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Abstract-

 

The present paper aim significantly investigates the effect of the variable thermal conductivity and the inclined 
uniform magnetic field on the plane Poiseuille flow of viscous incompressible

 

electrically conducting fluid in the 
presence of a constant pressure gradient through non-uniform plate temperature are discussed. The lower plate 
assumed to be porous, in which the fluid sucks from the flow field. The non-linear momentum and energy equations are 
transformed into ordinary differential equations by means of homotopy perturbation technique and are solved 
numerically. Numerical results for the dimensionless velocity profile and the temperature profile for different governing 
parameters such as the Hartmn Number M, angle of inclination of magnetic field (α), Suction parameter (Re), Prandtle 
Number (Pr), and variable thermal conductivity (ɛ) have been discussed in detail and are displayed with the aid of 
graphs.
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I.

 

Introduction

 

In MHD plane Poiseuille flow, the flow velocity is driven by non- zero pressure 

gradient and the plates are kept at a standstill. The axis of

 

𝑥𝑥, for the sake of 
convenience is taken in the middle of the flow field.  

 

The study of heat transfer by thermal conduction is a great importance in fluid 
dynamics. The temperature difference in fluid, in the span of time is reduced by heat 
flowing from higher temperature to those of lower temperature in regions. Fourier laws 
govern the heat transfer by conduction. Cooling procedure can be controlled effectively 
by theory of variable conduction for which the high quality product may be produced. 
Small Prandtle number of liquid metals

 

is as used as coolants because of its higher 
thermal conductivity. The study of magneto hydrodynamic (MHD) Poiseuille flow 
between two parallel Plates has been on recent years of important research topic due to 
its numerous applications in solar technology, MHD power generators, MHD pumps, 
aerodynamics heating, electrostatic precipitation, purification of oil and fluid sprays and 
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droplets, etc. MHD plane Poiseuille flow with high conducting fluid is also considered to 
have importance in transpiration cooling. Several engines can be protected from the 
influence of hot gases, applying high conducting fluid for its character coolants and are 
effective in heat transfer between the fluid and boundary with much application to 
exhaust nozzles, combustion chamber walls, and cooling of rockets and jet. He (2000, 
2009), Bizarre, and Ghazvini (2008) perceived the solution of non-linear coupled 
equations by homotopy perturbation technique.  

The subject of the above applications, different researchers, and scholars have 
made a series of investigations.        

Alfven (1942) considered the existence of electromagnetic hydrodynamic waves. 
Nahme (1940) examined the temperature dependant viscosity in Couette flow.  
Hausenblas (1950) analysed the viscosity and temperature relation keeping both the 
walls at the same temperature in plane Poiseuille flow. Bansal and Jain (1975) 
discussed the same problem when both the walls are different temperature. Shercliff 
(1956), Cowling (1957), Schlichting (1960), Sinha et al. (1965), and Palm et al. (1972) 
studied on the steady free convection in porous matrix and extended their work in an 
isotropic porosity with heat exchange effect. Arunchalm and Rajappa (1978) discussed 
the force convection in liquid metal with variable conductivity and capacity. Drake 
(1965) measured the flow in a channel with periodic pressure gradient. Raptis et al. 
(1982) considered MHD free convective flow past parallel plates with porous medium, 
Ram et al. (1984) studied Hall Effect and heat with mass transfer through porous 
matrix. Singh (1992) analyzed MHD fluid flow between two parallel plates and 
extended his work in (2000) with the study of unsteady flow of fluid under the influence 
of inclined magnetic field through channels with changing pressure gradient 
exponentially. Al-Hadhrami et al. (2003) considered fluid flow through horizontal 
channels and resulted velocity in terms of Reynolds numbers using the porous matrix. 
Ganesh et al. (2007) discussed the MHD unsteady stokes flow problem between two 
parallel plates. They studied fluid being withdrawn through both the walls at the same 
rate. Mayonge at al. (2013) discussed the flow problem between Poiseuille flow channels 
if one plate of channel is porous under the influence of the inclined magnetic field. 
Kiema et al. (2015) analyzed the steady MHD Poiseuille flow between two infinite 
parallel porous plates under the inclined transverse magnetic field applying the finite 
difference method.  

The proposed study on the effect of variable thermal conductivity and the 
inclined uniform magnetic field on steady MHD plane Poiseuille flow are through non-
uniform plate temperature and constant suction.  

a)  Mathematical Formulation and its Solution 
Consider the viscous incompressible electrically conducting plane Poiseuille fluid 

flow bounded by two parallel plates separated by a distance 2h. Taking x-axis along the 

centre line of the parallel plates and the 𝑦𝑦∅-axis is perpendicular to the plates i.e. 

. A uniform transverse magnetic field β0
 is applied normal to the wall. Both of 

the plates are kept stationary and maintained at constant dissimilar temperatures 𝜃𝜃∅0
 & 

𝜃𝜃∅1. It is assumed that the magnetic Reynold number is very small, so that the induce 
electric field caused by induce magnetic field is assumed negligible. The poiseuille flow 
is driven by the constant pressure gradient. The flow in the region is unidirectional, 
steady laminar and fully developed so all the physical variables except pressure depend 

on 𝑦𝑦∅  only. The suction velocity V= -V0
 is at one porous plate 𝑦𝑦∅  = -h so 

𝜕𝜕V0
𝜕𝜕𝑦𝑦∅

= 0   
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Flow Past Non-Uniform Plate Temperature

Notes

𝑦𝑦∅ =±h



  
b) Governing Equations 
Equation of momentum: 

  

Equation of energy with thermal conductivity is: 

 

Corresponding boundary conditions are  

𝑦𝑦∅ = ℎ         𝜕𝜕∅ = 0         𝜃𝜃∅ = 𝜃𝜃1 

And 

𝑦𝑦∅ = −ℎ         𝜕𝜕∅ = 0         𝜃𝜃∅ = 𝜃𝜃0                                      

Following Arunachalam and Rajappa (1978), the thermal conductivity is 
assumed to vary linearly with temperature and it is of the form: 

𝐾𝐾∅ = 𝐾𝐾 (1 + 𝜖𝜖𝜃𝜃)  

𝑉𝑉 =  −𝑉𝑉0 Suction constant velocity  

Introducing dimensionless quantities: 

 

 
 

 

Fluid motion is maintained owing to the constant pressure gradient. It is 

sufficiently assumed that the maximum velocity (   ) contained in the 

middle of the channel in the plane Poiseuille flow with constant fluid properties 
(Schilichting). Equation (1) and (2) ease into non-dimensional momentum and energy 
equations using equation (5) (the dimensionless parameters).  
Non-dimensional equation of momentum:  

𝑑𝑑2𝜕𝜕
𝑑𝑑𝑦𝑦2 + 𝑅𝑅𝑅𝑅

𝑑𝑑𝜕𝜕
𝑑𝑑𝑦𝑦

−𝑀𝑀�2𝜕𝜕 = −𝑃𝑃 

Or 

𝑑𝑑2𝜕𝜕
𝑑𝑑𝑦𝑦2 + 𝑅𝑅𝑅𝑅

𝑑𝑑𝜕𝜕
𝑑𝑑𝑦𝑦

−𝑀𝑀�2𝑆𝑆𝑆𝑆𝑛𝑛2𝛼𝛼𝜕𝜕 = −𝑃𝑃              
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............(1)

............(2)

............(3)

............(4)

............(5)

............(6)

Where α is the angle between v and β0 which means that the two fields able to 

be assessed at any one angle α for 0 < α < π

Notes

The Effect of Variable Thermal Conductivity and the Inclined Magnetic Field on Mhd Plane Poiseuille 
Flow Past Non-Uniform Plate Temperature

−𝑉𝑉0
𝜕𝜕𝜕𝜕∅

𝜕𝜕𝑦𝑦∅
= − 1

𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜐𝜐 𝜕𝜕
2𝜕𝜕∅

𝜕𝜕𝑦𝑦2∅ −
𝜎𝜎𝛽𝛽2

0𝜕𝜕
∅

𝜌𝜌

−𝜌𝜌𝐶𝐶𝜕𝜕𝑉𝑉0
𝜕𝜕𝜃𝜃∅

𝜕𝜕𝑦𝑦∅
= 𝜕𝜕

𝜕𝜕𝑦𝑦∅
�𝐾𝐾∅ 𝜕𝜕𝜃𝜃

∅

𝜕𝜕𝑦𝑦∅
� + 𝜇𝜇 �𝜕𝜕𝜕𝜕

∅

𝜕𝜕𝑦𝑦∅
�

2

𝑦𝑦 = 𝑦𝑦∅

ℎ
, 𝑅𝑅𝑅𝑅 = +𝑉𝑉0ℎ

𝜐𝜐
, 𝑃𝑃 = −ℎ2

2𝜇𝜇𝑈𝑈𝑚𝑚

𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥

𝜃𝜃 = 𝜃𝜃∅−𝜃𝜃∅0
𝜃𝜃∅1−𝜃𝜃∅0

, 𝑀𝑀�2 = 𝜎𝜎𝛽𝛽0
2 ℎ2

𝜈𝜈

𝑃𝑃𝑃𝑃 = 𝜌𝜌𝐶𝐶𝜕𝜕𝜐𝜐
𝐾𝐾

, 𝐸𝐸𝐸𝐸 = 𝑈𝑈𝑚𝑚 2

𝐶𝐶𝜕𝜕(𝜃𝜃∅1−𝜃𝜃∅0)

𝑈𝑈𝑚𝑚 = − ℎ2

2𝜇𝜇
𝑑𝑑𝜕𝜕
𝑑𝑑𝑥𝑥



  
Equation (6) became  

𝑑𝑑2𝜕𝜕
𝑑𝑑𝑦𝑦2 + 𝑅𝑅𝑅𝑅

𝑑𝑑𝜕𝜕
𝑑𝑑𝑦𝑦

−𝑀𝑀2𝜕𝜕 = −𝑃𝑃                  

Non-dimensional equation of energy:  

(1 + 𝜀𝜀𝜃𝜃)
𝑑𝑑2𝜃𝜃
𝑑𝑑𝑦𝑦2 + 𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃

𝑑𝑑𝜃𝜃
𝑑𝑑𝑦𝑦

+ 𝜖𝜖 �
𝑑𝑑𝜃𝜃
𝑑𝑑𝑦𝑦�

2

= 𝐸𝐸𝐸𝐸𝑃𝑃𝑃𝑃 �
𝑑𝑑𝜕𝜕
𝑑𝑑𝑦𝑦�

2

                             

Normalize boundary conditions are  

y = -1, u = 0, θ  = 0  

                                          y = 1, u = 0, θ  = 1                                ------  (9)  

where σ  is the coefficient of electrical conductivity, Cp is the specific heat, β0  is the 

applied magnetic field, ʋ  is the kinematic viscosity,  𝜇𝜇  is the viscosity of the fluid and -V0  

is the suction velocity, 2h is the distance between plates, K is thermal conductivity, ɛ  is 

variable conductivity of fluid, u is dynamic velocity, 𝜌𝜌  is density, θ  is the temperature 

of fluid at any point, α  is the inclined angle between fluid velocity and applied magnetic 

field, Cp is specific heat, θ1, θ0  are the temperature of the upper and the lower plate 

temperature where θ1  θ0 . 𝑀𝑀�  the Hartmann number, M = 𝑀𝑀�  sin α  the Hartmann 

number with inclined angle α, Pr the Prandtl number, Ec the Ekert number, Re the 

Reynold number. P the normalize constant pressure gradient, 𝑈𝑈𝑚𝑚  the maximum velocity 
of fluid.   

II.  Solutions  

The boundary value problem described by the equations, non-coupled (7) and 
coupled (8) through (9) which provide analytical solutions. Firstly, the solution of the 
momentum ordinary differential equation (7) is obtained which used to solve the 
equation (8) by homotopy perturbation technique. Solution of equation (7) using 
boundary conditions (9) is obtained as given below:  

                                            

𝜕𝜕(𝑦𝑦) = 𝐶𝐶1𝑅𝑅𝑎𝑎1𝑦𝑦 + 𝐶𝐶2𝑅𝑅𝑎𝑎2𝑦𝑦 + 𝑃𝑃
𝑀𝑀2                                    

 

  
 

𝐶𝐶1 =
− �𝐶𝐶2𝑅𝑅𝑎𝑎2 + 𝑃𝑃

𝑀𝑀2�

𝑅𝑅𝑎𝑎1
 

And  

𝐶𝐶2 =
𝑃𝑃
𝑀𝑀2 �

𝑅𝑅𝑎𝑎1 − 𝑅𝑅−𝑎𝑎1

𝑅𝑅(𝑎𝑎2−𝑎𝑎1) − 𝑅𝑅(𝑎𝑎1−𝑎𝑎2)�  

Again  

𝑎𝑎1 =
−𝑅𝑅𝑅𝑅 + √𝑅𝑅𝑅𝑅2 + 4𝑀𝑀2

2
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.........(8)

.......(7)

.........(10)

Where integration constants 𝐶𝐶1 & 𝐶𝐶2 are computed with boundary conditions (9) 
and are obtained as:

Notes

The Effect of Variable Thermal Conductivity and the Inclined Magnetic Field on Mhd Plane Poiseuille 
Flow Past Non-Uniform Plate Temperature

>



  

𝑎𝑎2 =
−𝑅𝑅𝑅𝑅 − √𝑅𝑅𝑅𝑅2 + 4𝑀𝑀2

2
 

And M = 𝑀𝑀
� Sin α 

On using dynamic velocity of fluid u,  given by equation (10) in the coupled 
energy equation (8) and is solved by homotopy perturbation technique.  
Construct homotopy for energy equation, [Ref. 24, 25, 26]: 

                  H = L (θ) - L (θi) + P [L (θi) + N (θ) - F (r)] = 0                  -------- (11) 

Where L (θ) and N (θ) are the Linear and Non-linear term of θ and L (θi) is the 
initial term of linearity.  

                                      Let θ (y) = θ00
 + p θ01 +                       ……………. (12) 

We get the solution of energy equation (8) for the temperature θ in view of 
boundary conditions (9) is obtained as follows: 

𝜃𝜃(𝑦𝑦) =
1
2
�1 + 𝑆𝑆𝑆𝑆𝑛𝑛

𝜋𝜋
2
𝑦𝑦� + 𝛾𝛾2 + 𝛾𝛾1𝑅𝑅−𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑦𝑦 − 𝛽𝛽2𝑆𝑆𝑆𝑆𝑛𝑛

𝜋𝜋
2
𝑦𝑦 − 𝛽𝛽3𝐶𝐶𝐶𝐶𝐶𝐶

𝜋𝜋
2
𝑦𝑦 

 

Where γ2, γ1, β2, β3, β4, β5, β6, β7 and β8

 
are constants and their values are not 

given here for the sake of brevity. 
 

III.
 
Result & Discussion

 

The study on the effect of variable thermal conductivity and the inclined uniform 
magnetic field on steady MHD plane Poiseuille flow through non-uniform plate 
temperature and constant suction have been discussed numerically and are performed 
for the velocity and temperature profile.

 
The consequences

 
are displayed graphically in 

figure (1) to (5) for pertinent parameters such as Hartmann number M, Reynold 
number Re, thermal conductivity Parndtl parameter (Pr) and variable thermal 

conductivity (ɛ). 
 

Figure 1 shows the effect of different inclination angle of magnetic parameter M 

on the velocity                       . It is evident that  an  increase in inclination angle (α), 
reducing the velocity of the flow field, maximum retardation of the velocity of flow 

occurs at the inclination angle 
 

, signifies the increase of maximum resistive type 
force (Lorenz force) which tends to parallel opposite direction of flow field has a 
tendency to slow down the motion of fluid flow. 

 

Figure 2: illustrates the velocity profile for different values of the suction 
parameter (Re) when taking all other parameters constant. The fluid velocity 
accelerates near the lower plate and decelerates near the upper plate [Das and Jana 
(2013)]. Suction parameter (Re) affects the main velocity of the flow field, which 
accelerate at the hand of suction (Lower plate) because suction parameter sucks the 
obstacle dust particles thus decreases the boundary layer thickness. 

 

Figure 3: It is encountered to conclude that the temperature profile for different 
values of Reynold number (Re), increasing of suction parameter (Re) reduces the 
temperature at all the points of fluid flow. It is attributed to the fact that suction 
parameter absorbs the heat. 
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profile against y

α = 90°



  

Figure 4: It is observed that decreasing of Parndtl (Pr) number increases the 
thermal conductivity and therefore, heat is able to diffuse away from plate than the 
higher value of Pr. Hence, in case of small Prandtl number, the thermal boundary layer 
is thicker, and the temperature profile increasing.  

Figure 5: The effect of variable thermal conductivity parameter is shown in 
figure 5 for the high conducting fluid. It is observed from this depict that the increasing 

value of ɛ  results in increasing the magnitude of temperature causing thermal boundary 
layer thickening reaches at the certain point of  the fluid, but after  reaching a certain 
point, the figure shows the effect of thermal layer thinning thus heat may be transferred 
from the fluid to plate  

IV.  Conclusion  

(1)  Increasing Re (Reynold number) decreases the dynamic velocity near to the suction 
plate, but the reversal effect shows at another plate coincides with the results of 
[Das and Jana 2013].  

(2)  Maximum retardation of velocity occurs at the inclination angle              that are 
between velocity and magnetic field.  

(3)  The effect of Prandtl number is to decrease the thermal boundary layer thickness.  

(4)  The thermal variable thermal conductivity also has an impact in enhancing the 
temperature at the certain point of temperature profile, then decay to the adjacent 
to the heating plate for high conducting fluid.  

(5)  Fluid temperature decreases with the increases in Reynold number  
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