 
PH: (937) 255-6186 
FAX: (937) 656-7529 
E-mail: kirk.yerkes@wpafb.af.mil 

 
Experiment Title: Variable Gravity Spray Cooling Array Experiment 
 
Flight Dates: 10 Sept 07 – 14 Sept 07 
 
Overall Assembly Weight:  705 lbs (see pg. 14) 
 
Assembly Dimensions:  44”×64.5”×44” 
 
Equipment Orientation Requests:  Lengthwise along axis of aircraft 
 
Floor Mounting Strategy:  Bolts 
 
Gas Cylinder Requests:  No 
 
Overboard Vent Requests:  No 
 
Power Requirements:  115 VAC, 60 Hz (see pg. 17) 
 
Free Float Experiment:  No 
 
Flyer Names for Each Proposed Flight Day: 

Kirk Yerkes, AFRL 
Travis Michalak, AFRL 
Levi Elston, AFRL 
Rebekah Puterbaugh, AFRL 
Lt. Chris De La Pena, AFRL 
Lt. Leah Swanson, AFRL 
Lt. Casandra Applin 
John McQuillen, NASA GRC 
(see Flight Manifest for flying schedule, pg. 1) 

 
Camera Pole and/or Video Support:   No 
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Flight Manifest 
Name Affiliation Preferred Days of 

Flight 
Previous Flyer 

Kirk Yerkes AFRL Tu-F Yes, Jun 2007 
Travis Michalak AFRL Tu-F Yes, Jun 2007 
Levi Elston AFRL Tu-F Yes, Jun 2007 
Rebekah Puterbaugh AFRL Tu-F Yes, Jun 2007 
Lt Chris De La Pena AFRL Tu-F Yes, Jun 2007 
Lt Leah Swanson AFRL Tu-F Yes, Jun 2007 
Lt Casandra Applin AFRL` Tu-F No 
John McQuillen NASA GRC Alternate Yes 

Table 1: Flight Manifest 

Experiment Background 
Two-phase spray cooling is an example of a thermal management technique that may be 
utilized in high heat flux acquisition and high thermal energy transport concepts.  It is one 
of many possible alternatives to the prevalent passive thermal management technologies, 
such as heat pipes and capillary pumped loops, which are currently used in space applica-
tions.  Many researchers have investigated the utility of two-phase sprays for the thermal 
management of devices generating high heat fluxes.  However, there has been little re-
search addressing the physics and ultimate performance of two-phase spray cooling in the 
micro-gravity environment.  This research is supported by John McQuillen at the NASA 
Glenn Research Center.  

Experiment Description 
The experiment consists of two primary components as shown in the equipment draw-
ings.  The first component is a rotatable spray test chamber containing the spray nozzles, 
heaters, primary condenser surface, and sump configuration to collect the liquid and con-
densate.  The second component is the flow loop system that consists of two flow loops 
to manage the working fluid, FC-72, and a water loop to cool the spray test chamber.  
The experiment will be operated by applying electrical power to the Indium Tin Oxide 
(ITO) heaters or thick film resistance heaters, to generate heat, and spray cooling the 
heaters.  Data will be collected on the heat transfer performance and thermophysics of 
spray cooling of the heaters in both high-g and micro-g environments. 
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Equipment Description 

Reduced Gravity Flight Equipment 
 

 
Figure A: Experimental Rig Structure and Base Plate 

The entire experiment is constructed of an aluminum framework made of “8020” with a 
0.5-inch thick aluminum base plate which serves as the mounting plate and a containment 
pan should any fluid leaks develop during flight tests (see Figure A).  The experimental 
rig is 44” wide by 64.5” long by 44” high and weighs 705 lbs.  All hardware used is of 
type experimental. 

The spray test chamber, made of acrylic and 
phenolic, is very small and will be attached 
to the rig during a flight test (see Figure B).  
The spray test chamber consists of a 16 noz-
zle array, a resistive heater, and a fluid sump 
system.  The inside of the chamber contains 
a foam wick structure as the primary con-
densation surface for the condensate liquid 
to return to the sump system.  Liquid is col-
lected in the sump and returned to the fluid 

 
Figure B: Spray Test Chamber 
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delivery loop.  Thermocouples mounted in the chamber are used to determine the heat 
transfer in and around the heater. 

The flow loop consists of the pumps, flow meters, pressure and temperature transducers, 
pressure relief switches, reservoirs, electrical valves, liquid-air heat exchangers, re-
heaters, and associated plumbing (see Figure C).  These components serve to move the 
cooling water and the FC-72 working to and from the spray test chamber while monitor-
ing flow rate, temperatures, and pressure.  Various power supplies are also mounted to 
the experimental framework to provide electrical power to the various fluid motive com-
ponents in the flow loop, heaters, and, instrumentation transducers. 

 
Figure C: Flow Loop Schematic 

The experiment will be operated and monitored via a control panel and data acquisition 
system.  The data acquisition system consists of a laptop coupled to an HP Data Acquisi-
tion/Switch Unit.  Various safety features limit the maximum heater temperature and sys-
tem pressure in order to maintain the experiment within safe operating parameters during 
the flight test.  Both software and mechanical safety features allow for the safe shutdown 
in the event of a temperature or pressure excursion above allowable limits. 

Proposed Layout of Equipment 
The experimental hardware is configured to be installed on the C-9 with the long axis of 
the experiment rig parallel to the longitudinal axis of the aircraft.  Figure D illustrates the 
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axis/orientation that will be used in this test series.  A layout of the hardware during pa-
rabolas, including the location of operators, is shown in Figure E. 

 
Figure D: Equipment Orientation 

 

Figure E: Operator Locations 

Special Handling Requirements 
This experiment does not have components with any special handling requirements or 
any special hazards. 
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Items to Be Taken On-board 
The following items will be taken on-board the C-9 aircraft: laptop, flashlights, spill kit, 
video cameras, digital still camera, notebooks, clipboards, gaffer’s tape.  

Special Requirements 
This experiment does not have any special requirements (in-flight or ground based).  This 
experimental setup will not free-float at any time during flight. 

Structural Verification 

Load Factors 
This report analyzes the effects of emergency load factors specified by the JSC Reduced 
Gravity Program User’s Guide.  The components are analyzed with emergency load fac-
tors in all appropriate orientations. 

Direction Load 
Factor 

Forward 9g 
Aft 3g 
Lateral 2g 
Up 2g 
Down 6g 

Frame Components 
Provided is the detailed analysis to the extent that the component warranted.  This will 
serve as an example as to how the other components in Table 2 were analyzed. 

FC-72 Reservoir 
The FC-72 reservoir is mounted to the base plate and a shelf with four ¼-20 bolts and 
weighs 5.60 lbs. when filled with FC-72 to its operational level.  Figure F shows the 9g 
forward load factor results. 

Applied g loading: 

Direction Load (lbs) 
Forward 50.4 
Aft 16.8 
Up/Lateral 11.2 
Down 33.6 
 

Tensile/shear loading: The independent tensile/shear loading per bolt was calculated as 
shown here: 

( )
boltsof

loadapplied
  #
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Direction Load 
(lbs/bolt) 

Forward 12.6 
Aft 4.2 
Up/Lateral 2.8 
Down 8.4 
 

Margins of Safety: The ultimate tensile margin of safety is calculated as shown here: 

( )( ) 1
 

−=
FSloadapplied

F
MS UT

UT  

Where, 

UTF  = Ultimate tensile failure load (other options include YTF  = Yield tensile 
failure load, SUF  = Ultimate shear failure load, and SYF  = Yield shear 
failure load) 

FS  = Factor of safety 

Established NASA factors of safety are 2.0 or greater for all structural or fracture critical 
elements. 

The tensile and shear loads for a grade 8 ¼-20 bolt are: 

TF  = 4770 lbs SF  = 2860 lbs 
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Figure F: Reactions to 9g Forward Load Factor—FC-72 Reservoir 

Shear ultimate margin of safety: 

( )( ) 1121
26.12

2860
=−=SMS  

With a margin of safety of 112, it is clear that the applied g-loads in any direction are 
small in comparison with the failure or yield loads for the bolts.  All tensile/shear loads 
are two orders of magnitude below the failure loads and thus indicate large margins of 
safety for any force acting on this component. 

Component Table 
Table 2 contains all data pertinent to the analysis of the remaining frame components.  It 
is evident from the ultimate tensile margins of safety that none of the components ap-
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proach the failure loads of the bolts restraining them and therefore, no further analysis of 
these components is warranted. 

Component Weight 
(lbs) 

Applied g-
load (9g for-
ward – lbs) 

Bolt Tensile/shear 
loading (lbs/bolt) SF  (lbs) MS SF  

Power Supply (480W) 3.85 34.7 10-32 8.7 1525 87 
Power Supply (100W) 1.60 14.4 10-32 3.6 1525 210 
Power Supply (chamber 
heater) 

3.15 28.4 10-32 7.1 1525 106 

Power Supply (1kW) 15.6 143.1 1./4-20 17.9 1525 41.5 
Heat Exchanger Fan 3.35 30.2 10-32 5.0 1525 150 
Heat Exchanger Assembly 
– Water Loop 

10.5 94.5 MS51959 3.9 1525 192 

Heat Exchanger Assembly 
– FC-72 Loop 

14.2 127.8 MS51959 5.3 1525 142 

Accelerometer 2.9 26.1 MS51959 6.5 1525 116 
Water Reservoir 14.0 126.0 Grade 8 ¼-20 25.2 2860 55.8 
Test Section 3.4 30.6 MS51959 3.8 1525 200 

Table 2: Component Analysis 

Rig Frame Analysis 
This section will include a detailed analysis of the frame.  The loads and moments acting 
on the rig frame base members are presented in Table 3.  Therefore, the weight in Table 3 
does not include the weight of the 80/20 extrusions below the lower joints and the center 
of gravity distance is measured from the top of those 80/20 extrusions. 

The rig frame is constructed of 2020 extrusions from 80/20 Inc.  All joints were assem-
bled with their recommended bolt kits and all fasteners were torqued according to their 
specifications.  The corner connections use the manufacturer’s 90° joining plates (P/N 
4128) with two inside corner brackets (P/N 4114).  Table 4 contains the extrusion proper-
ties and Table 5 has the joint strength values.  80/20 did not have documentation for the 
joints we are using with the 2020 extrusions.  We performed static testing to develop our 
own figures and document the result in Appendix B.  The frame is bolted to the base plate 
with MS51959-81 screws. 

The total moment load resulting from the 9g forward load factor is reacted at eighteen 
joints connecting the vertical members to the base members (ignoring, conservatively, the 
effects of the eighteen joints at the top of the frame and the bracing that the shelves pro-
vide).  The total moment load, as determined from the data of Table 3, is: 

( ) ( ) 59.845,8651.964999 === ∑MgM Total  in·lbs 

Dividing this total moment among the eighteen joints at the base of the frame yields a 
moment load per joint of 4824.76 in·lbs.  Comparing this load to the joint ultimate 
strength: 

( )( ) 34.1
5.176.4824

9700
=−=UltMS  

This gives us a positive margin of safety. 
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 Weight (lbs) 
Z from top of 

80/20 base (in) Mz 
Frame 111.60 18.25 2036.70 
Shelf Supports 13.60 7.55 102.68 
Shelves 50.70 8.11 411.18 
Fasteners 41.30 12.00 495.60 
Water Loop 10.50 14.99 157.40 
FC72 Loop 14.20 12.29 174.52 
Level One 49.90 5.47 272.95 
Level Two 29.10 23.11 672.50 
Level Three 2.60 20.50 53.30 
Level Four 27.60 30.81 850.36 
Test Section 3.40 30.81 104.75 
Optical Mountings 1.50 21.01 31.52 
Wiring & Connectors 43.00 18.25 784.75 
Plumbing & Fittings 48.20 18.25 879.65 
Miscellaneous 101.0 15.00 1515.0 
Accelerometer 2.90 30.81 89.35 
Power Supply (1kW) 15.60 3.50 54.60 
Total 566.70 15.32 8686.8 

Table 3: Experiment Rig Loads and Moments 

 2020 1010 
Material 6105-T5 Aluminum 6105-T5 Aluminum
Yield Strength 35000 psi 35000 psi
Tensile Strength 38000 psi 38000 psi
Elastic modulus 10,2000,000 psi 10,2000,000 psi
Moment of inertia (x-x and y-y) .5513 in4 .04413 in4

Section area 1.223 in2 .435in2

Table 4: Extrusion Properties 

 Double 90° Joining Plate with 90° 
Corner Brackets – 2020 

Corner Bracket – 1010 

Direct (shear) load 325 lb
Moment load 9700.0 in·lbs 375 in·lbs
Torsion load 180 in·lbs

Table 5: Joint Strength Values 

With the tipping moment factored into the situation under 9gs forward, the tensile load on 
the bolts in the row farthest from the line of rotation will experience the highest load and 
that load can be calculated with this formula: 

∑
=

i
i

k
t nd

FLd
P 2max,  

Where 
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F  = overturn load 

L  = vertical distance from overturn line to center of gravity 

kd  = distance from overturn line to furthest bolt(s) 

n  = number of bolts in a row 

id  = distance from overturn line to row 

The total rig, excluding the ½” aluminum base plate, weighs 566.7 lb and the center of 
gravity is 18.5 inches from the top of the base plate.  This will result in the reactions illus-
trated in Figure G.  Substituting the known values into this formula 

( )( )( )( )
( ) ( )

( )
( ) ( )

27

5.395.38928275.135.1211
59565350474441383532294

262320171411863462615.15.10
625.187.5669

222222

22222222222

2222222222222max, =

++++++

++++++++++++

+++++++++++++
=

L

LL

L
tP

 

lbs/bolt 27 load  tensiletippingmax, ==tP  

Margin of Safety: Using the margin of safety calculation stated earlier in this report, the 
ultimate and yield margins of safety in the tipping tensile load on the bolts in the row far-
thest from the line of rotation can be calculated by: 

For MS51959 screws: TF  = 2540 lbs and SF  = 1525 lbs 

( )( ) 461
227

2540
≈−=TMS  

With the large margins of safety, it is evident that the tensile load on the bolts in the row 
receiving the most tension during tipping will not be critical for bolt failure. 

Combined Shear/Tensile Loading: The combined tipping shear and tensile loading is 
analyzed with the following formula: 

1
23

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

t

t

S

S

F
P

F
P

 

Where 

SP  = applied shear load 

SF  = shear failure load 

tP  = applied tensile load (tipping) 

tF  = tensile failure load 
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Figure G: Reactions to 9g Forward Load Factor—Rig Frame 

The combined shear/tensile loading is analyzed below: 

With a forward load of 572.6 at 9gs, which equals 5153.4 lbs, being held by 182 screws, 
the shear loading per screw is 28.3 lbs. 

00012.
2540
27

1525
3.28 23

=⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛  = .012% of load carrying capacity used 

Shelves 
Table 6 contains all data pertinent to the analysis of the shelves. 
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Shelf Weight (including 
components – lbs) 

Applied mass (9g 
forward – lbs) 

Shear Loading 
(lbs/bolt) Bolt FS (lbs) 

1 17.8 160.2 7.0 ¼-20 3300
2 17.2 154.8 5.2 ¼-20 3300
3 10.1 90.9 4.1 ¼-20 3300
4 36.5 328.5 8.0 ¼-20 3300
5 29.2 262.8 6.0 ¼-20 3300

Table 6: Shelf Loading 

Shear Margin of Safety: The shear margin of safety for the first shelf is calculated as 
shown here: 

( )( ) 2351
20.7

3300
≈−=SMS  

With a margin of safety of 235, it is clear that the applied g-loads in any direction are 
small in comparison with the failure or yield loads for the bolts.  All tensile/shear loads 
are two orders of magnitude below the failure loads and thus indicate large margins of 
safety for any force acting on this shelf. 

Shelf Attachment to Frame: The shelves are attached to 1010 extrusions that are at-
tached to the 2020 frame with corner brackets (P/N 4121 and 4122, right and left brackets 
respectively).  

Shelf 4 is used to show the calculations for the shelves.  It is supported by 8 extrusions 
and the 9g forward load factor results in reactions shown in Figure H.  The 328.5 lb load 
spread over the 8 joints results in an individual loading of 41.06 lb.  With a joint strength 
value of 325 lb, from Table 5, the margin of safety is: 

3.41
5.106.41

325
=−

⋅
=MS  

The center of gravity of the components on the shelf is at 2.75 in.  This creates a moment 
load of: 

38.903)75.2)(5.36(9 == gM total  

Dividing this total moment among the eight joints yields a moment load per joint of 
112.9 in·lbs. This gives a margin of safety, using a joint strength value of 375 in·lbs from 
Table 5, of: 

2.11
5.19.112

375
=−

⋅
=MS  

By symmetry, the 3g aft and 2g lateral load factors are not considered critical for failure 
in the structure.  The results of the calculations for the remaining shelves are shown in 
Table 7. 
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Figure H: Reactions to 9g Forward Load Factor—Shelf 

Shelf Weight (including 
components – lbs) 

Applied mass (9g 
forward – lbs) 

Shear load MS Moment load MS 

1 17.8 160.2 9.8 3.5 
2 17.2 154.8 10.2 1.7 
3 10.1 90.9 8.5 3.0 
4 36.5 328.5 4.3 1.2 
5 29.2 262.8 5.6 1.8 

Table 7: Shelf Margins of Safety 

Pull Testing 
Components of the installation were pull tested using a Tenma Digital Force Gauge (op-
erated by AFRL Research Engineers and calibrated by AF in-house Precision Measure-
ment Equipment Laboratory).  Data gathered from the pull tests are contained in Table 8.  
All components passed the pull test. 
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Component Location Weight 
(lbs) 

Forward 
(lbs) Aft (lbs) Left (lbs) Right 

(lbs) Up (lbs) 

Pump Shelves 
2,4,5 

7.35 (132.3,135) (44.1,135) (29.4,135) (29.4,135) (29.4,60)

Flow meter Shelves 
2,4,5 

3.75 (67.5,80) (22.5,80) (15,80) (15,80) (15,20) 

2-way valve Shelves 
3,4,5 

2.55 (45.9,60) (15.3,60) (10.2,60) (10.2,60) (10.2,15)

3-way valve Shelves 
4,5 

2.85 (51.3,60) (17.1,25) (11.4,20) (11.4,20) (11.4,15)

Note: Format is (target, actual).  All hold times are fifteen seconds. 
Table 8: Pull Test Results 

Analysis of Microgravity Experiment Rig as One Object 
The weight and moment arm of the entire rig is in Table 9.  It was calculated that the ver-
tical center of gravity of the rig is 15.0 in.  The base plate of the rig is bolted to the floor 
of the aircraft with 8 steel AN6 bolts.  The independent shear/tensile load on the 8 bolts 
holding the base plate to the aircraft floor is calculated as: 

Forward: 5538 lbs Up/Lateral: 1231 lbs 
 

Description Weight 
(lbs) 

Z from aircraft 
floor (in) 

Moment Arm 
(lbs·in) 

Rig 543.5 17.6 9565.6 
Reservoirs 23.2 4.5 104.40 
Base Plate 139.1 0.25 34.78 
Total 705.8 13.75 9704.75 

Table 9: Assembly Weight and Moment Arm 

The normal-gravity load per attach point is computed as 92.9 lb, well below the maxi-
mum allowable load of 200 lb. per attach point.  The 9g forward load factor results in re-
actions shown in Figure I. 

The tipping tensile load under 9gs forward on the bolts farthest from the line of rotation is 
calculated as: 

( )( )( )( )
( ) 3.441

25.6225.4225.2225.22
25.6275.138.7059

2222max, =
+++

=tP  lbs 

The shear load per bolt is: 

( )( ) 0.794
8

8.7059
==SP  lbs 
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Figure I: Reactions to 9g Forward Load Factor—Assembly 

Margin of Safety: Using the margin of safety calculation stated earlier in this report, the 
ultimate and yield margins of safety in the tipping tensile load on the bolts in the row far-
thest from the line of rotation can be calculated by: 

For AN6 bolts: UTF  = 10100 lbs and YTF  = 7740 lbs 

( )( ) 44.101
23.441

10100
=−=UTMS  

( )( ) 77.71
23.441

7740
=−=YTMS  

The ultimate shear strength for AN6 bolts is: SUF  = 8280 lbs.  The margin of safety for 
shear loading is: 

( )( ) 21.41
2794

8280
=−=UTMS  

With the large margins of safety, it is evident that the tensile load on the bolts in the row 
receiving the most tension during tipping will not be critical for bolt failure.  The margin 
of safety for shear loading is large too. 
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Combined Shear/Tensile Loading: The combined tipping shear and tensile loading is 
analyzed with the following formula: 

002791.
10100

3.441
8280
794 23

=⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛  = .28% of load carrying capacity used 

With the results above, the combined shear/tensile loading during 9gs forward, including 
tipping moment, is not critical for bolt failure. 

As shown through this structural analysis, the Microgravity Experiment Rig will sustain 
the 9g forward loading with large margins of safety, indicating large margins in all other 
directions and planes. 

Electrical Analysis 

Electrical Schematic 
Appendix A contains the electrical schematics for the microgravity experiment and 
shows the overall power distribution, fuses, and wire sizes. 

Electrical Load 
The Microgravity Spray Cooling Experiment requires 115 VAC, 60 Hz power for opera-
tion.  The component requirements are in Table 10. 

Electrical Emergency Flow Shutdown Switch 
In the event that an emergency shutdown is required by failure of the test section or any 
other unforeseen circumstance, there is a large “emergency flow shutdown” switch that 
automatically shuts off power to all valves, heaters and pumps.  This switch essentially 
shuts down the flow and the system can only be reset by pulling this button back up.  The 
computer, display, and instrumentation are not affected by this emergency shutoff and 
thus permit the monitoring of the experiment if it is necessary. 

In addition, individual items can be shut off by shutting off the main power switches on 
the control panel located on top of the frame. 
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Circuit Power Component Load (amps) 
1 115 VAC, 60 Hz Water Heater 

FC Reheaters (2) 
2 

12 
 Wire Gauge: 12 

Max Outlet Current: 20 Amps 
 
Total Circuit 1 

 
14 

2 115 VAC, 60 Hz Power Supply 
Heater 

7 
4.5 

 Wire Gauge: 12 
Max Outlet Current: 15 Amps 

 
Total Circuit 2 

 
11.5 

3 115 VAC, 60 Hz 1 kW Power Supply 
Heater 

10 
4.5 

 Wire Gauge: 12 
Max Outlet Current: 20 Amps 

 
Total Circuit 3 

 
14.5 

4 115 VAC, 60 Hz Power Supply 
Fans (5) 
Watt Transducers (2) 
PID Controller (3) 
Data Acquisition Sys-
tem 
Zero-Point Dry Well 
Laptop Computer 

2 
1 

.004 

.03 

.5 
1 
1.5 

 Wire Gauge: 12 
Max Outlet Current: 15 Amps 

 
Total Circuit 4 

 
6.034 

Table 10: Component Requirements 

Loss of Electrical Power 
In the event of a loss in electrical power, all valves, pumps, heaters and instrumentation 
will shut down.  There will be no flow. 

Pressure System 

Flow Schematic 
Appendix C contains the flow schematic, Figure CGG, for the microgravity experiment 
rig.  Hose sizes are specified on the flow schematic.  The bubbled numbers in Figure 
CGG correspond to the schematic reference numbers in Table 11. 

Overpressure shutoff switches were set using the following rationale.  Although it is not 
standard procedure, if the operating pressures are set at ground level, the gauge reading is 
converted into an absolute reading.  Under normal operating conditions, cabin pressure is 
11 to 12 psia.  In the event of a rapid cabin depressurization, cabin pressure at altitude 
can fall to 4 psia.  Therefore, the set pressure (SP) for the relief valves are set using the 
following function of the WP (in absolute pressure): 

( ) psiaWPSP 6.105)4100(1.1psia 410.1 =−⋅=−⋅=  
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Figure J: Reservoir Drawing 

The pneumatic pressure (PP) of components is set using the following equation: 

( ) 7.14614.74)-(1001.11.25psia 7.14psia 41.125.1 =+⋅⋅=+−⋅⋅= WPPP  

Both the set pressure and pneumatic pressure are differential pressures and the set-
ting/testing occurs at a difference relative to ambient pressure. 

The temperature within the test chamber will set the system pressure.  The maximum 
temperature will be at the heater and is 100 °C.  The maximum chamber temperature is 
set for 70 °C, which corresponds to a chamber pressure of 25 psiA.  In order to drive flow 
through the spray nozzles, the pump needs to provide FC-72 at a pressure of 75 psiA.   

Pressure switches will be set at 105 psiA and will shut off the heaters and pumps in the 
event of an overpressure situation.  Shutting down the heaters and pumps will serve to 
remove the heat source and allow the pressure to equalize through the flow loop across 
the pumps resulting in a system pressure no more than 25 psiA.  The volume of the 
chamber will also act as a fluid overflow reservoir to allow excess expansion of the FC-
72. 

All water flow components will be pressure tested to 111 psiG.  All FC-72 flow compo-
nents, including the test chamber, will be pressure tested to 132 psiG.  Figure J shows a 
detailed drawing of the reservoir. 
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Pressure certification has been completed.  Results are presented in Appendix D.  In addi-
tion, the Variable Gravity Spray Cooling System’s Calibration Work Instruction, which 
shows the calibration methods and certified items used for calibration, has been attached 
in Appendix F. 

Flow Component Listing 
Table 11 contains a listing of the flow components.  In-house MAWP items tested to max 
pneumatic pressure. 

Table 11: Flow Components 

Schematic 
Reference # Component Description 

MAWP (psig unless 
otherwise noted) Manufacturer 

Water Loop    
1 Heat Exchanger 250  Lytron 
 Fan n/a Lytron 

2 Heat Exchanger 250 Lytron 
 Fan n/a Lytron 

3 Pump 200  Tuthill 
4 Filter 2150 Swagelock 
5 Flow Meter 5000 Omega 
 Pulse Amplifier n/a Omega 

6 Pressure Transducer 100 (proof-200) psia Omega 

7 Reservoir/Sight Glass 290 MDC Vacuum/Lube 
Devices Inc. 

8 Drain valve 1000 Swagelock 
9 Pressure Switch 12000 United Electric Cont 

    
FC-72 Loop    

10 Heat Exchanger 250 Lytron 
 Fan n/a Lytron 

11 Heat Exchanger 250 Lytron 
 Fan n/a Lytron 

12 Heat Exchanger 250 Lytron 
 Fan n/a Lytron 

13 Pump 200 Tuthill 
14 Pump 250 Tuthill 
15 Pump 250 Tuthill 
16 Filter 2150 Swagelock 
17 Filter 2150 Swagelock 
18 Filter 2150 Swagelock 
19 Flow Meter 5000 Omega 

 Pulse Amplifier n/a Omega 
20 Flow Meter 5000 Omega 

 Pulse Amplifier n/a Omega 
21 Pressure Transducer 200 (proof-400) psia Omega 
22 Pressure Transducer 200 (proof-400) psia Omega 
23 Pressure Transducer 200 (proof-400) psia Omega 
24 Pressure Transducer 100 (proof-200) psia Omega 
25 Reservoir 135 In-House 
26 2-way valve 6000  Hoke/Simco Controls 
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Schematic 
Reference # Component Description 

MAWP (psig unless 
otherwise noted) Manufacturer 

 Actuator n/a Hoke/Simco Controls 
27 2-way valve 6000 Hoke/Simco Controls 

 Actuator n/a Hoke/Simco Controls 
28 2-way valve 6000 Hoke/Simco Controls 

 Actuator n/a Hoke/Simco Controls 
29 2-way valve 6000 Hoke/Simco Controls 

 Actuator n/a Hoke/Simco Controls 
30 3-way valve 6000 Hoke/Simco Controls 

 Actuator n/a Hoke/Simco Controls 
31 3-way valve 6000 Hoke/Simco Controls 

 Actuator n/a Hoke/Simco Controls 
32 Drain valve 1000 Swagelock 
33 Drain valve 1000 Swagelock 
34 Drain valve 1000 Swagelock 
35 Drain valve 1000 Swagelock 
36 Drain valve 1000 Swagelock 
37 Drain valve 1000 Swagelock 
38 Pressure Switch 12000 United Electric Cont 
39 Pressure Switch 12000 United Electric Cont 

 Accelerometer n/a  
    
Chamber Chamber 135 In-House 

40 Pressure Transducer 100 (proof-200) psia Omega 

Fluid Containment Plan 
The test fluid is FC-72.  FC-72 is a non-toxic and non-corrosive fluid. The total volume 
of FC-72 in the system is approximately 1.5 liters. The test chamber can hold 2.6 liters of 
FC-72, while the fluid reservoir between the two cut-off valves can hold approximately 
1.5 liters. In the event of a leak in either the test chamber or the fluid reservoir, the FC-72 
can be pumped into the other chamber.  There are provisions to isolate the legs of the 
flow loop in the event of a leak. 

There is a separate cooling loop which circulates water through a copper coil surrounding 
the test chamber to condense FC-72 vapor. 

The junction between the rig and the baseplate has been sealed with RTV to contain any 
overnight leaks of fluid.  Any penetrations through this plate, including those for test sec-
tions, tanks, etc, have also been sealed with RTV.  The approximate volume, based on the 
height of the 80/20 channel and the enclosed area of the baseplate, is 44.75 liters.  The 
base of the rig is divided into four cells.  The smallest cell has an approximate volume of 
eight liters. 

The majority of the plumbing within the flow loops is either metallic or polyflow and has 
been pressure certified to 1.25x (pneumatically) the Maximum Absolute Working Pres-
sure (MAWP). 

The experiment will be leak-checked prior to installation aboard the aircraft.  After any 
test section or fluid change out, and prior to any flight, the rig will be leak-checked. 
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Absorbent PIGs, Kimwipes and Ziploc baggies will be strategically located around the 
rig to provide clean-up capability in the event of a leak.  Used PIGs and Kimwipes will 
be sealed in the Ziploc baggies. 

Laser Certification 
No lasers will be used with this experiment. 

Parabola Details and Crew Assistance 
Forty parabolas per flight of 0.01g are requested.  No modifications to either the timing 
between trajectories or the time duration of turns are anticipated. 

Institutional Review Board 
There are no plans to use human or animal test subjects and these tests are not of a bio-
logical nature. 

C-9 Hazards Analysis 
This section consists of AOD Forms 70 and 71. 
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HAZARD SOURCE CHECKLIST 

Enumerate or mark N/A 

N/A Flammable/combustible material, fluid (liquid, vapor, or gas) 
1 Toxic/noxious/corrosive/hot/cold material, fluid (liquid, vapor, or gas) 
2 High pressure system (static or dynamic) 
N/A Evacuated container (implosion) 
N/A Frangible material 
N/A Stress corrosion susceptible material 
N/A Inadequate structural design (i.e., low safety factor) 
N/A High intensity light source (including laser) 
N/A Ionizing/electromagnetic radiation 
N/A Rotating device 
N/A Extendible/deployable/articulating experiment element (collision) 
N/A Stowage restraint failure 
N/A Stored energy device (i.e., mechanical spring under compression) 
N/A Vacuum vent failure (i.e., loss of pressure/atmosphere) 
3 Heat transfer (habitable area over-temperature) 
4 Over-temperature explosive rupture (including electrical battery) 
5 High/Low touch temperature 
6 Hardware cooling/heating loss (i.e., loss of thermal control) 
N/A Pyrotechnic/explosive device 
N/A Propulsion system (pressurized gas or liquid/solid propellant) 
N/A High acoustic noise level 
N/A Toxic off-gassing material 
N/A Mercury/mercury compound 
N/A Other JSC 11123, Section 3.8 hazardous material 
N/A Organic/microbiological (pathogenic) contamination source 
7 Sharp corner/edge/protrusion/protuberance 
N/A Flammable/combustible material, fluid ignition source (i.e., short circuit; 

under-sized wiring/fuse/circuit breaker) 
8 High voltage (electrical shock) 
N/A High static electrical discharge producer 
9 Software error or compute fault 
N/A Carcinogenic material 
 Other:  
 Other:  
 Other:  

 
 
 
 
AOD Form 71 (Jul 2002) Verify that this is the correct version before use. 
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DETAILED HAZARD DESCRIPTION 

Use the following format for describing each identified hazard in detail. 

Hazard Number:  1 

Title: 
Toxic fluid – FC-72 

Hazard Description: 
Water is not a health hazard. 
FC-72 is non-toxic and inert; the quantity used in this experiment will not affect the aircraft environment
At room temperature: Eye contact--Contact with the eyes during product use is not expected to result in 
significant irritation.  Skin contact--Contact with the skin during product use is not expected to result in 
significant irritation.  Inhalation--No health effects are expected.  Ingestion--No health effects are 
expected 
At temperature >200°C: hydrogen fluoride and perfluoroisobutylene is generated. 

Hazard Cause(s): 

Leak, spill, or component failure causes release of test fluid from closed experimental system.  Over 
temperature of FC-72 in excess of 200oC. 

Hazard Control(s): 

Pressure-testing of equipment of at least 1.25 times the operating pressure will ensure adequate 
containment of fluids. 
Safety cut-out measures will monitor heater temperature, to not exceed 100°C, and shut down operation 
in potentially-hazardous circumstances. 
Should a leak occur, the flow system is designed to be able to isolate the FC-72 either in the test cham-
ber or the reservoir. 
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DETAILED HAZARD DESCRIPTION 

Use the following format for describing each identified hazard in detail. 

Hazard Number:  2 

Title: 
High pressure system 

Hazard Description: 
Over pressurization of flow system causes a component to fail; releasing test fluids and possibly injuring 
nearby personnel. 

Hazard Cause(s): 

Flow system blockage, or cabin depressurization causes unexpected pressure differential across an 
experiment component. 

Hazard Control(s): 

Test chamber: Temperature within the chamber will set the pressure.  A maximum working temperature 
of 70 °C in the chamber will result in a maximum of 25 psiA. 
FC-72 Nozzle inlet: Inlet pressure to the spray nozzle will be limited to 75 psiA 
Water flow components will be pressure tested to 111 psiG.* 
FC-72 flow components, including the test chamber, will be pressure tested to 132 psiG.* 
Pressure switches will be set at 105 psiA and will shut off the heaters and pumps in the event of an over-
pressure situation.  Shutting down the heaters and pumps will serve to remove the heat source and allow 
the pressure to equalize through the flow loop across the pumps resulting in a system pressure no more 
than 25 psiA.  The volume of the chamber will also act as a fluid overflow reservoir to allow excess ex-
pansion of the FC-72 or isolation of the FC-72 in the event of a leak. 
*All noncommercial components will be pneumatically pressure tested to at least 1.25 times the 
maximum working pressure.  Note: Maximum working pressure for FC-72 system is 100 psiA.  
Maximum working pressure for water system is 75 psiA. 

AOD Form 70 (Jul 2002) Verify that this is the correct version before use. 
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DETAILED HAZARD DESCRIPTION 

Use the following format for describing each identified hazard in detail. 

Hazard Number:  3 

Title: 
Heat transfer 

Hazard Description: 
Increase in temperature of habitable area surrounding experiment causes discomfort and/or burning in 
personnel on board 

Hazard Cause(s): 

Overheat on one or more components causes an increase in the temperature surrounding the experiment 
package. 
 
Spill or leak of heated fluid causes an increase in the temperature surrounding the experiment package. 

Hazard Control(s): 

Maximum expected heater operating temperature of 100 °C and test chamber temperature of 70 °C – 
minimal heat load, will not significantly alter the environment surrounding the experiment package.  
This will allow high heat flux testing at the heater without significantly altering the chamber tempera-
ture. 
 
Over-temperature controls and safety cut-out measures prevent overheating by shutting down the ex-
periment. 
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DETAILED HAZARD DESCRIPTION 

Use the following format for describing each identified hazard in detail. 

Hazard Number:  4 

Title: 
Over temperature explosive rupture 

Hazard Description: 
Increase in temperature within the test cell will result in an increase in pressure.  Should this increase in 
temperature result in a pressure exceeding the rating of the viewport to the test chamber, an explosive 
rupture may occur. 

Hazard Cause(s): 

The temperature in the chamber is balanced by the heat input from the heaters and the water coil around 
the chamber walls.  The test chamber is controlled at a temperature consistant with a desired pressure.  
The maximum allowable chamber temperature is 70°C, which will result in a chamber pressure of 
25 psiA. 

Hazard Control(s): 

The test chamber is constructed with 1-inch Lexan viewports mounted to the test chamber.  In addition, 
over-temperature switches will shut off the heaters in the event of a temperature excursion in the test 
chamber.  The Lexan viewports have been structurally analyzed to verify structural integrity in the event 
of a pressure excursion.  The test chamber along with the FC-72 flow components will be tested to 
132 psiG. 
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DETAILED HAZARD DESCRIPTION 

Use the following format for describing each identified hazard in detail. 

Hazard Number:  5 

Title: 
High touch temperature 

Hazard Description: 
Components or surfaces feel hot to the touch; may cause minor burns to personnel who come in contact 
with them. 

Hazard Cause(s): 

Improperly insulated surfaces expose personnel to hot surfaces. 

Hazard Control(s): 

High temperature components will be insulated or thermally shielded from the environment. 
 
The test chamber, as well as potentially exposed components and surfaces, will be insulated. 
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DETAILED HAZARD DESCRIPTION 

Use the following format for describing each identified hazard in detail. 

Hazard Number:  6 

Title: 
Hardware cooling loss 

Hazard Description: 
Planned cooling measures fail, resulting in overheating of hardware, potentially resulting in hazardout 
temperatures in and around the experimental test package 

Hazard Cause(s): 

Line blockages 
 
Pump failure 
 
Heat exchanger fan failure 

Hazard Control(s): 

Safety cutout measures will ensure temperature control, < 70°C, including a manual emergency-
shutdown-switch, which will shut down all potentially dangerous components. 
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 DETAILED HAZARD DESCRIPTION 

Use the following format for describing each identified hazard in detail. 

Hazard Number:  7 

Title: 
Sharp corners 

Hazard Description: 
Sharp corners or other surfaces on experimental test package cause minor cuts/abrasions to personnel. 

Hazard Cause(s): 

Unintentional contact with sharp corners may cause minor cuts/abrasions. 

Hazard Control(s): 

A safety/grab rail will be installed along the perimeter of the experimental test package frame. 
 
Any remaining exposed sharp edges or corners will be padded. 
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DETAILED HAZARD DESCRIPTION 

Use the following format for describing each identified hazard in detail. 

Hazard Number:  8 

Title: 
High voltage 

Hazard Description: 
Potentially lethal voltages will be used to power the experiment. 

Hazard Cause(s): 

1.  Wire breaking and shorting to chassis. 
2.  Shorting of voltage potential to ground. 
3.  Breakdown of wire because of high current load. 

Hazard Control(s): 

1.  All power lines are protected using circuit breakers and/or fuses. 
2.  All voltage potentials are shielded and proper connectors are used. 
3.  Experiment package is chassis grounded. 
4.  All wiring is rated for operating currents. 
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DETAILED HAZARD DESCRIPTION 

Use the following format for describing each identified hazard in detail. 

Hazard Number:  9 

Title: 
Software error 

Hazard Description: 
Loss of experimental control (ie: temperature/pressure control) due to software error. 

Hazard Cause(s): 

Computer failure causes software not to work 
 
Aircraft power loss/malfunction. 

Hazard Control(s): 

Computer operates on battery backup in case of power loss. 
 
All safety cut-out measures will be controlled via hardware, rather than software. 
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Tool Requirements 
Tools supplied by the Reduced Gravity Office should be sufficient for loading and re-
moval of the experiment from the aircraft.  In addition, we are also bringing our “FOD” 
rated tool kit, purchased from Snap-On, that has all the tools contained in foam cutouts 
within several zippered “packs”.  An inventory sheet is attached with the tool kit that in-
cludes a CTK# that matches the etched number on each tool. 

Photo Requirements 
Request high-speed video camera for recording experimental results.  The experiment 
contains sensitive non-classified information and therefore we request that pictures (from 
other researchers or NASA photographers) be directed away from our experiment so we 
are not in the background of any shots. 

Aircraft Loading 
The experiment can be loaded with a forklift and either directly on its own pallet or the 
lifting pallet/basket supplied by the Reduced Gravity Office.  The experiment assembly 
contains casters that are removable.  The experiment has a base plate of area 19.1 sq. ft. 
and weights 705 lbs which will result in a floor pressure of 36.91psi.  The experiment 
will be loaded using four casters (10 lbs each) with two wheels on each.  Therefore, the 
expected additional load carried by each caster will be 195.5 lbs and the additional load 
supported by each individual wheel will be 97.75 lbs.  The caster wheels have a loaded 
contact area of approximately 0.5 sq. in. and the resulting floor pressure is expected to be 
195.5 psi.  Four jacks (10 lbs each) have a contact area of 12.75 sq. in. and are used to 
lower the experiment to the floor.  The resulting floor pressure will be 15.33 psi.    

Ground Support Requirements 
It is necessary to have access to 115 VAC, 60 Hz in order to operate the assembly, either 
for final functional checks or the Test Readiness Review.  No other ground requirements 
are necessary. 

Hazardous Materials 
FC-72 will be the primary working fluid.  Temperatures exceeding 200 °C will result in 
FC-72 generating hazardous materials, hydrogen fluoride and perfluoroisobutylene.  Be-
cause the heater temperatures will be limited to 100 °C there will be no hazardous mate-
rial generation. 

Material Safety Data Sheets 
See Appendix E for the material safety data sheet (MSDS) for the FC 72. 
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Test Procedures 
Transportation/Storage 

1. Test rig and all support equipment will be transported via a box rental truck, 
 driven by AFRL personnel. 

2. AFRL requests an area inside the RGO’s setup bay to store and run prelimi-
 nary tests on the ground. 

Loading Checklist 
1. The use of a forklift is requested to load onto the aircraft. 
2. Verify that all mounting bolts are tight. 
3. Verify power connections, 115 VAC 60 Hz. 

Pre-test Checklist 
1. Ascertain that the coolant and water systems are filled with sufficient liquids. 
2. Plug in cords for the four AC circuits, 20 amp capacity for circuits 1 and 3 and 

15 amp capacity for circuits 2, and 4. 
3. Turn on Breakers 1, 2, 3 and 4, verify green indicators for each. 
4. Verify that all toggle switches are in the off (down) position and all potenti-

ometers are at 0 (fully counterclockwise). 
5. Press the Start button and verify red indicators for the pumps and target heat-

ers and red and blue indicators for the flow bypass. 

Testing Checklist 
1. Turn on the laptop computer, log in and start the data acquisition program. 
2. Verify system pressures are appropriate for coolant temperature. 
3. Turn on the water pump and set the flow rate as indicated on the computer 

display using the potentiometer; verify green indicator. 
4. Turn on the coolant pumps and set the flow rates as indicated on the computer 

display using the potentiometers; verify green indicators and flow rate on the 
digital readouts. 

5. Switch the bypass toggle switches to the up position and verify spray in the 
chamber. 

6. Set the reheater PID controllers to the desired temperature and set the alarm 
cutout temperatures. 

7. Switch the PID controllers on; verify green indicators. 
8. When the fluids are at operating temperature, the reheater indicators will be 

cycling. 
9. Verify that the over-temperature PID controller alarm settings are correctly 

adjusted. 
10. Turn on the video cameras and place them in record mode. 
11. Turn on the target heater switches and verify green indicators. 
12. Set the target heater wattage using the potentiometers. 
13. Take data as appropriate to the flight test plan. 
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Post-test Checklist 
1. Switch off target heaters and set potentiometers to the 0 position. 
2. Switch off reheater switches. 
3. Switch bypass toggle switches to the down position. 
4. Switch off all pumps and set potentiometers to the 0 position. 
5. Switch off video cameras. 
6. Stop data acquisition and shut down computer. 
7. Switch off the four Breakers. 

Leak Shut Down Procedure 
1. Identify the location of the leak and use the pump to isolate FC-72 away from 

leak into either the chamber or the fluid reservoir and close the appropriate 
valves. 

2. Hit Panic button to shutdown the system and allow the system to come to a 
low pressure equilibrium. 

3. Assess source of leak for fixability.  If fixable, (e.g., wrong valve is open), 
seal leak; otherwise proceed to step 4. 

4. Use either absorbent PIGs or Kimwipes to mop-up leak.  Place wet materiel 
into zip lock baggie or vent tank. 

Emergency Shut Down Procedure 
1. Hit Panic button. 
2. Ensure all power is off. 
3. Visually verify and contain any leaks using absorbent PIGs or Kimwipes.  

Place wet materiel into zip lock baggie or vent tank. 
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Appendix A: Electrical Schematic 
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Array Triple Over-temp Cutoff Circuit

Heater Power 
Relay

120VAC 
Source

Panel Switch PID Controller

Bypass Switch #1

Analog Over-temp Cutoff #1

Bypass Switch #2

Analog Over-temp Cutoff #2

Bypass Switch #3

Analog Over-temp Cutoff #3

100VDC 
Source

Thermocouple #1

Channel 102

Thermocouple #2

Channel 103

Thermocouple #3

Channel 104

Heater

204



 47

Appendix B: 2020 Joint Fastener Static Testing 
The joint fastener strength values in the 80/20 literature were insufficient for the joint fas-
teners used on the frame.  Static tests were conducted on a test structure.  The first struc-
ture, shown in Figure BK and Figure BL, was assembled from 2020 extrusions and two 
90° joining plates (P/N 4128) and two 90° corner brackets (P/N 4114).  All screws were 
torqued to 90 in·lbs. 

 

 
Figure BK: Corner Joint 
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Figure BL: Corner Joint 

A load, composed from three F-class weights—44.1 lbs, 55.1 lbs and 110.2 lbs, was 
placed 36 inches from the joint, as shown in Figure BM.  The load was left in place for 
fifteen minutes.  The results are tabulated in Table B1.  After the last load was removed, 
the beam returned to a position of 2.2 inches compared to the starting position of 2.55 
inches.  Some of the deflection may be because of clamping arrangement.  Disassembly 
did not show any visible deformation in the parts, i.e. plates and joints.  The joint did not 
have ultimate failure. 
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Figure BM: Corner Joint Load Point 

Mass (lbs) Moment (in·lbs) Deflection (initial-final) inches 
110.2 3967.2 (2.55-1.75) = 0.80
165.3 5950.8 (2.55-1.15) = 1.40
209.4 7538.4 (2.55-0.55) = 2.0

Table B1: Corner Bracket Loads 

The second joint tested was the tee joint.  It consists of a tee joint (P/N 4125) and two 90° 
corner brackets (P/N 4114).  The joint is shown in Figure BN.  This configuration was 
loaded in a similar manner to the corner joint, as shown in Figure BO.  The results are in 
Table B2.  After the last load was removed, the beam returned to 6.8 inches from a start-
ing position of 7.55 inches.  Some of the deflection may be because of clamping ar-
rangement.  Disassembly did not show any visible deformation in the parts, i.e. plates and 
joints.  The joint did not have ultimate failure. 

Mass (lbs) Moment (in·lbs) Deflection (initial-final) inches 
110.2 3967.2 (7.55-6.8) = 0.75
165.3 5950.8 (7.55-6.0) = 1.55
209.4 7538.4 (7.55-5.25) = 2.30

Table B2: Tee Bracket Loads 
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Figure BN: Tee Joint 
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Figure BO: Tee Joint Point Load 

 
A second structure, shown in Figure BP and Figure BQ, was assembled from 2020 extru-
sions and three 90° joining plates (P/N 4128) and three 90° corner brackets (P/N 4114).  
All screws were torqued to 90 in·lbs. 
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Figure BP: Corner Joint 
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Figure BQ: Corner Joint 

A load, composed from five F-class weights—11.02, 22.05, 44.1 lbs, 55.1 lbs and 110.2 
lbs, was placed 40 inches from the joint, as shown in Figure BR.  The load was left in 
place for fifteen minutes.  The results are tabulated in Table B3.  Some of the deflection 
may be because of clamping arrangement.  Disassembly did not show any visible defor-
mation in the parts, i.e. plates and joints.  The joint did not have ultimate failure. 
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Figure BR: Corner Joint Load Point 

Mass (lbs) Moment (in·lbs) Deflection (initial-final) inches 
110.43 4417.2 (45-44) = 1.0
209.43 8377.2 (45-42.5) = 2.50
242.5 9700.0 (45-42) = 3.0

Table B3: Corner Bracket Loads 

The second joint tested was the tee joint.  It consists of a tee joint (P/N 4125) and two 90° 
corner brackets (P/N 4114).  The joint is shown in Figure BS.  This configuration was 
loaded in a similar manner to the corner joint, as shown in Figure BT.  The results are in 
Table B4.  Some of the deflection may be because of clamping arrangement.  Disassem-
bly did not show any visible deformation in the parts, i.e. plates and joints.  The joint did 
not have ultimate failure. 

Mass (lbs) Moment (in·lbs) Deflection (initial-final) inches 
110.43 4417.2 (48.5-48.0) = 0.5
209.43 8377.2 (48.5-45.25) = 3.25
242.5 9700.0 (48.5-44.25) = 4.25

Table B4: Tee Bracket Loads 
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Figure BS: Tee Joint 

 
Figure BT: Tee Joint Point Load 

213



 57

Appendix C: Experiment Drawings and Flow Schematic 

 
Figure CU: Section View of Spray Test Chamber 

 

 
Figure CV: Hole Dimensional View of Spray Test Chamber 
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Figure CW: Side View of Rig 
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Figure CX: Top View of Rig 
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Figure CY: Rear View of Rig 
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Figure CZ: Three-dimensional View of Rig 
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Figure CAA: Three-dimensional View of Rig 
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Figure CBB: Three-dimensional View of Rig 
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Figure CCC: Three-dimensional View of Rig 
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Figure CDD: Three-dimensional View of Chamber 
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Figure CEE: Wire Frame View of Exploded Test Chamber 
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Figure CFF: Expanded view of FC-72 Reservoir 

Weight=5.60 lbs 
 
Installed 4 Jan 2006 
 
Pressure Certification: 
Pressure (@ t=0)=151.82psia 
Pressure (@ t=15min)=150.75psia 
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Figure CGG: Flow Schematic
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Appendix D: Pressure Certification 
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Appendix E: Material Safety Data Sheet 
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Appendix F: Calibration Work Instruction
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CALIBRATION WORK INSTRUCTION: 
 
System Name: Variable Gravity Spray Cooling System 
Identifying #: J18573 
PI:  Kirk L. Yerkes (937)255-6186 
Organization: AFRL/PRPS 
Owning Work Center (OWC): J9341 

Location: Power Division, Thermal Laboratory; Bldg 18G, Room 041B 
Date [MMDDYYYY]: 09212006 
  
DESCRIPTION OF USE: 
Conduct research concerning spray cooling in terrestrial and variable gravity conditions. 
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CALIBRATION DESCRIPTION: 
 
 

CATEGORY I CATEGORY II CATEGORY III 
TMDE (GAGES, ETC.) IN SYSTEM TMDE USED TO CALIBRATE CAT I 

SYSTEM PMEL TMDE USED TO CAL. CAT II TMDE 

Cont.  
No.  

Item Description Operation 
Range or 

Value 

Operation 
Tolerance 

Interval Item De-
scription 

Specified 
Range or 

Value 

Specific 
Uncert. 

I/II TUR Item De-
scription 

Specified 
Range or 

Value 

Uncert. II/III TUR 

VGSCS Temperature Measurement (5.1) 
  Test Cell Thermocou-

ples 
20-220 °C ±1.0 °C  12 months Hart Sci. 

1502A w/ 
5628 RTD 

20-280°C ±0.011°C 
Max @ 
419°C 

90.9:1         

  Ice Point 
(Hart Sci. 9101) 

0°C ±0.05 °C 
Max @ 
18-25°C 
ambient 

12 months Hart Sci. 
1504 w/ 

5642 
Thermistor 

0-60°C ±0.002°C 
@ 0°C 

25:1         

VGSCS Pressure Measurement (5.2) 
 Pressure Transducer 

(Omega PX303-
100A5V) 

5.0-14.7 
psia 

±0.25 % 
Full Scale 
(Full Scale 

15 psia) 

12 months Heise PTE-
1 w/ Mod-
ule HQS-

2582 

0-15 psia ±0.05 % 
reading 

 

5:1     

VGSCS Flow Rate Measurement (5.3) 
  Turbine Flowmeter 

(Sponsler 
MF90CBPHA4X-V) 

0.020-.501 
GPM 

±0.5% 
reading 

12 months Mettler 
Balance 
PC4400 

500-
4000g 

±0.3 g 
(±0.06% 
@ 500g) 

>=8.3:1         
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1.0 Scope/Responsibility: 
1.1 This document contains detailed directions on accomplishing calibrations for 3 

measurement systems used within the Variable Gravity Spray Cooling System, 
Electrochemistry and Thermal Sciences Branch, Power Division, Propulsion Di-
rectorate, Air Force Research Lab. 

1.2 The calibrations are accomplished on an end-end basis which includes the effects 
of the system-internal devices, as well as the end devices. 

1.3 The accelerometer will be calibrated by the WPAFB PMEL organization. 
1.4 The thermocouples, ice point, pressure transducers, and flow meters will be cali-

brated by AFRL/PRPS using the instructions provided within this Calibration 
Work Instruction (CWI). 

 
2.0 Preliminary Operations: 
2.1 Ensure the power cords for the test rig are plugged into both the rig and power 

outlets. 
2.2 Place the breaker switches on all four power circuits into the “on” position. 
2.3 Ensure that the kill switch on the control panel is not activated. 
2.4 Push the start button on the control panel. 
2.5 Turn the laptop on and log in. 
2.6 Open the Agilent Benchlink software along with the desired scan setup. 
2.7 Begin a data scan. 
2.8 Allow the rig equipment to warm up for approximately 30 minutes, until the ready 

light on the ice point is activated. 
2.9 VGSCS Temperature Measurement System 
2.9.1. Assemble equipment as follows: 
2.9.1.1. Thermistor probe and readout 
2.9.1.2. RTD temperature probe and readout 
2.9.1.3. Constant temperature bath 
2.10 VGSCS Pressure Measurement System 
2.10.1. Ensure the FC-72 loop is drained of working fluid and properly purged. 
2.10.2. Assemble equipment as follows: 
2.10.2.1. Heise pressure calibrator 
2.10.2.2. Roughing pump 
2.10.2.3. Pressure calibration tubing assembly 
2.10.2.4. Stop watch 
2.11 VGSCS Flow Rate Measurement System 
2.11.1. Assemble equipment as follows: 
2.11.1.1. 4 liter flask 
2.11.1.2. 2 length of flexible transfer tubing 
2.11.1.3. stop watch 
2.11.1.4. scale 
2.11.1.5. thermometer 
2.11.1.6. large, shallow secondary containment unit with absorbent blankets 
 
3.0 Environmental Requirements: 
3.1 Temperature:  50-90 °F 
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3.2 Humidity:  N/A 
 
4.0 Environmental Compensation: 
4.1 Not required when operating within limits specified in section 3.0. 
 
5.0  Calibration Process: 
 
5.1 Ensure the CAT II TMDE is adequate for the calibration process, i.e.: 
 
5.1.1 Calibrated by PMEL and has a current calibration certificate (label) attached. 
5.1.2 Has sufficient range and accuracy to meet the requirements listed in the Calibra-

tion Description Table (previous page). 
5.1.3 Visually inspect CAT II TMDE for damage. 
 
5.2 VGSCS Temperature Measurement System: 

 
5.2.1 Carefully remove thermocouple wires from the wells on the front of the ice point. 
5.2.2 Place thermistor probe into one of the wells on the front of the ice point. 
5.2.3 Record the ice point temperature. 
5.2.4 Repeat steps 5.2.1 and 5.2.2, taking one reading every two minutes for a ten min-

ute period, for each well on the ice point. 
5.2.5 Average the readings taken for each well. 
5.2.6 Verify that the readings fall between -0.05°C and 0.05°C. 
5.2.7 Carefully return thermocouple wires to the respective wells on the front of the ice 

point. 
5.2.8 Place RTD probe and test cell thermocouples in the bath, following manufac-

turer’s instructions regarding depth and location. 
5.2.9 Set the bath temperature to the low end of the range of interest. 
5.2.10 Allow the bath to come to equilibrium. 
5.2.11 Record the RTD temperature. 
5.2.12 Run the data acquisition system and record the thermocouple readings for at least 

2 minutes. 
5.2.13 Save the data file under an appropriate file name. 
5.2.14 Repeat steps 5.1.4 through 5.1.7 at 5 or more temperatures in the range of interest, 

including one at the high end of the range. 
5.2.15 Enter the data into an Excel spread sheet. 
5.2.16 Fit the data using the linear regression analysis add-in in Excel to obtain the slope 

and intercept of the thermocouple reading vs. RTD reading curves. 
5.2.16.1.1 Estimate the error using NIST standard error analysis. 
 
Note:  The above procedure may be automated through computer control.  

 
5.3 VGSCS Pressure Measurement System: 

 
5.3.1 Attach the tubing assembly to the roughing pump, the pressure calibrator, and the 

test rig, as specified on the tubing assembly. 
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5.3.2 Turn the pressure calibrator on. 
5.3.3 Ensure the valve located on the tubing assembly is closed. 
5.3.4 Plug the roughing pump into a power source, and slowly open the valve on the 

tubing assembly. 
5.3.5 When the pressure calibrator reads approximately 5 psi, close the valve on the 

tubing assembly. 
5.3.6 Systematically exercise all the valve controls located on the control panel, ensur-

ing equal pressure distribution throughout the system. 
5.3.7 If the pressure has increased as a result of the previous step, reopen the valve on 

the tubing assembly. 
5.3.8 When the pressure calibrator reads approximately 5 psi, close the valve on the 

tubing assembly. 
5.3.9 After allowing the pressure to equilibrate, note the starting pressure, start the stop 

watch, and ensure that the pressure does not drift more than 0.2 psi in one minute. 
5.3.9.1 If the pressure drifts greater than the prescribed amount, detect and repair the 

source of the system leak, and repeat steps 5.2.4 through 5.2.10. 
5.3.10 Open pressure transducer calibration program on the DAQ computer. 
5.3.11 In 2 psi increments from 5 psia to 100 psia, press the pressure record button in the 

program and open the valve on the tubing assembly to the next pressure.  This 
program will record 5 pressure readings and average the values. 

5.3.12 Open the data file into Excel and fit the data using the linear regression analysis 
add-in in Excel to obtain the slope and intercept of the pressure transducer reading 
vs. pressure calibrator reading curves. 

5.3.13 Estimate the error using NIST standard error analysis. 
 

5.4 VGSCS Flow Rate Measurement System: 
 
5.4.1 Place the secondary containment unit near the test rig.  Into the unit, place the 

flask, scale and graduated cylinder. 
5.4.2 Close the electric ball valve located on the test rig between the reservoir and the 

pump in the FC-72 loop. 
5.4.3 Break the line between the valve and the pump, and attach extension tubing to the 

inlet of the pump. 
5.4.4 Place the extension tubing into the 4L flask, ensuring it is long enough to reach 

the bottom.  Such tubing will serve as the return line for the flow meter calibra-
tion. 

5.4.5 Break the line between the flow meter and the pressure transducer in the FC-72 
loop, and attach extension tubing to the exit of the flow meter. 

5.4.6 Cap off the entrance to the pressure transducer and place the extension tubing into 
the 4L flask, ensuring it is long enough to reach into the top of both the flask and 
graduated cylinder.  Such tubing will serve as the spray line for the flow meter 
calibration. 

5.4.7 Pour approximately 3.5 liters of FC-72 into the flask. 
5.4.8 Have the data acquisition system set to read and record the appropriate voltage 

channel. 
5.4.9 Start the data acquisition system. 
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5.4.10 On the rig control panel, flip the switch for the nozzle pump (pump 1) into the on, 
or up, position. 

5.4.11 Select a desired flow rate and, using the potentiometer for pump 1, adjust the flow 
rate until the computer attached to the data acquisition system reads the desired 
rate. 

5.4.12 Allow the flow rate to stabilize, then stop and restart the data acquisition scan. 
5.4.13 Transfer the spray line from the flask to the graduated cylinder and start the stop 

watch simultaneously. 
5.4.14 Allow the flow to continue for a predetermined length of time (dependent upon 

the magnitude of the desired flow rate). 
5.4.15 When the time has finished, quickly return the spray line back to the flask and 

stop the stop watch. 
5.4.16 Record the volume, mass and temperature of the fluid in the graduated cylinder, 

along with the exact time from the stopwatch, and desired flow rate. 
5.4.17 Stop the data acquisition system and save the output file, recording the file name. 
5.4.18 Return the fluid to the flask and dry the graduated cylinder. 
5.4.19 Repeat steps 5.3.12 through 5.3.19 a minimum of 5 times for each flow rate. 
5.4.20 Enter the data into an Excel spread sheet as follows: 
5.4.20.1 Time in column A 
5.4.20.2 Mass in column B 
5.4.20.3 Temperature in column C 
5.4.20.4 Density (from literature) in column D 
5.4.20.5 Volume calculated from the mass and density in column E 
5.4.20.6 Measured volume in column F, as a check 
5.4.20.7 Calculated volume flow rate (column E/column A) in column G 
5.4.20.8 Average voltage from the saved data file in column H 
5.4.21 Plot the Average Voltage (Column H) vs. the Volumetric Flow Rate (Column G) 

as a scatter plot (points only) 
5.4.22 Fit a linear trend line through the points, and record the slope and intercept of this 

voltage vs. flow rate curve.  This slope and intercept give the desired characteriza-
tion curve.   

5.4.23 Estimate the error using NIST standard error analysis. 
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SYSTEM EQUIPMENT: 
 NOUN:  MANUFACTURER:    MODEL: ID NUMBER: Reference: 
Pressure Calibrator  Heise PTE-1 w/ HQS-2582 J18507  CAT II TMDE 

Thermocouple Calibrator  Hart Scientific 5628 J11556  CAT II TMDE 

Scale   Mettler PC4400 J2325  CAT II TMDE 

Ice Point Calibrator  Hart Scientific 5642 Still Needed  CAT II TMDE 

Pressure Transducer  Omega PX303-100A5V Not applicable  Transducer 

Turbine Flowmeter  Sponsler MF90CBPHA4X-V Not applicable  Flow meter 

Test Cell Thermocouples  Omega Not applicable Not applicable  Thermocouples 

Zero Point Dry Well  Hart Scientific 9101 J11542  Ice Point 

Accelerometer  Columbia SA-307HPTX Still Needed  Not applicable 
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