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Abstract—Traffic Engineering is one of the building blocks for
a correct network planning. Internet Service Providers are always
trying to fulfill the user Quality of Experience (QoE). However,
each technological advance brings new services to the user, with
new challenges to be solved to maintain the QoE.

An example of this feedback system is the increased access
speed in the user’s premises. The increased bandwidth allows the
Internet-based video services, but the increased load also requires
new techniques to prevent congestion in the core network. A
quite common system to lower the network load and increase
the system availability is is represented by Content Delivery
Networks (CDNs). However, the optimization of the CDN servers
optimization is still an open problem.

In this paper we will analyze the performance of a deployed
Content Delivery Network caching system. We will derive its
performance metrics and we will show how a properly chosen
metric can indicate if the cache is underutilized. We will also
demonstrate that some ‘logical’ assumptions are not true in the
vast majority of cases, and that moving the cache close to the
users is negatively impacting the network performances in most
cases.

Index Terms—Content Delivery Network, Cache, Video on
Demand, Traffic Analysis

I. INTRODUCTION

The types of data traffic carried by Internet did vary over

time. One of the main success reasons of Internet is, indeed,

that it was not designed to carry any specific traffic. As a

consequence, it has been able to adapt itself to the ever-

changing traffic patterns generated by the users.

The traffic characterization is very important to design and

manage a network. Its correct forecast enables a network

provider to expand the network and to foresee if and how

it can offer new services to the users.

In the old telephone networks, the traffic was mainly char-

acterized though Erlang B or C formulas, and a common

assumption was that the traffic follows a Poisson distribution.

The Poisson model, and in general the Markov models, are

very interesting because they often allow closed-form solu-

tions. However, in a milestone paper Paxson and Floyd [1]

demonstrated that Internet traffic is not Poisson-like. On the

opposite, it is Long Range Dependent (LRD).

However, Internet traffic characterization needs to be always

re-validated. The changes in the users behaviour, services, link

capacity, or even a small change in a protocol (e.g., HTTP/1.1

to HTTP/2) can have a dramatic effect on the traffic pattern

(see for example [2], [3]).

The traffic pattern problem is of particular interest when

new services are rolled out. As an example, when an Internet

Service Provider (ISP) wants to offer a video streaming service

to its users, it needs to evaluate the amount of traffic that this

service will generate. Due to the Internet horizontal business

model, the traffic could also be modified as a reaction to new

service offered by third party, e.g., an Internet-based television

on demand. It is fairly obvious that the ISP goal is to provide

an active support to the new traffic types, in order to maximize

the user’s Quality of Experience (QoE). Failing to match the

expected QoE could be detrimental for the third party provider,

but most probably it will be more detrimental for the ISP.

In order to enhance the user’s QoE, ISPs and service

providers use a number of techniques, often completely trans-

parent to the user. The most common one is the use of

CDNs [4]. A CDN enhance the service quality and availability

by replicating the content in multiple servers, possibly closer

to the final user. As a matter of fact, a local server of a CDN

is similar to a transparent cache system: the user should not

know that it is there, and it should dynamically update the

locally stored resources to save internal memorization space.

The main problems in a CDN are: 1) where to place the

servers, 2) how to manage the content in the servers and 3)

how to choose the ‘best’ server for a given resource request.

It must be noted that CDN performance is dependent on

the traffic pattern, but it can change the traffic pattern as well.

In other terms, the optimization process must be dynamic.

Moreover, CDN servers hardware (i.e., memory, SSD disks,

etc.) is expensive. As a consequence, the cache optimization is

an important element to consider in the network design phase.

In this paper we will analyze some real traces derived

from an ISP content delivery network caching system. The

outcomes will be useful to have a better understanding of the

cache load type and variation, and can drive decisions about

their position in terms of number of served users.

The rest of the paper is structured as follows. In Section II

we will describe our scenario along with the relevant state of

the art. In Section III and IV we will outline respectively our

reference architecture and the kind of data available for the

study. Section V will analyze the results obtained from the

data. and Section VI will summarize the important elements

we found and the future research ideas.



II. STATE OF THE ART FOR CONTENT DELIVERY

NETWORKS

Multimedia content delivery is quite old problem. The first

approaches to efficient multimedia dissemination relied on

IP multicast. However, this solution is only feasible for live

contents. Moreover, IP multicast still faces many hurdles in

its deployment, preventing its effective use.

Peer-to-peer systems have been studied as a possible al-

ternative for efficient video streaming [5], [6]. However, this

technology did not gain much attention, probably due to the

security and accounting/billing issues associated with P2P

content.

Content Delivery Networks (CDNs) [7]–[10] have gained

more attention by Content Service Providers and Internet

Service Providers (ISPs) because they do not require any

special software and the necessary network infrastructure can

be deployed with a relatively small effort.

As a matter of fact, a CDN represents an overlay network

that implements a transparent, distributed caching system

across different servers. The user requests are redirected auto-

matically to the ‘best’ server. The CDN local servers do not

store all the possible resources; instead, internal algorithms

are used to dynamically update the local caches with the most

requested contents. Internal CDN algorithms are responsible

for maintaining the local caches updated.

There are mainly two types of traffic that can benefit from

a CDN: live streams and Video on Demand (VoD).

Theoretically, a live streaming system should use multicast

transport at IP level. By using multicast, the streaming optimal

performance is a matter of finding the best resource allocation

for the multicast tree, which is a routing problem. Alas,

multicast is not (yet) a widespread transport system. As a

consequence, application-level caching system have to repli-

cate the networking functionalities. The cache size is, in these

system, proportional to the number of served streams, as it is

useless to keep data for more than a few seconds or less. Live

streaming CDN systems are used to implement a multicast

architecture at the application level, implementing efficient

routing schemes, link failure recovery, path redundancy, etc.

Although interesting, these topics will not be discussed in the

present paper.

The CDNs used to deliver VoD services, on the opposite,

heavily rely on local caches to minimize the network load

and increase the user’s QoE. In this case there is no real-

time constraint, and the resource can be stored locally: like

the most common web caches, the most frequently requested

resources are stored locally, and the cache space is freed when

a resource is too old or not used. Summarizing, the goal is to

increase the user’s QoE by providing a server with a more

stable connection (lower load on the server, lower load on the

connection between the user and the server, etc), to decrease

the core network load and to minimize the resource required

by the CDN system (mainly the cache size).

POP

POP

POP

Acquirer

Origin
ServerService provider

Fig. 1: Content Delivery Network architecture

III. VOD CDN ARCHITECTURE

The general architecture of a VoD CDN is shown in

Figure 1. The Service provider loads the contents in the Origin

Server. When the user tries to load the content from the Origin

Server, the CDN automatically downloads the content through

an Acquirer to the Point of Presence (POP) closer to the user.

The content is delivered to the user by the POP, which acts

as a transparent cache from the user’s point of view (i.e., the

user is not aware of its presence).

It is worth noticing that the actual video streaming system

models are based on TCP rather than UDP. Moreover, streams

are segmented in multiple parts, and each one is delivered to

the user separately. As an example, a film is usually split in the

audio and video parts, Each one is further split in chunks of

different time length, and each chunk is stored with different

coding rates. This seemingly complex storing system allows to

serve users with different bandwidth and quality requirements

(e.g., fixed users, mobile users, etc.) and to start the video

playback from any point without too much performance hit.

Thanks to the above mentioned resource splitting architec-

ture, VoD caching becomes almost similar to a ‘normal’ web

caching problem, with the notable difference that there should

be a strong correlation between the resources served to a single

user.

Request-routing [11] is the technique used to redirect a

resource request to the ‘optimal’ local server. It is worth

noticing that the ‘optimal’ concept is subject to a number

of parameters, and could include the content availability, the

server load, the delay/jitter from the server to the user, etc.

The discussion of the optimal choice is out of scope in this

context. The interested reader can, for example, see [12].

In the present work it is important to note that, due to the

service goals, the server locality is a key feature. Even though

the core network is very fast, the design goal is to maintain

a geographic binding between the user and the serving node.

As a consequence, the network planning phase must take into

account the requests dynamics and deploy the servers where

they are the most effective.



Once the servers are deployed, the request routing mecha-

nisms are used to redirect the requests to the geographically

closer one, or to a backup server in case of failure (in this

case the geographical location is partially dismissed).

According to [11], the request routing can be performed at

DNS, transport or application level.

The most effective is the application-level redirect, which is

based on an inspection of the HTTP request and redirect the

user to the appropriate server through HTTP response (typi-

cally HTTP REDIRECT 302). The HTTP header inspection

allows to fine-tune the redirects, taking into account the user’s

location (its IP is known), the resource requested, and the

servers load. This is the preferred redirect system, and it is

used for all the HTTP-based requests.

The DNS-based redirection the server choice is based on

the DNS-proxy location, rather than on the user’s location. As

a matter of fact, the user does not interact directly with the

authoritative DNS servers. As a consequence, the redirection

is only based on a very rough geographical location (we can

assume that all the users of a given area use the same DNS

proxy). Moreover, in this redirect mode, the exact requested

resource is unknown. As a consequence, it is also difficult to

micro-manage the cache contents.

The transport-layer redirection does not add much to the

DNS-based one, being only able to add the port numbers to

the selection criteria. As a consequence, it is not used in the

cache system we studied.

IV. ANALYSIS METHODOLOGY

The analysis has been carried out thanks to the caching

system logs. These logs contains the full report of the

(anonymized) requests from each user, along with the result of

the caching operation and the time needed to fulfill a particular

request.

The logs are simple text files, where each request is stored in

a single line. The cache logs we worked with follows a format

that is almost identical to the one used by the popular SQUID

web cache system [13]. For each request, the following data

are recorded:

1) time-received (millisecond)

2) time-to-serve (microsecond)

3) client-IP (anonymized)

4) request-description / response-status

5) bytes-sent

6) request-method

7) request-url

8) mime-type

9) request-header (User-Agent)

We will now analyze the peculiarities of the most important

fields.

The first field (time-received) represents the time a request

has been recorded. It is saved in milliseconds, i.e., a low time

resolution. This somewhat hinder the analysis on the inter-

arrival time between successive requests. As a matter of fact,

in the logs there are many requests apparently recorded at the

very same time, which is obviously an artifact.

The time-to-serve is the time needed by the system to

process a request, i.e., to process the request, find it (locally or

remotely), and build the response. It could be logical to guess

that requests served by the local cache are processed faster

than the ones needing a remote retrieval. However, this is not

always true, as we will demonstrate in the following.

The client IP is anonymized, and we have not found

evidences of multiple clients types recorded with the same IP

(multiple clients types can be found by looking at the request

agent). This could either means that the anonymization process

also takes into account the possible NATs, or that the the users

are not yet using more than one device in their household (e.g.,

SmartTV and tablets).

The request description and response status indicate the

request kind and if the cache was able to find the content

locally (e.g., TCP HIT, TCP MISS, etc.). Codes are available

to indicate the conditional requests and other less frequent

cases. Even though we have no indication that the cache is

based on SQUID [13], the codes are practically identical. The

hit/miss ratio is usually chosen as an indicator for the cache

efficiency.

The request method is relevant for the VoD resources re-

trieved through HTTP. In our analysis we found that almost all

the VoD requests came from HTTP clients (but not necessarily

web browsers).

The request url is almost always an URL coded according

to the Unified Streaming format [14]. An example is:

http://mycdn.it/prefix/video/video.ism/

QualityLevels(128000)/Fragments(video=8000)

In some cases the resource is a ‘normal’ one, usually pointing

to programs listing pages.

The URL, minus the QualityLevels and Fragments parts,

can be useful to correlate different requests incoming from

the same IP (even if anonymized). We will call these requests

a flow, as they represent the chunks of an audio/video stream

that is being played by the user.

The mime-type is the most useless parameter, as it does not

really reflect the resource content, only its encoding. We did

not consider it in our analysis.

The request-header (User-Agent) is relevant only for statis-

tical purposes (i.e., to find out the diffusion of a particular

browser or set top box. In our case, we found that a given

version of a set top box has a bad behavior, which helped

fixing it. In a general context, it is possible to analyze the logs

and correlate the user agents behaviours to find out software

anomalies. Even though this is an interesting topic, it have not

been considered in the present study and it has been left for

future works.

V. RESULTS

The log data have been processed using custom log analysis

tools and the R statistical tool for distribution analysis and

fitting [15].

The first check was about the QoE perceived by the users.

We can use the time to serve a request as a very rough

indicator. As a matter of fact, this is a simplification, because
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in the VoD systems the requirement is that the next block

is transferred before the previous one playout is concluded.

As a consequence, the QoE is optimal if the time to serve is

bounded, not if it is the lowest possible one.

We could expect that the time to serve a request from the

local cache is lower than the time to serve a request that have

to be retrieved from the acquirer. In Figure 2 this is not evident

at all. Moreover, there’s not even a straight proportional law

between the time to serve and the resource size.

This result is counterintuitive, but can be explained. POPs

are connected through high speed links (10 to 40 Gbps), while

local caches are in SSD disks. Despite this, the SSD disks have

an access time that is limited by the disk BUS, which as a

limited speed, and it is slower than 40 Gbps. As a consequence,

if the core network (POP, Acquirer, service provider) is not

congested, the difference between local or remote retrieving

is minimal.

Note that the difference is small, but still relevant. Figure 3

shows that hit requests have a slightly higher throughput than

the missed ones. The low throughput could be an indication

that the users are still largely using a small fraction of the

CDN potentiality, and that a traffic increase is most likely.

The hit ratio is a very common method used to verify the

cache effectiveness. Intuitively, the more requests are served

by the cache (hit), the better. The problem is that not every

resource is the same, and that the ‘pure’ hit ratio might be

misleading in judging the cache effectiveness and the user’s

experience.

In order to evaluate the cache performances, we collected

three kind of data: 1) the raw hit ratio, 2) the per-flow, per-

user hit ratio, and 3) the per-flow hit ratio. The raw hit ratio

is evaluated simply by counting the number of hits vs the

number of requests. The per-flow, per-user is the average hit

ratio of every flow requested by a single user. Finally, the per-

flow is the average of he hit ratio of a flow regardless of the

requesting user.

The three data roughly represent the overall cache efficiency,

the probability that a user request of an active flow is served

by the cache, and the probability that the cache efficiency is

boosted by multiple users using the same content. We believe

that the real parameters to be considered are the two flow-

based curves. As a matter of fact, the cache system can easily

forecast if a user will request a chunk of a resource according

to the previous chunks it requested. Of course the user can

stop watching a given content and switch to another, but if

he/she does not, then the next chunk is highly predictable.

The result is shown in Figures 4a and 5a for two load cases:

low and high.

Finally, in order to evaluate the cache efficiency with respect

to the resource size, all the above quantities have been also

averaged according to the resource size (Figures 4b and 5b).

As a reference, the number of bytes served by the cache is

drawn as well (its axis is on the right).

The comparison between the four graphs is very interesting.

The first observation is that in the low traffic case the per-flow

hit ratio is lower than the per-flow, per-user hit ratio (Figure 4).

This means that the cache is not taking advantage of the users

multiplexing or, in other terms, that the probability that the

cache is serving the same content to multiple users is very

low. On the opposite, with a high load the cache performances

are boosted by multiple users, with the per-flow values often

greater than the per-flow, per-user (Figure 5). Practically, this is

a clear evidence that the cache in the first case is underutilized

and misplaced (i.e., it is serving too few users).

Another result that can be drawn from Figures 4-5 compari-

son is the fact that the normalization to the resource size makes

the graphs easier to read and, in general, more meaningful.

Counting each resource request without considering its size

does not take into account the frequent requests for the list of

active channels and such. The cache effectiveness over these

resources is important for the user’s QoE, but it does not give a

strong hint of the overall cache effectiveness. On the opposite,

by normalizing over the resource size (Figure 5b), it is clear

that the real cache performance is below 40%. In other terms,

between 60% and 80% of the local memory (i.e., SSD disks)

used by the cache is used to store useful content.

The analysis of the high load case shows a completely

different scenario. Here the ‘pure’ hit ratio is around 60%, and

the flow-based ones above 40%. Moreover, in the normalized

graph, both of them are almost identical, with only two local
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Fig. 5: Hit ratio - high load

cases where they differ (perhaps due to particular events being

broadcasted).

The above analysis leads to a practical, even if empirical,

way to evaluate the cache effectiveness, i.e., if it is serving an

optimal number of users: if the per-flow, per-user and the per-

flow hit ratio, both normalized to the resource size, are almost

identical, then the cache is well performing, and adding more

users will not lead to further benefits.

The problem now shifts to another question, i.e., if it is

possible to improve the cache performances even further.

Obviously, the main element responsible for the cache op-

timization is the cache pruning decision algorithm and, due

to the kind of cache, the cache prefetch algorithm. The first

tags the resources that have to be removed in case of memory

shortage, the second can preload in the cache a resource if

it is going to be requested with an high probability (e.g., the

next chunk of a flow).

Unfortunately, in the present study it was not possible to

analyze in detail the two sub-systems (the cache system uses

proprietary algorithms). Nevertheless, we have no doubts that

the cache memory usage is highly optimized.

About the possible improvements, the resource pruning

algorithm is (usually) quite simple, and involves a timer and,

possibly, a weight to keep in memory important resources,

even if their use is sporadic. The resource prefetch algorithm,

on the opposite, can leverage the correlations between the

chunks of the same flow.

It is well known [1] that the Internet traffic is LRD. This

effect is due, in the web browsing case, to the resource size

and to the request interarrival time. The main effect of the

LRD behaviour is that by combining multiple flows, the overall

variance does not decreases or, in other terms, the traffic have

“peaks” at every aggregation size.

We can already observe in Figures 4-5 that there is a strong

fluctuation in the served resource size, but this could be only

a periodic effect (i.e., time of the day).

In order to further analyze the problem, we have isolated the

interarrival time of the requests belonging to different flows.

I.e., we did not consider the chunks of the same flow, and we

measured the equivalent of a ‘reading time’. This time serie

have been analyzed thanks to R.

The resource request density (Figure 6) already indicates

that the interarrival time is LRD (note that the ordinate is

in logarithmic scale). In order to further confirm this clue,

we have drawn the Cullen-Frey graph [16] in Figure 7. Also

this test leads to the conclusion that the distribution is well

approximated by Weibull or Pareto distributions, and it is not

short range dependant or limited.
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The resource size analysis is a bit more complex, and it is

not reported here for space constraints. It can be demonstrated

that also in that case the distribution is a mixture between LRD

distributions.

The conclusion is that, no matter how smart the prediction

and pruning algorithms can be, the LRD effects will fix a

strong limitation on the cache effectiveness.

VI. CONCLUSIONS

In this paper we analyzed the performance of a real VoD

cache system. The results have shown some counterintuitive

behaviours. Moreover, we demonstrated that caches serving

a large user population are to be preferred, and we found a

practical system to highlight if the cache is optimal or it is

serving a too small number of users.

We have shown that the user traffic pattern follows an LRD

distribution also in the case of VoD requests. This element

provides am upper boundary to the performance limits of the

CDN caches. Future works should consider these two key

elements during the CDN design phase.

Last but not least, we would light to stress that the CDN

performances, and even their actual work model, is strongly

bound to the application-level requests inspection. Future

protocols and secure protocols (e.g., HTTPS) might hinder

this possibility. Due to the increasing spread of encrypted

communications, we believe that the CDN architectures will

have to consider this issue in the near future.
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