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THE EFFECT OF VIRTUAL MASS ON THE CHARACTERISTICS . · 

AND THE NUMERICAL STABILITY IN TWO-PHASE FLOWS 

ABSTRACT 

It. is known that the typical six equation two-fluid model of the 

two-phase flow possesses complex characteristics, exhibits unbounded 

instabilities in the short-wavelength limit and constitutes an ill~posed 

initial value problein. Among the suggestions to overcome these diffi­

culties, one model for the virtual mass force terms was studied here, 

because the virtual mass represents real physical effetts to accomplish 

the dissipation for numerical stability. It was found that the virtual 

mass has a profound effect upon the mathematical characteristic and 

numeri-cal stability. Here a quantitative bound on the coefficient of 

the virtual mass terms was suggested for mathematical hyperbolicity and 

numerical stability. It. was concluded that the finite difference scheme 

with the virtual mass model is restricted only by the convective stability 

conditions with the ~bove suggested value. 



.. 

-2-

. INTRODUCTION 

Transient two-phase flow analysis is of importance in nuclear reactors 

under various accident conditions. Among the several models of two-phase 

flow the two-fluid model offers the most detailed and general description 

of two-phase flow. But it was reported in early work that the model has 

inherent instabilityproblems. In 1965 Jarvis [1] tried to solve the two­

phase eq~ations using the two-fluid model fo.r modeling the cooldown process 

in cryogenics and faced instability problems. He attributed the instabili­

ties he encounte~ed to th~ fact that the system wa~ found to be nonhyper­

bolic. In 1967 Richtmyer and Morton [2] showed that, if the IVP is 

ill-posed, then no difference scheme that is consistent with the problem 

can be stable. In 1971 Siegmann encountered numerical stabilities in 

his transient sodium boiling code called ~OC. In 1973 Boure appears to 

have encountered severe stability difficulties in the GEVATRAN code. I.n 

a round table discussion during the Fifth International Heat Transfer 

Conference [5], the instability problems in the two-fluid rnodel were 

shown to be caused by an ill-posed problem. In 1976 Bryce [6] experienced 

large-sea 1 e pressure osci 11 ations with RELAP-UK code. He demonstrated that 

simple two-fluid model with complex characteristics does not give solutions 

which converge as the mesh size and time step size are refined. He 

concluded that, though the solution may be obtained by using numerical 

technique, the significance of these solutions is not clear. In 1976 

Lyczkowski [7] did a sample calculation illustrating error growth caused 

by complex characteristics. In the 1977 ANS topical meeting of thermal 

reactor safety, Anderson [8] reported his attempt to acheive stability 

by using virtual mass terms in.his RISQUE ·code whi.ch was propo'sed 
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by Hi 1 precht. . It was found that the vi rtua 1 mass has a profound effect 

·on the dynamics of two-phase flow. His code was us.ed to perform numeri ca 1 

calculations on the behavior of interfacial waves. It was observed that 

for no virtual mass, the wave amplitude grows rapidly, but the computed 

result with virtual mass shows a stable oscillatory behavior for the wave 

\'lave amplitude. In 1979 Rivard and Travis [9] successfully dealt with 

critical flow with the· two-fluid code, K-FIX. But for the results 

presented, the.valu·e.of the interfacial drag function was chosed suffi­

ciently la.rge that there 1sno mean relative motion between the phases. 

In 1979 investigators at R.P.I. [10] showed that witho~t virtual ·mass 

not only was it more costly to run the problem, but they could not even 

run the complete problem using their code, GEAR. Computer running time 

without virtual mass was forty times longer than that with virtual mass. 

It may well be argued that equation sets with complex characteristics 

may still be adequate for a range of phenomena if the numerical method 

introduces sufficient dissipation to damp the high frequency instabilities·. 

But obviously there are real physical effects to accomplish the dissipa­

tion needed for numerical stability. Among several candidates suggested 

for numerical stability, Cheng and Lahey's model [10] with the virtual 

mass terms will be.studied here. 
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A. ILL-POSED PROBLEMS AND MATHEMATICAL STABILITY OF THE INITIAL VALUE 
PROBLEM (IVP) 

Quantitative physical laws are idealizations of reality. ·As knowledge 

grows, we observe that a given physical situation can be idealized 

mathematically in a number of different ways. It is therefore important 

to characterize those reasonable ideal formulations. Hadamard [11] 

examined this problem, asserting that a physical formulati6n is well-posed 

if its solution e·xists, is unique, and depends continuously on the external 

{boundary) conditions. Existence and uniqueness are an affirmation of 

its principle of determination without which experiments could not be 

repeated with the expectation of consistent data. The continuous dependence 

criterion is an· expression of the stability of the solution; a small 

change in any of the problem's data should produce only a correspondingly· 

small change in the solution. The general one-dimensional problem can be 

represented in matrix form, as follows: 

A(x) ~~ + B(x) ~~ + C(x) = 0, 

where " 

xis a column vector of independent variables, 

A(x) and B(x) are the coefficient matrices, and 

·c(x) is a source or sink vector. 

The IVP under consideration is to find a solution of Eq. (A.l) in some 

region 

a ~ z ~ b, 

, .. 



._ 5-

subject to the initial condition 

x(O,i) = u
0

(z), (A~2) 

and the value of x or fts derivatives prescribed on the boundaries, 

z = a and z = b. . CA~3) 

When the definition of a well-posed problem by Hadamard is applied 

to .the above system. the IVP is said to be well-posed if the solution of 

Eq. (A.l) exists, is unique, and de~ends continuously on both of the 

initial condition, Eq. (A.2) and the boundary conditions Eq. (A.3). 

Also system Eq. (A. 1) is defined as hyperbolic if all values of the 

characteristic~ of Eq. (A.l) ~re distinct and real. Accordtng to 

Lax [12] the re~uirement of a well-posed problem in the linear ~artial 

differential equations with the form like Eq. (A.l) is the same as that 

of hyperbolicity. Along characteristic curves the highest-order deriva­

tives in a POE are indeterminate; characteristics may separate 

di sconti nuiti es in the sol uti on. Therefore characteristics ar·e trajec-:­

tories of discontinuities in the solution. Physically it represents 

the travel of information in a physical system. The typical two-fluid 

models have four real characteristics (two convective velocities of 

liquid and vapor, and two relative sound velocities to both convective 

velocities of liquid and vapor through system) and two imaginary charac­

teristics. The two imaginary characteristics may represent.two relatiye 

velocities of interfacial wave propagation to both liquid and· vapor 

with complex values whfch indicate an instability of interfacial waves. 
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Characteristics and stability are shown to be related only in the 

·limit of·large frequency. The characteristics, 11 of Eq. (A.l) are defined 

by the· equation 

Det (pA - B) = 0 (A.4) 

The local linear stability behavior of Eq. (A.l) is examined. xis 

replaced by xo +ox, and the result is linearized with respect to ox, 

resulting in 

A(x ·):a(ox) + B(x ) a{ox) + (ox (aA) ) axo 
0 a t· . 0 a Z fi X a t 

0 

(A. 5) 

As Eq. (A.S) describes small ~erturbations, ox about an unperturbed 

solution, a uniform steady-state unperturbed solution is assumed, which 

means that X is independent of ·Z and t. ~Je take a wave form for the 
0 . 

perturbed amount, ox 

ox = ox
0 

exp[i(kz- wt)] (A. 6) . 

Then Eq. (A.S) becomes 

-iw.A(x ·) 6x + "k B( ) o +ox (3c) = o o o , · xo xo o ax x 
0 

{:A.7) 
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Equation (A.7) is a homogeneous linear system in the components of 6x. 

For a nontrivial solution the determinant of the coefficient matri.x must 

vanish. 

Det(•iwA + ikB + D) = 0, (A .8) 

where· 

ac r 
D = Cax)x , (A.9) 

. 0 

the superscript T denotin~ the matrix transpose. for nonzero k Eq. (A.8) 

can be rewritten as 

Det(: A S + ~ D~ = 0 (A. 1 0) 

Inspection of Eq. (A.6) show~ that .the condition for stability is that 

Im(w)~ 0 for all roots w. Comparis~n of E~. (A.4) and Eq. (A.lO) shows 

that, if D= 0 or k+oo, the dispersi~n relations can be obtained from the 

characteristics simply by equating w/k to 11. Physicallythe instability 

at long wavelengths is the well-known Helmholtz instability.· But the. 

system which possesses complex char~ct~ristics exhibits unphysical and 

unbounde~ instabilities i~ the short-wavelength limit. -One of the 

reasons why the basic system behaves like the above lies in the simplest 

choice for the interfacial pressure distribution in which it is constant 

and equal to the bulk pressure. Physically the above choice is consistent 

with the assumption that the two fluid velocities are equal. Therefore 
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this leads to an equation set possessing real characteristics only when 

the two fluid velocities are e~ual. This is the reason for. the present 

study of the effect of the virtual mass here . 

. I 
i 
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B. CHARACTERISTIC AND STABILITY ANALYSIS 

The effect of virtual mass on the characteristics can be illstrated 

by adding the virtual mass terms to the one-dimensional momentum equations 

of both liquid and vapor. Here Cheng and Lahey's model forthe virtual 

mass terms is considered .. The conservation equatio·nsare as follows:· 

Conservation of vapor mass: 

(B .1) 

Conservation of liquid mass: 

{B.2) 

Conservation of vapor momentum: 

where 

Vi, Fs, Fv and Fwv are the interfacial velocity, the standard 

drag force per unit volume, the virtual mass force per unit volume, and 

the vapor wall friction force per unit volu~e, respectively. 

. (B.4) 

, 
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a .. 
az 

av 
+ (Vv- Vr;_) [(>.- 2) a/ + 

Conservation of liquid momentum 

where FwR- is the liquid wall friction force per unit volume .. For 

convenience by summing up Eq. (8.3) and Eq. (8~6), we can get the 

momentum equ~tion. 

(B.S) 

. (B. 7) 

By multiplying Eq. (8.3) by ar;_ and Eq. (8.6) by av a.nd then subtracting 

each other, we obtain 
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Conservation of vapor energy: 

where Q and Q. are the heat transfer per unit volume from wall to vapor wv 1 

and from interface, respectively. 

Conservation of liquid energy: 

{8.10) 

where Qw1 is the heat t~ansfer per unit volume from ~all to liquid. 

Let us construct the form of 

A{x) ~~ + B{x) ~~ + C{x) = 0, {8 .11) 

where x is a column vector of independent variables, 

It is assumed that. the density of ~oth liquid and vapor. is ·the function 

of pressure. Here av and a1 denote the sound velocity of vapor and 

liquid, respectively~ 



A = 

B = 

- -2 
Pv avav 

-PR. aiai 
-2 

P e . .._ P 
v v avevav 

-p e - P ._it aipiai 

a V a - 2 
v v v 

1. 

-2 

-2 
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avpv aipi 

aipv + piCv -aipi- piCV 

avpv 

[aipv+piCv -[11-aJpi+pi 

(>..-l}]Vv Cv(1-A.)]Vi 

-piCv(A.-2)Vt -piCVVVA. 

In order to get the characteristics from Eq. (A.2) 

Det (~ A B) = 0 

I i 

-

.aR_pi 
. ..;_ 

-

a p V 
v v v 

-

Reducing the terms related to the energj equations from Eq. (B.12}, 

we get 

(B.12) 

. (B.13) 

(B.14) 
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pv(ll- Vv) 
2 . 

Det . avav- (lJ- Vv) -a P v v 0 

-p (}.1- v ) 
R, R, . aR.aR.-

2
(JJ- VR.) 0 

0 -1 avpv(JJ- Vv) (iR.pR.(JJ-VR.) (8.15) · 

0. 0 (aR-pv +p R-Cv )( ~-:- V v) ;(aR.pR. +pR. CV.XJJ-V R.) .. 

-pR.Cv(A-2)(Vv-VR.) . +pR.CvA(Vv-VR.) 

Froni .the terms related to the energy equations we obtained JJ= Vv,VR-.· 

Physically this means that energy is transferred by only convection. 

For simplicity with the assumption that av>>Vv and aR.>>VR.' that is, 

incompressible flow is used·, we neglect 

We may predict that these terms are related to the sonic velocities 

transferred through liquid and vapor. 

·Now we get the simplified determinant form 

pv(JJ-Vv) -a P v v 0 

-P (ll-V ) 
R, R, 

0 -aR,pR, = 0 
Det 

0 
(aR.pv+pR.Cv)(JJ-Vv) -(aR,pR,+pR.Cv)(JJ-VR,) 

-p C (A-2)(V -V ) 
R.v v R, 

+pR.CvA (Vv-VR.) 

From Eq. (8.16) we obtain an ·algebraic equations of the form 

(8.16) 

• 



• 
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aq2 + bq + c = 0, 

b = [y(2-!t) + 2avaR.pR.]Vr 

. . . 2 
c = [avaR.pR.+ av y(l-!t)]Vr 

Y·= p c 
R. v 

q = ~ - v v 

v·=v -Vn r v · N 

In order for our system to have real and distinct characteristics 

b2 - 4ac> 0 

2 
b -4ac = [y2C~. 2 + 4(1-lt)a ) + 4y(l-!t)avan 2(Pn-Pv) 

v 2 . . £ ;t., ;t., 

. r 

i) There i~ no virtual mass; Cv= 0 

2 3 
b ~ 4ac = -4avai pvpi 

Therefore the system with no virtual mass always has two 

complex characteristics except the single phase region 

(B.l7) 

(B, 18) 



-15-

ii) ·If av-+ 0, b
2

- 4a·c = y2
(> .. - 2)

2 

If Cv'f. 0 and A.'f 2, !i:o (b
2

- 4ac) >0 
v 

) . 2· 4 2 2 
iii If aJI.-+ 0, b - ac· = y A. 

IfCiOandA.'fO, lim. (b2-4ac)>O. 
v . (J.J/,-+0 

iv) 
' . . 2 . 2 3 . 
If A.= l, b - 4ac = Y - 4CJ.vaJI. PyPJ/, 

If c ~ ava£ 
3

Pv , b
2
-4ac> o 

v . PJ/, 

v) If 0 < A. < 1, C~[A. 2 + 4(1-i)aJ/,] + 4 ava'f y(l-A.)(l- ::) 

3 Pv 
> 4 CJ.VCJ.J/, -

PJ/, 

2 Pv ·. 
As 4(1-A.)an>O ·and 4a CJ.n y (1-A.)(l- -)> 0, 

){, v ){, PJ/, 

/ 3 Pv 
( C A.)>/ 4CJ. a ~ ... 

·V. V J/, PJ/, 

vi) 
2 · 2 2 3 Pv 

If .1 <.A.< 2, CV (A.-2) - 4CJ.VaJ/, CV > 4CJ.VCJ.J/, PQ, 

· 2 2 2 Pv 
Cv (A.- 2) > 4CJ.vaJI. · [Cv + CJ.J/, PJI. ] 

Note that as A. .approaches 2 or 0, the .required va.l ue of Cv become$. 

larger and larger. 

• 

(8.19) 
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The effect of virtual mass on stability can be. simply illustrated 

by using the characteristics analysis. If the mass exchange, standard 

drag force, wall friction, and the energy equations are neglected in 

order to know·clearly the.effect of virtual mass on stability, Din 

Eq. (A. 10) reduces to zero. 

Nciw as stated before, the dispersion relationship can b~ obtained 

from the characteristics simply by equating I to ~. 

w = k].l (B.20) 

The stability cond'ition, Im(w) ~ 0 for all roots w is the same as the 

c6ndition for the real and distinct characteristics. 
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C. NUMERICAL STABILITY 

Here we shall examine a difference scheme formed in a similar 

way to THERMIT [13]. For the same reason as in the stability analysis, 

mass exchange, standard drag f~rce, and wall friction are neglected. 

Also energy equations are dropped because they only represent convective 

properties as we say in the characteristic analysis 

vapor mass 

liquid mass 

momentum equations 

(C.3) 

_(C.4) 

,-
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The above numerical scheme can be modified as follows: 

vapor mass 

n+ 1 ( n+ 1 n) n ( n+ 1 _ n) + ~ t n n+ 1 · 
PvJ· _ av - a . + a . p p . [p . V 

1 v J . VJ v. v J . ~z VJ vj+ 12 

( · n . n ) + · n . · vn+ 1 · ( n n ) · 
avj-.avj-1 avj-1 vj+l12 Pvj- Pvj-1 

. n n ( n+ 1 V n+ 1 ) ] 
+ av j- 1 P v j- 1 V v j + 1 I 2 - v j- 1 I 2 = 0 (C. 5) 

liquid mass 

Same as Eq. (C.S) with av replaced by aR.' subscript v by R.. (C.6) 

momentum equations 

· n n+ 1 n t · ) n -n+ 1 n 
.(avpv) (Vv -:- Vv)j+\~R.~-~- _(VR. ·- V.fl )j 

+ ~:. [(avpvVv)n (Vv.- Vv~ l)n+ (aR.pR.VR.)n 
J J-

(V - V ) n · 
R.. • L 1 

J J-

. n+l 
+ (~j+lj2- pj-112) ] = 0 

Treating the coefficients as constants and using Von Neumann local · 

stability analysis, U~= z;;n exp(ikj~z), we obtain the determinant form 
. . . J . 

for a nontrivial solution. 

(C. 7) 

(C.8) 
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.-- - 2 -

I 
pv(~;-l+Vv) a-a(~;-l+V} avpv~;q 0 

v v v 

- -2 -
- P t ( ~;- 1 +v t} at at(~;-l+Vt} 0 

: 
atpt ~;q 

- -
Det 0 l;q avpv(i;-1 + Vv} atpt(~;-l+Vt} =0 

0 0 {atpv +pt C)(~;-1} ..: (atpt+ptCv} (~;-1.} 

- -
+{[atpv+ptCv(~;~}]Vv - { {atpt+pt Cv ( 1-A}]V 

- . -
-ptCv(A-2} VR_} +pR_Cv Wv} 

---

where 
- ~t 
Vv = ~z Vv(l-exp(-ik~z}) 

- ~t 
Vt = ~z Vt(l-exp(-ik~z)) 

2
. ~t .. ( k~z) 

q = 1 ~z s 1 n - 2-

Tr 
k = n~z : n=l~J :J: the number of axial mesh 

For simplicity we assume in the same way as in the previous analysis 

that av>>Vv' at>>V£ 

Then the determinant reduces to the 3 x 3 detenni nant 

0 

Det -p (~;-l+V) t v . 0 

0 (atpv +ptCv) (~;-l+Vv) -(atpt+ptCv) (i;-l+V t} 

·tptCv(A-2)(Vv-Vt) -ptCvA(Vv- Vt) · 

= 0 

(C.9) 

(C.lO) 
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As we. notice that .z;;q appears as a common coefficient, resolving the 

determinant we obtain the modified determinant 

,- -
Pv(ll-Vv) -a. p 

v v 
0 

-pt(J.l-Vt) 0 -a.R,pR, 

Det .- 0 - -.o (a.R.pv + pR.Cv)(ll-Vv) -(a.tpt+ ptCv)(ll-Vt) 

-pR.Cv(A-2)(~v-~t) 
- -

+pR.CvA.(Vv- V R.) 

where J.l = ~(z;;-1) 

(C.ll) 

The above determinant, Eq. (C. 11) is in the exact same form as Eq. (B. 16). 

Therefore we can use Eq. (B.l7) as follows: 

. . . where 
. 2 · . 

a = a.R. Pv + a.va.R.pt + pR.Cv 

b = pR.Cv(2-A.) + 2a.v~R.Pt 

c = a.va.tpt+ a.vptCv(l-A.) . 

q = J.l- vv 

v = v - v r . v R. 

For numerical stability the absolute value of the growth factor, lz;;l, 

should be less than 1. 

From Eq. (C. 12) 

q = 
12 

-b± ?b -4ac 
2a V r 

(C.l2) 

(C.l3) 
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-
s-1 = -~ = -(Vv + q) _(C.l4) 

s-1 [ 
( 2a- b ±lb

2
- 4ac V + b +. ~ 2 - 4ac V J 

2a . v 2a t 
(C.lS) 

~-1 = ·-

= -p + p exp (-i kL\z) , (.C .• 16) 

where 

T 

Z Plane y-1' 

stability region 

------------4----+~~~~------------~~ 
. -1 X 

-1 

·Fig. 1:. Stability Diagram of Eq. (C.l6) 
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For numerical stability 0< P< 1 

If fit V < 1 and .fit V < 1~ the above inequality is always met~ 
flz v flz 1: . 

For - /b
2

- 4ac 

z; - 1 

= -r + r exp (-ikflz) , 

where'r = 

·For numerical stability O<.r< 1 

Also if ~~ Vv<l and ~! v
1

< 1, the above inequality is always met. 

Therefore,. it can be concluded that, if A = 1 and 

(C.l7) 

(c. 18) 

(C.l9) 

the f1nHe difference scheme is restricted only by 

the convective s tabi 1 i ty conditions. 
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