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Abstract. The canonical form of atmospheric flows near the land surface, in the absence of a canopy,
resembles a rough-wall boundary layer. However, in the presence of an extensive and dense canopy,
the flow within and just above the foliage behaves as a perturbed mixing layer. To date, no analogous
formulation exists for intermediate canopy densities. Using detailed laser Doppler velocity meas-
urements conducted in an open channel over a wide range of canopy densities, a phenomenological
model that describes the structure of turbulence within the canopy sublayer (CSL) is developed. The
model decomposes the space within the CSL into three distinct zones: the deep zone in which the flow
field is shown to be dominated by vortices connected with von Kármán vortex streets, but periodically
interrupted by strong sweep events whose features are influenced by canopy density. The second
zone, which is near the canopy top, is a superposition of attached eddies and Kelvin–Helmholtz
waves produced by inflectional instability in the mean longitudinal velocity profile. Here, the relative
importance of the mixing layer and attached eddies are shown to vary with canopy density through
a coefficient α. We show that the relative enhancement of turbulent diffusivity over its surface-layer
value near the canopy top depends on the magnitude of α. In the uppermost zone, the flow follows
the classical surface-layer similarity theory. Finally, we demonstrate that the combination of this
newly proposed length scale and first-order closure models can accurately reproduce measured mean
velocity and Reynolds stresses for a wide range of roughness densities. With recent advancement in
remote sensing of canopy morphology, this model offers a promising physically based approach to
connect the land surface and the atmosphere without resorting to empirical momentum roughness
lengths.

Keywords: Canopy turbulence, Closure models, Drag coefficient, Kelvin–Helmholtz waves, Mixing
length, Vegetation density, von Kármán streets.

1. Introduction

Vegetation density is known to impact upon many aspects of the flow dynamics
within canopies, with direct implications for a suite of physical and biophysical
processes (Raupach et al., 1996; Katul et al., 1998; Finnigan, 2000; Horn et al.,
2001; Nathan et al., 2002). The density of vegetation canopies is dynamic in space
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and time and across a broad range of scales (Scanlon et al., 2002). Hence, the
need to quantify the interdependence between vegetation density and transport
mechanics is now a central problem in meteorology, hydrology, and ecology. This
need has motivated the development and deployment of new remote sensing laser
altimetry, which can map the canopy morphology (Harding et al., 2001; Lefsky
et al., 2002). What is lacking is a robust link between morphological indices and
transport characteristics.

Atmospheric flows near the land surface resemble a rough-wall boundary layer
in the absence of a canopy. However, for a dense and extensive canopy, the flow de-
velops important characteristics of a mixing layer (Raupach et al., 1996; Finnigan,
2000; Marshall et al., 2002). For these two extreme cases (or end members), basic
frameworks exist for quantifying critical attributes of the flow dynamics needed
to describe scalar transport. What is currently lacking is an analogous theory for
intermediate canopy densities in which the flow is neither a purely rough-wall
boundary layer nor a mixing layer (Finnigan, 2000; Novak et al., 2000).

Our objective here is to examine the inter-connection between canopy dens-
ity and key flow statistics within and just above the canopy (hereafter referred
to as the canopy sublayer, or CSL), as needed for quantifying momentum and
scalar transport. Towards this end, flume experiments were used with model can-
opies consisting of regular arrays of vertical cylinders, with variations in cylinder
spacing employed to represent varying canopy densities. We seek a phenomen-
ological theory that describes the key flow statistics in terms of canopy density.
This work is distinguished from previous efforts in that it combines detailed spatial
measurements by non-intrusive laser Doppler anemometry with flow visualization
techniques to arrive at a framework for quantifying the canonical structure of
turbulence in the CSL across a wide range of canopy densities.

2. Experimental Facilities

The experiments were conducted at the hydraulics Laboratory, DITIC Politecnico
di Torino, in a re-circulating flume shown schematically in Figure 1. The main
component of the flume is a rectangular channel 18 m long, 0.90 m wide and 1 m
deep. The walls are made of glass to allow the passage of laser light (Figure 2).

The model canopy is composed of an array of vertical stainless steel cylinders,
0.12 m high (= h), and 4 mm in diameter (= dr ) equally spaced along the 9 m
long and 0.9 m wide test section. The test section begins 7 m downstream from
the channel entrance. The rods were firmly installed into two parallel steel sheets
drilled with evenly spaced holes. A polyurethane board was placed between the
two sheets to further increase the rigidity of the rods. Here, we focus on five canopy
roughness densities: 67, 134, 268, 536, and 1072 rods m−2 which are equivalent to
element area index, EAI (front area per unit volume), values of 0.27, 0.53, 1.07,
2.13, and 4.27 m2 m−3, respectively. Alternatively, a frontal area index (frontal
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Figure 1. Plan and lateral view of the channel flow facility.

TABLE I

Details of the experimental conditions for various roughness configurations (D1 to
D5). The roughness measures are the element area index (EAI ), and frontal area
index (a). The velocity scales are the mean longitudinal velocity at z/h = 1 (uh),
the friction velocity (u∗), and the bulk velocity or depth-averaged velocity across the
entire water depth (ub). The length scales are canopy height (h), rod diameter (dr ),
and water depth (hw). The relevant Reynolds numbers (Re) are: The Roughness Re,
hu∗/ν, Flow Re, hwub/ν, and Element Re, dru∗/ν.

D1 D2 D3 D4 D5

Rods density (Rods m−2) 67 134 268 536 1072

EAI (m2 m−3) 0.27 0.53 1.07 2.13 4.27

a (m2 m−2) 0.032 0.064 0.129 0.256 0.512

uh (m s−1) 0.249 0.232 0.207 0.186 0.147

u∗ (m s−1) 0.014 0.018 0.023 0.029 0.039

uh/u∗ 0.058 0.076 0.113 0.156 0.269

ub (m s−1) 0.309 0.312 0.313 0.313 0.300

Roughness Re 1615 2076 2653 3346 4500

Flow Re 176000 178000 179000 178000 171000

Element Re 957 892 796 715 565

area per unit ground area), referred to as a, was also used to characterize roughness
density (see Table I). Hence, the roughness density varies by a factor of over 20.
While we acknowledge that there is no one-to-one correspondence between a and
a leaf area density, we note that the a associated with the densest canopy case does
induce a drag that is comparable to a dense forest canopy (Katul and Albertson,
1998). By comparison, we mean that the magnitude of a is sufficiently large so
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Figure 2. (a) The laser Doppler anemometer (LDA) and rod arrangement in the flume. (b) Plan view
of the velocity sampling, circles are the rod positions, crosses are the sampling points of LDA. (c)
Same as (b) but for the section view.

that the longitudinal velocity at the top of the canopy, normalized by the friction
velocity, attains a value comparable to values reported in canopy sublayer field
experiments conducted in dense canopies (discussed in Appendix A).

The velocity was measured by using two-component laser Doppler anemometry
(LDA) used in forward scattering mode. A key advantage of LDA is its non-
intrusive nature, its small averaging volume, and its ability to measure velocity
excursions close to obstacles. The signal processing was performed by two Dantec
Burst Spectrum Analyzer (BSA) processors. The coincidence mode was used to
obtain more reliable measurements of the Reynolds shear stress. To preserve the
correlation coefficient between the vertical (w) and the longitudinal (u) velocity
components, all data points not exactly temporally coincident were discarded. Fur-
ther details about the LDA configuration and signal processing can be found in
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Poggi et al. (2002). To compare the flow statistics across different canopy densities,
the flow Reynolds number was preserved by varying the volumetric flow rate but
retaining the water depth (= hw) at a steady 0.6 m (see Table I).

With the LDA, a measurement run consists of sampling the time series of u and
w at a particular position. Given the planar non-homogeneity in the flow statistics
within the canopy, 11 measurement locations were used. These 11 locations were
not uniformly spaced; rather, they were chosen such that sampling locations were
more densely placed in regions where the flow statistics exhibit the highest spatial
variability. In Figure 2, the plan view of the locations of the sampling positions are
shown relative to the cylinders. At each of the 11 horizontal positions, a profile of
15 vertical measurement locations was established (see Figure 2). The sampling
duration for each of the runs was 300 s and the sampling frequency was 2500–
3000 Hz. The analog signals from the processor were checked by an oscilloscope
to verify the Doppler signal quality at each of the 11×15 runs. No artificial seeding
of the channel was employed.

Visualization experiments were also conducted by injecting a fluorescent dye
solution (Red Rhodamine) at several vertical layers. The Rhodamine has a faint
red colour that becomes metallic green when excited by the laser. A cylindrical lens
was used to split the laser beam into a thin sheet and provide a planar illumination at
the working section. The laser sheet excited the dye in a pre-set plane and allowed
identifying and photographing the dominant vortices at the particular level within
the canopy.

3. Results

In this section we first describe the qualitative effects of the canopy density on the
basic flow statistics within the CSL, including velocity moments, characterization
of ejections and sweeps, and preferential energetic scales. Using this character-
ization, we proceed to build a phenomenological mixing length model for the
CSL applicable to a wide range of roughness densities. Finally, implications to
first-order closure models are discussed.

3.1. VELOCITY MOMENTS

When computing the statistical moments, we first time averaged and then planar-
averaged to yield vertical profiles, as defined by Raupach and Shaw (1982). The
planar averaging at each vertical position was performed using a weighted scheme,
with weights proportional to the fraction of total ground area represented by each
position (the representative regions are shown in Figure 2). For notational simpli-
city, and unless otherwise stated, we denote by c the time and horizontally averaged
value of a flow variable c, and by c′ the instantaneous local departures from c.

Figure 3 shows the measured profiles of the basic turbulence statistics for all five
roughness densities. These moments demonstrate how canopy turbulence is trans-
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Figure 3. Variation of temporally- and horizontally-averaged moments with normalized height (z/h)
for (a) mean longitudinal velocity, (b) mean shear stress, (c) longitudinal velocity standard deviation

(σu = u′21/2
/u∗), (d) vertical velocity standard deviation (σw = w′21/2

/u∗), (e-f) longitudinal and

vertical velocity skewness ( sku = u′3/σ 3
u and skw = w′3/σ 3

w), and (g-h) longitudinal and vertical

velocity kurtosis (kuu = u′4/σ 4
u and kuw = w′4/σ 4

w). Solid lines represent the sparsest and densest
canopies.

formed from a boundary layer (one end-member) to a flow resembling a perturbed
mixing layer (the other end-member) with increasing roughness density. The signa-
ture of this shift is apparent through the magnitude of the inflectional instability in
the mean velocity profile and through signatures of sweeps and ejections in higher
order moments (discussed below).

Mean Velocity. Figure 3a shows the velocity profiles for all the density cases
normalized by the velocity at the canopy top (uh). The most fundamental differ-
ence between dense and sparse canopies is the magnitude of the inflection in the
mean velocity profile; this inflection is a necessary condition for the occurrence
of Kelvin–Helmholtz instabilities and the magnitude of the inflection defines the
relative importance of this mechanism to the overall turbulence structure.

Variances. With increasing a, the magnitudes of the root-mean squared longit-
udinal (σu) and vertical (σw) velocity are strongly damped for z/h < 1. Another
supporting observation of the end-member relevance, is that σw at the top of the

canopy, when normalized by the friction velocity
(
u∗ = −u′w′|1/2

z=h

)
, shifts from

about 1.3 for sparse canopies, which is typical of rough-wall boundary layers, to
about 1.1 for dense canopies, which is typical for mixing layers, in agreement with
Raupach et al. (1996).

Skewness and Flatness Factors. There is a general trend for the skewness in
u to go from positive within the canopy to negative above the canopy. The dense
canopies have the stronger positive skewness inside the canopy, suggesting a dom-
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inant role played by sweeps of high velocity fluid down into the dense canopy
space. Correspondingly, the skewness of w tends to go from negative inside the
canopy to positive above the canopy, with the stronger negative skewness for the
dense canopy, again suggesting the greater role of sweeps in this setting than in
the sparse canopy setting. The sparse canopies have an absence of skewness for
both the u and w in the region of z < h/2 and maximum skewness magnitude
occurs at z = h. Contrastingly, the peak skewness magnitudes are deeper into
the dense canopies. The skewness measurements indirectly suggest that for sparse
canopies sweeps play no prominent role in the exchange of momentum, whereas in
dense canopies they do. Analysis of the fourth-order moments for u and w further
supports the picture emerging from the skewness results. Both kurtosis of u and w

are near Gaussian in the region above the canopy for all densities (where ejection
events dominate). Profound dissimilarities exist within the canopy space when con-
trasting sparse and dense canopies, as shown in Figures 3g, h. These differences in
kurtosis (within the canopy) vary clearly with roughness density. When the third-
and fourth-order moment results are taken together, the sparse canopy resembles a
boundary layer (i.e., near-Gaussian statistics) while the dense canopy experiments
document significant departure from Gaussian distributions, a finding consistent
with numerous field CSL experiments (Katul and Albertson, 1998). This shift from
near-Gaussian to non-Gaussian lends support to the concept of using increasing
canopy density as an indicator of flow scaling between boundary layers (sparse
canopies) and perturbed mixing layers (dense canopies).

3.2. QUADRANT ANALYSIS

The previous analysis suggests that the region inside the canopy appears to be dom-
inated by sweeping motion for dense canopies while ejections dominate for sparse
canopies. To verify this statement, quadrant analysis is used because it provides a
more direct quantification of the key attributes of the ejection-sweep cycle.

In quadrant analysis (Lu and Willmarth, 1973), the Cartesian plane defined by
w′ (ordinate) and u′ (abscissa) is divided into four quadrants, with each quadrant
contributing to the overall Reynolds stress u′w′. To isolate the contribution of ex-
treme events within each quadrant, a hyperbolic hole or threshold H is commonly
employed (i.e., analysis of all |u′w′| > H |u′w′|). As such, ejection events are
associated with large instantaneous values of u′w′ in the second quadrant (i.e.,
u′ < 0, w′ > 0), while sweep events are associated with large instantaneous u′w′
values in the fourth quadrant (i.e., u′ > 0, w′ < 0). Values of H commonly used
in such threshold analysis vary from 3 to 4 (Antonia, 1981; Raupach, 1981; Nak-
agawa and Nezu, 1977). A common measure to quantify the relative importance of
ejections and sweeps to u′w′ is �So, given by

�So,H = u′w′
H,IV − u′w′

H,II

u′w′ , (1)
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where u′w′
H,IV and u′w′

H,IV are the Reynolds stresses, in the fourth and second
quadrants, respectively, subject to a hyperbolic threshold H . In Figure 4, we show
the outcome of the quadrant analysis for dense and sparse canopy densities, for
both H = 0 (i.e., all the data) and H = 3 (i.e., extreme events). It is evident
from Figure 4 that the region above the canopy is primarily dominated by ejections
irrespective of the canopy density. The momentum flux within the canopy, however,
is controlled by weak ejections in sparse canopies (as is the case in boundary-
layer flows) and by strong sweeps within dense canopies. This is true when all
events (H = 0) are considered and when the analysis is focused on extreme events
(H = 3); these results are also in good agreement with a wide range of field
experiments (Katul and Albertson, 1998). In Figure 4c, d, we also show the stress
fractions due to sweeps and ejections for all five canopy density cases. Here we
see the emergence of a gradual shift from standard boundary-layer flows to canopy
flows with increasing canopy density.

Up to this point, the analysis has focused on single-point statistics and how
they are influenced by canopy density. We proceed next to assess how the canopy
density alters the characteristic length and time scales of the energetic motion.

3.3. SPECTRAL ANALYSIS AND FLOW VISUALIZATION

To explore the dominant energetic time (and length) scales, we utilize flow visual-
ization techniques along with spectral analysis. Flow visualization experiments are
conducted within the canopy layers using a horizontal laser sheet (see, for instance,
Figure 5a at z/h = 0.2). These visualizations suggest that organized motion in
these layers is dominated by the classical von Kármán vortex streets. Figure 5a
shows a sequence of pictures highlighting the geometric attributes of the ‘within
canopy’ vortices. From the flow visualization, the spatial coherency, periodicity,
and the alternating character of these vortices are clear. These predominantly hori-
zontal structures influence vertical transport as evidenced by the spectral analysis
of the vertical velocity component, which we discuss next.

The spectra of w for the sparsest and densest canopy conditions are shown in
Figure 5b–c. The energy spectra and the frequency are normalized with local mean
velocity and rod diameters. The spectra reported here were averaged in the same
manner as the velocity moments. The w spectra for four contrasting measurement
heights inside the canopy (z/h = 0.15, 0.29, 0.46, 0.75) collapse for both the
densest and sparsest canopy cases, with a unique secondary peak at dimensionless
frequency f dr/u = 0.21, where dr is the rod diameter. This is not surprising given
that 0.21 is the classical Strouhal number (=f dr/u) linking frequency of periodic
vortices to the mean velocity and the characteristic length scale of the obstacle
(for vertical columns). The Strouhal number is approximately constant across a
wide range of Reynolds numbers (du/ν = 60 to 5000, Schlichting, 1979). More
importantly, for z/h < 1 this secondary spectral peak appears independent of a

and z/h.
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Figure 4. �S0,H for the densest (�) and sparsest (�) canopy density: (a) H = 0; (b) H = 3. In
(c), (d) are shown the stress fractions due to sweeps and ejections and for all the canopy density
measurements. See Figure 3a for canopy density code.

Such secondary peaks are also connected with the classical spectral short-circuit
process (Kaimal and Finnigan, 1994; Finnigan, 2000) in which large turbulent
eddies are broken and have their energy short-circuited to scales comparable to
the wakes behind individual canopy elements. The short-circuiting is difficult to
detect in traditional CSL field experiments for two reasons: (1) The multiplicity
of the geometric scales (e.g., stems, branches, leaves) of real canopies, which are
absent in our experiments, and (2) the wide use of sonic anemometers, which have
path lengths larger than the scale of the canopy elements producing the wakes.
The use of LDA removes such volume-averaging limitations imposed by sonic
anemometers.
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Figure 5. A short sequence of vortices behind a rod (a). The vertical velocity spectra �w , normalized
by rod diameter, dr , and u as a function of dimensionless frequency, are shown for the sparsest (b)
and densest (c) canopies.

From both the visualization and the spectral analysis it is clear that the region
inside the canopy, irrespective of a and z/h, is dominated by energetic motions
controlled by length scales reflecting the local canopy geometry (i.e., proptional to
dr in this case). It is important to note that the flow visualizations are conducted for
the densest canopy thereby resulting in smaller local element Reynolds numbers
when compared to sparser canopies. Whether these element Reynolds numbers
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are sufficiently high may be questioned given the degree of organization in the
vortical structure observed from the flow visualization. Despite these observations,
the spectral analysis suggests that the Reynolds number may be sufficiently high
even for the dense canopy. Notice that the spectra for the sparse and dense canopies
at the deeper layers are qualitatively the same despite the large differences in the
local element Reynolds number (Red = udr/ν).

4. Phenomenological Model

Thus far, our analysis of the measured statistical moments and �So suggests that
sparse canopies resemble boundary layers while dense canopies share many attrib-
utes with perturbed mixing layers, at least near z/h = 1. Furthermore, a is shown
to be an appropriate scaling parameter describing the shift between rough-wall
boundary layers and perturbed mixing layers in this region. Hence, our conceptual
model for the CSL is that for intermediate canopy densities, the turbulent mixing
length in the vicinity of z/h = 1 is a superposition of values representing boundary
layers and mixing layers, with the superposition weights defined by canopy density.
Furthermore, well above the canopy (z/h � 1), the mixing length model must
converge to the canonical rough-wall boundary layer value, irrespective of a.

Deeper in the canopy (z/h < 1), spectral analysis suggests that the energetic
motion is dominated by von Kármán vortex streets and hence the mixing length is
strictly dependent on dr and independent of a.

In essence, three flow types dominate the mixing-length properties within the
CSL: von Kármán street, rough wall boundary layer, and mixing layer. We re-
view the canonical length scales associated with these flows, prior to building a
composite mixing-length model for the entire CSL.

We begin by recalling that the region deep within the canopy (z/h � 1) is
characterized by von Kármán vortex streets with a vortex size (LV ) proportional
to dr , as established above, and independent of a and local velocity. In boundary
layers, the characteristic length scale of vortices (LBL) scales with the distance
from the wall. The main hydrodynamic attribute of mixing layers is the strong
inflection in the velocity profile, which, through the Kelvin–Helmholtz instability,
induces transverse vortices of size LML. In summary, the typical vortex size for
each of the three flows can be expressed as

Vortex size

 LBL = (z − d) boundary layer (inner region)
LML = 2Ls = 2(u/(du/dz))z=h mixing layer
LV = u/f = dr/0.21 von Kármán street

,
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Figure 6. Conceptual model for the mixing lengths in different regions within the canopy sublayer.
(a) Boundary-layer flow (with k being the von Kármán constant), (b) mixing layer, (c) von Kármán
streets.

where d is the zero plane displacement (not to be confused with dr , the rod
diameter), and Ls is the shear length scale. The corresponding mixing lengths
associated with these vortex sizes are

Mixing length

 lBL = kLBL boundary layer (inner region)
lML = LML/2 = Ls mixing layer
lV = LV von Kármán street

,

where k is the von Kármán constant. Figure 6 presents an elementary description
of the vortex sizes in the three regions.
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Figure 7. The superposition of three length scales within the canopy sublayer. Region I is primarily
driven by von Kármán vortex streets, Region II is a superposition of all three components, and Region
III is a displaced rough wall boundary layer.

Thus, our phenomenological model for the CSL assumes that the flow field
includes three basic length scales (lV , lML, and lBL) with relative weights that vary
with z/h and a. A simplified version of the conceptual model is shown in Figure
7. For Region I (z/h � 1), the flow field is primarily dominated by small vortices
associated with the von Kármán streets. Region II, straddles the top portion of the
canopy, and is dominated by a mixing layer in the denser canopy cases. Finally,
Region III (z/h � 2) is the classical boundary-layer region dominated by vortices
with length scales proportional to (z − d).

We emphasize that in region II (see Figure 7), while both Kelvin–Helmholtz
and boundary-layer vortical structures contribute to momentum transfer at a given
point in space over some averaging time interval, these vortical structure are not
likely to co-exist in space. The lack of spatial co-existence is due to the fact that the
production mechanism responsible for generating one of them is likely to impede
the formation of the other.

These three regions and their inherent vortex length scales form the basis for a
closure of the mean momentum equation (described next).

5. Model Formulation

For planar homogeneous and steady-state conditions the mean longitudinal mo-
mentum balance reduces to

du′w′

dz
+ dp

dx
− F = 0, (2)

where p is the kinematic pressure, and F is the force vector on a unit mass
within the averaging volume. For our experimental setup, dp/dx is constant for
all runs. This constant was determined from runs conducted with F = 0 so that
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dp/dx = −du′w′/dz. The computed pressure gradient was further verified us-
ing the measured horizontal gradient of the water surface profile, which for a flat
channel, approximates the pressure gradient.

5.1. CLOSURE SCHEMES

In order to derive the mean velocity profile, the following standard closure schemes
were adopted:

(1) The aerodynamic force per unit volume is parameterized as

F(z) = −1

2
CD(z,Re, a)au|u|, (3)

where CD is the drag coefficient.
(2) The classical K-theory model is adopted for the Reynolds stress

u′w′ = −KM

du

dz
, (4)

where KM is the eddy diffusivity for momentum.
With these parameterizations, the mean momentum equation becomes

−KM

d2u

dz2
− dKM

dz

du

dz
+ 1

2
CDau|u| + dp

dx
= 0, (5)

whose solution requires: (1) Two boundary conditions, (2) a model for the
diffusivity KM , and (3) an estimate for the drag coefficient CD.

5.1.1. Eddy diffusivity and mixing length
The simplest model for the eddy diffusivity, which is a variant on the von Kármán–
Prandtl mixing-length theory, is given by

KM = l2
eff

∣∣∣∣du

dz

∣∣∣∣ , (6)

where leff is the effective mixing length. In order to parameterize leff as a function of
the established vortex sizes, we consider again the three regions described earlier.

In Region III, the classical Monin–Obukhov similarity theory leads to

leff = lBL = k LBL = k(z − d). (7)

The zero plane displacement, d, can be evaluated by the centre-of-pressure method
(Thom, 1971; Jackson, 1981) given by

d =
∫ h

0 zF (z)dz∫ h

0 F(z)dz
. (8)
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Figure 8. The computed mixing length for sparsest and densest canopies, (a) leff using the measure-
ments (symbol as in Figure 3) and predicted values from the conceptual model (broken lines). (b)
The α coefficients are evaluated from the measured data.

In Region I, the mixing length is connected with the size of the characteristic
vorticity LV . The values of leff, evaluated from the experimental data (combining
and inverting (6) and (4)), are shown in Figure 8. From this comparison it is evident
that the mixing length and LV are approximately equivalent.

In Region II, the flow field is a superposition of the classical boundary layer
and a mixing layer. A linear superposition model for the mixing length is proposed
here as

leff(z) = (1 − α)lBL(z) + αlML, (9)

where α ranges between 0 to 1, depending on the relative contribution of boundary-
layer eddies and mixing layer eddies to the net vertical transport of momentum.

The mixing length of the plane mixing layer lML requires further parameteriz-
ation in terms of variables that are computed by the closure model. The length Ls

(as used in (4)) is problematic because it requires a priori knowledge of the mean
velocity and the velocity gradients near the canopy top, which are precisely what
the closure model is solving for. More appropriate would be an estimate of lML that
is a direct function of canopy density and basic velocity scales. In Appendix A we
provide support for the use of

lML = 2

ĈDa

(
u∗
uh

)2

, (10)

where ĈDa is the canopy depth-averaged CDa. Furthermore, u∗/u is known to vary
systematically with canopy density (Raupach, 1994). The proposed parameteriza-
tion of u∗/u in terms of a is presented in Appendix A. Hence, both lBL and lML
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can be estimated without a priori knowledge of the mean velocity profile. We note
that Equation (10) suffers from a singularity as ĈDa becomes negligible. However,
as a → 0 the inflection in the velocity profile vanishes and the Kelvin–Helmholtz
mechanism is no longer relevant.

The leff values derived from the extreme (sparsest and densest) canopy cases are
shown in Figure 8a. Through linear regression of the experimental data (over Re-
gions I and II), the values of the coefficient α are evaluated. Such a regression was
performed for all five cases, with the resulting α values plotted against a in Figure
8b. It appears that the function is well covered by the five model canopy densities,
with an apparent asymptotic value of about 0.5. An important consequence of α

not being unity for dense canopies is that the end-member flow over the densest
cases is not a pure mixing layer, but rather an even combination of both flow types.

A further implication of the results in Figure 8 is that the effective mixing
length for the region just above the canopy, 1 < z/h < 2, is enhanced above
its value predicted by the classical Monin–Obukhov similarity by a factor of up
to 1.5. This enhancement in length scale leads to a linear enhancement in mo-
mentum diffusivity, which is consistent with numerous observations that the flow
near z/h = 1 appears more diffusive than that predicted by surface-layer similar-
ity theory (Thomson, 1979; Raupach, 1979; Garratt, 1980; Kaimal and Finnigan,
1994; Raupach et al., 1996; Finnigan, 2000; Novak et al., 2000).

For modelling purposes, Figure 8 provides some guidelines about the extent
of these regions. Based on this figure, Region I extends up to (z − d)/h = 0.5
for the sparsest canopy and 0.2 for the densest canopy. Region II extends up to
(z − d)/h = 1.3 for all canopy densities.

5.1.2. Drag coefficient
The main difficulty in estimating CD, a key parameter in the mean momentum
equation, is the sheltering effect (of consecutive obstacle elements) and its depend-
ence on the local element Reynolds number, as discussed in Raupach and Thom
(1981), Brunet et al. (1994) and Finnigan (2000). By combining the aerodynamic
force per unit volume parameterized in Equation (3), and the simplified mean
momentum equation, we obtain

CD(z,Re, a) = −2

(
d(u′w′)

dz
+ dp

dx

) (
a u2)−1

. (11)

From the measured profiles of u′w′, and u, CD is computed and shown in Figure
9a.

The general trend is that CD decreases with increasing distance from the wall
and increases with increasing a. The increase with a is inconsistent with the wind-
tunnel experiments reported by Novak et al. (2000) who found the opposite trend.
The Novak et al. experiments differ from ours in that, (i) u∗ was held constant,
while ours vary (see Table I), and (ii) the canopy was composed of plastic trees
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Figure 9. Drag coefficients, CD , plotted versus the normalized distance from the wall (z/h) (a) and
versus the Reynolds number Re = dru/ν (b). The expected values for a singular cylinder (broken
line) and from Equation (12) (solid line) are also shown.

(i.e., more than one scale that sheds vorticies) and not ‘identical’ cylinders as is
in our experiment. It is likely that these two factors contributed to drag coefficient
differences between our experiment and the Novak et al. experiments though this
issue needs further exploration.

When all CD measurements are combined and plotted as a function of the local
element Reynolds number Red (Figure 9b), a clear relationship emerges. At low
Reynolds numbers, the CD is consistent with the classical behaviour of drag on
a unit length of an isolated cylinder (i.e., CD � Re1/2, Bachelor, 1954). With
increasing Reynolds number, the CD values monotonically decrease (rather than
attain a constant value, as for an isolated cylinder). This decrease is attributed to
the sheltering effect, which injects a persistent Reynolds number dependence in CD

even for large Reynolds numbers. Interestingly, the computed values here for the
high Reynolds numbers are in agreement with several observed drag coefficients
reported for field and wind-tunnel studies (Thom, 1971; Seginer et al., 1976; Brunet
et al., 1994). Figure 9b also demonstrates that variations in canopy density have a
minor impact on CD when compared to variations in the local element Reynolds
number, at least for our canopy flow configuration. From our experiments, CD is
approximately described by a linear function of Red , given by

CD(Red) = −8.5 × 10−4Red + 1.5. (12)

This relationship is empirical and requires further testing for other canopy con-
figurations before any universality can be inferred. In fact, when taken together
with the Novak et al. wind-tunnel study, the largest uncertainty one must face in
modelling momentum transfer inside canopies is the drag coefficient.
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5.2. BOUNDARY CONDITIONS

To solve Equation (5) numerically, two boundary conditions must be specified.
The velocity at the farthest point from the wall was evaluated by the classical logar-
ithmic velocity profile and the velocity at z → 0 was evaluated from considerations
of the local momentum balance. Near the wall, we assume that the magnitude of
the stress divergence is small compared to the local drag force, and therefore, it
is possible to evaluate a ‘free-slip’ velocity from Equations (2) and (3) near the
boundary as

uz→0 =
(

2dp/dx

CDa

)1/2

. (13)

The upper boundary condition was set at z/h = 2 to avoid errors associated
with the observed nonlinearity of u′w′ in the region near the air-water interface.

5.3. COMPARISON WITH MEASUREMENTS

The measured and modelled u and u′w′ are compared in Figure 10. In these calcu-
lations, a cubic spline was used to interpolate leff between regions I and II. Vertical
axes are scaled with h, the Reynolds stress profiles are scaled with u2∗, and the mean
velocity profiles are scaled with u∗ (which is different scaling from Figure 3a). The
closure model, with its combination of a simple linear superposition mixing length
and a drag coefficient that is linear in Red , yields results that agree well with the
measurements. The model captures the increasing inflection in the mean velocity
profile with increasing canopy density. Furthermore, the model correctly predicted
stronger attenuation in the Reynolds stress profile with increasing a. The good
agreement between model calculations and measurements for such a wide range
of canopy roughness density suggests that the proposed mixing-length model for
the three regions and the linear dependence CD on Red can be used with some
confidence to connect the canopy roughness density with CSL flows.

6. Conclusions

The structure of CSL turbulence was investigated using spatial and high-resolution
temporal LDA measurements conducted in a flume for a wide range of canopy
densities. The spectral measurements clearly suggest that for z/h � 1, the flow is
primarily dominated by small vortices associated with the von Kármán streets. A
phenomenological model was presented, in which the CSL is comprised of three
layers. In the lowest layer (I), deep within the canopy, the flow is dominated by
von Kármán streets. In the middle layer (II), spanning the canopy top, the flow
is a superposition of a mixing layer and a rough-wall boundary layer. The upper
layer (III) is described by the classical boundary-layer formulation. This 3-layer
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Figure 10. Comparison between measured and predicted (solid line) mean velocity and Reynolds
stresses for five canopy densities. Top panel is for sparse, and bottom panel is for dense, the symbols
are as in Figure 3.

formulation is consistent with a number of observed features for CSL turbulence,
namely: Short-circuiting of the energy cascade in the deeper layers of the canopy
(I), enhanced diffusivity in momentum flux near the canopy-atmosphere interface
(II), and the convergence to Monin–Obukhov similarity forms in the upper region
(III).

With the advancement of remote sensing technology (e.g., laser altimetry)
it is likely that broad space-time data mapping of canopy roughness densities
should become readily available. The proposed mixing-length model here will
provide a mechanistic bridge from the roughness density maps to vertical transport
predictions, because it is tied more closely to the mechanics of CSL transport.
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Appendix A

To establish a relationship between lML and canopy density, we assume an analytic
expression for the mean velocity and then proceed to use the mean momentum
balance. The most popular expression for the mean velocity profile within the
canopy is given by

u(z) = u(h)eβ(z/h−1), (A1)

where β is the attenuation coefficient (Campbell and Norman, 1998). Starting with
the definition of Ls and using the exponential mean velocity profile,

Ls = u(z)

du/dz

∣∣∣∣
z=h

= h

β
. (A2)

In the absence of a pressure gradient, and upon integrating the mean momentum
balance, we obtain

u′w′(h) − u′w′(0) = −
∫ h

0
Cd a u2(h) e2β(z/h−1)dz, (A3)

where u′w′(h) = −u2∗. Assuming that for dense canopies all the momentum is ab-
sorbed by the canopy (i.e., u′w′(0) ≈ 0), and that (CDa) is approximately constant
with height given by ĈDa, Equation (A3) reduces to

β

h
= 1

2
ĈDa

(
u(h)

u∗

)2 (
1 − e−2β

)
. (A4)

Within canopies, the maximum depth of the mixing layer is bounded by the
canopy height, thus making β > 1. With β > 1, e−2β becomes � 1 and

Ls ≈ 2

ĈDa

(
u∗

u(h)

)2

. (A5)

One remaining unknown in the above formulation is the variation in u∗/u(h).
Typically, u∗/u(h) is not a priori known but it can be estimated from a as shown
in Raupach (1994). To illustrate, we computed u∗/u(h) from the measurements
reported in Figure 3 and further demonstrated in Figure A1 as an over-all good
agreement with the data reported in Raupach (1994).
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Figure A1. Variation in u∗/uh with canopy area index (�) or element area index (a). The broken
lines are from Raupach (1994) and the symbols are evaluated from the data.

To explore whether the estimate of Ls is sensitive to our assumption of an
exponential mean velocity profile, we repeated the entire derivation using

u(z) = u(h)(1 + tanh[β(z − h)]) (A6)

and found that when β > 1,

Ls ≈ 2.6

ĈDa

(
u∗

u(h)

)2

, (A7)
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which is almost identical to the result obtained from the exponential mean velo-
city profile. Hence, our estimate of Ls is not overly sensitive to our choice of an
exponential u(z).
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