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THE EFFECT OF VIRTUAL MASS ON THE CHARACTERISTICS
AND THE NUMERICAL STABILITY IN TWO-PHASE FLOWS

ABSTRACT

It is khown:that the typical six equation two-fluid model o% the
two-phase fiow po$sesses Eomplex characteristics, exhibits unbounded
~instabilities in the éhort-wave]ength Timit and constitutes an i11=posed
initia] va]ue‘probiem. Among fhe suggestions to overcome these diffi-
cuTties, one model for the.virtua1 mass force terms was.studied‘here,
because the Virtuallmass represents real physical effeéts to accomp]iéh
_the dissipation for nﬁmerica]-stabi]ity. It was found that the virfuaj
mass has a profound effect upon the mathematical characteristic and
numerical stability. Here a quantitative bound on fhe coefficient of
the virtual mass terms was suggested for mathematical hypgrbo1icity and
numérica] stability. It.was concluded that the finite difference scheme
With the virtual mass model is restricted only by the convécfive stabi]fty

conditions with the above suggested value.



- INTRODUCTION

Transient two-phase flow analysis is of importance in ndc]ear reactors
under various accident conditions. Among the several models of two-phase
flow the two—f]uid-model offers the most detailed and general description
of tno-phase flow. But it was reported in early work that the model has
inherent instabflity'probiems In 1965 Jarvis [1] tried to solve the two;
phase equat1ons us1ng the two-fluid mode] for mode11ng ‘the coo]down process
in cryogen1cs and faced 1nstab111ty problems. He attr1buted ‘the instabili-
ties he encountered to. the fact that the system- was foundfto be nonhyperf,
bolic. In 1967 Richtmyer and Morton [2] showed that, if tne IVP is |
i]l-posed, then no difference scheme that is consistent with the problem .
can be stable. In 1971 Siegmann encountered numerical stabilities in
" his transient'sodium boiling code called MOC. In 1973 Boure appears to
have encountered'severe stability difficulties in the GEVATRAN code. In
a round table discussion during the Fifth International Heat Transfer
Conference [5], the 1nstab111ty problems in the two- f1u1d mode1 were
shown to be caused by'an jl]-posed problem. In 1976 Bryce [6] exper1enced
large-scale presSUrerscillations with RELAP-UK code. He demonstrated that ,
. 'simple two-fidfd mode]rwfth.complex characteristics does not:give so]dtions
.which converge as the mesh size and time step sizeAare refined. He
.concluded tnat, though the solution may be obtained by using numerical
technique, the significance of these solutions is not clear. In 1976
Lyczkowski [7] did a sample caTculation illustrating error growth caused
by compTex characteristics. In the 1977 ANS topical meeting of thermal
reactor safety, Anderson [8] reported his attempt to ache1ve stab111ty

by using v1rtua1 mass terms 1n his RISQUE code wh1ch was proposed
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by Hi]precﬁt., ft.was found that the vfrtual‘mass has é'ﬁrofound effect
"on the dynamics of two-phase flow. His code was used to pefform numerical
calculations on the behavior of interfacial waves. It was observed that
for no virtual masﬁ, the wave amplitude grows rapidly, but the computed
result with virtqa] mass shows a stable oscillatory behavior for the wavé
wave amplitude. In 1979 Rivard and Travis [9] successfully dealt with
critical flow with the two-fluid code, K-FIX. But for the results
presented, the value.of the interfécia] drag function was chosed éuffi-
ciently large that there is no mean re]ative motion between the phases.
In 1979 investigators at R.P.I;'[lo] showed‘that Without‘vjrtua]-mass
not only was it more costly to run the problem, buf they could not even
. run the complete problem using their code, GEAR. Computer running time
without virtual mass was forty times Tonger than that with virtual mass.
It may well be argued that equation sets with complex characteristics
may still bé adequate for a range of phenomena if the numerical method
introduces sufficient dissipation to damp the high frequency instabilities.
But obviousjy there are real physical effects to accomplish the dissipa-
tion needed for nuheriéal'stabi]ity} Among several candidates suggestéq
for numerical stability, Cheng and Lahey's model [10] with the yirtua]

mass terms will be studied here.



A. ILL-POSED PROBLEMS AND MATHEMATICAL STABILITY OF THE INITIAL VALUE
PROBLEM (IVP)

Quantitative physical laws are idealizations of reality. As know]edge
grows, we observe that a given physical situation can be idealized
mathematically in a number of different ways. It is therefore'important'
to characterize those reasonab]e ideal formu]at1ons Hadamard [11]
exam1ned this problem, assert1ng that a phys1ca1 formu1at1on is well- posed
if its so]ut1onrex1sts, is .unique, and depends continuously on the externa]
(boundary) conditions. Exfsténce and uniqueness are an affirmation of
its principle of determination without which experiments could not be
repeated with the expectation of consistent data. The continuous dependence
criterion is aﬁ'expression of the'stability of the solution; a small
change in any of the problem's data Shou1d.produce‘on]y‘a correspondingly "
small change in the solution. The'general one-dimensibna1 prob]em'can be

represented in matrix form, as follows:
DA 2 B(x) e c(x) =0, (A1)
ot 9z > ‘ ) | )

where »
x is'a column vector of independent variables,
A(x) and B(x)‘are the coefficient matrices, and

'C{x) is a source or sink vector.

The IVP under consideration is to find a solution of Eq. (A.1) in some

region



subject to thg initial coﬁdition

x(0,2) = uo(Z).,' ‘} - (A:2)
and tbe value of x or ifs deriVatiVes prescribed on the boqndahigs,

;‘; a aﬁd z = b. - _ " (A.3)

When the definition of a we]]-posed problem by Hadamard is app]iédl
to .the above system, the IVP is said t6 be well-posed if the solution of |
Eq. (A.1) exists, is unique, and depends continuously on bofh of the
initial condition, Eq. (A.2) and the boundary conditions Eq. (A.3).

Also system Eq. (A.1) is defined aé hyperbolic if all values of the
charactefistics of Eq. (A.1) are distinct and real. According to

Lax [12] thé requirement of a well-posed problem in thel1inear partial
differential equation§ with thé form Tike Eq; (A.l) is the same.a$ that
of hyperbolicity. Aiong characteristic curves'the highest-order deera-
tives in a PDE are indeterminate; characteristics may separate |
- discontinuities in the solution. 'Therefore characteristics are trajec-
to}ies df discontinuities in the solution. Physically it represents

the traye] of information in a physical system, The typical two-fluid
,'mbde1s have four real characteristics (two convective velocities of
1iquid and vapor, and two relative sound ye]ocfties to both convective
velocities of 1iquid and vapor'through system) and two imaginary charac-
teristics. The two imaginary characteristics may represenf.two relative
velocities of interfacial wave propagation to bothAliquid and‘?apor

with complex values which indiqate'an instability of interfacial waves.



Characteristics and stability are shown to be related only in the
limit of large frequency. The characteristics, u of Eq. (A.1) are defined

by the equation
Det (uA - B) =0 - (A.4)
The local linear stability behavior of Eq. (A.]) is examined. x is

fep]aced by %5 + 8x, and the result is linearized with respect to 6x,

resulting in

A(x ) 288D 4 gy ) 2X) 4 sy (2B) ) 0
0
+ (6x (%%)x()) 55> + X (g—f()xo =0 | - (A.5)

As Eq.b(A;5)‘describes small perturbations, §x about an unperturbed ‘
so]dtion, a uniform steady-state unperturbed solution is assumgd, which
means that Xo is independént of z and t. We take a wave form for the

perturbed amount, Sx
» dxA=‘6x°,exp[i(kz- wt)] g  " - (A.6)
Then Eq. (A.5) becomes

—iw‘A(xo) 6xo + ik B(xo) dxb + dxo (—f) =0 '(A.7)



Equation (A.7) is a homogeneous linear system in the componenfs of 8x.

For a nontrivial solution thévdeterminant.of the_coefficient matrix must

vanish.

Det(=iwA + 1kB +D) =0, | (A.8)
where

D=%§k,' | o (A.9)

the supefsdript T denoting the'ﬁatrix transpose, For-nonzero k Eq. (A.S)
can be réwrittén as | o
mﬂ%A-B+%Dfao | (A.10)
Inspection of Eq. (A.6) shows that the condition for stability is that
Im(w) <0 for all roots w. Comparisqh of Eq. (A.4) and Eq. (A.10) shows
that, if D=0 or k>, the dfspersibn relations can be obtained from the
charactéristics simply by eqﬁating.Q/k to ﬁ. Physically'fhe instability
at long wave1engths is the we]1-kno@n He1mho1t2 instability. - Bdt tﬁé,
system which possesses complex chdréctéristics exhibits unphyﬁical and
unbounded instabilities in the shorf-wave]engthllfmit. One of the
reasons why the basic system behaves like the above lies in the simplest
choice for the interfacia] pressure distributfbn in which it is constant

and equal to the bulk pressure. Phyéica]1y the above choice is consistent

with the assumption that the two fluid velocities are equal. Therefore



this leads to an equation set possessing'reai characteristics only when
the two fluid velocities are equal. This is the reason for the present

study of the effect of the virtﬁa1 mass here.



B. CHARACTERISTIC AND STABILITY ANALYSIS

The effect of virtual mass on the characteristics can be illstrated
by adding the virtual mass terms to the one-dimensional momentum equations
of both ]iqdid and vépor. Here Cheng and Lahey's model for the virtual -

mass terms is considered. The conservation equations are-as follows:

Conservation of vapor mass:

" (B.1)

n
—_ .

3 L8y
, 5?'(avpv) * 5; (ayvav)

Conservation of 1iquid mass:

3 (. 2 | i

Conservation of vapor momentum:

av, oV, | . |
aly 3Tt XAy 37 o T -(B.3)
=TV, - V )- o 2P a:[?A+ Fl-apg-F
: i v vaz “v-'s Ve vy wv?

where
Vi’ Fs’ Fv and va are the interfacial velocity, the standard
drag force per unit volume, the virtual mass force per unit volume, and

the vapor wall friction force per unit volume, respectiveiy.

AN ey



Vv aV
- Vv 2 R
Fv plcv { ot ot * Vv 3z (vv' Vz)
e v, v, o
+0= V) T0-2) 5t + (0-2) 551 T (8.5)
" Conservation of 1iquid momentum
AV, 3V
il RN ol o\ 9P
I A R U R AR ¥
to LFg+ Fyl-ageeg - Foge (8.6)

where sz is the liquid wall friction force per unit‘vo]ume. -For
convenience by summing up Eq. (B.3) and Eq. (B.6), we can get the
momentum equation.
3V v, 3V v
_v _2 Vv Ly R
%Py 3t T %P Bt TRy 3z T PeYe 37

= T(Vg-V,)- 357 - (ap +ap ) g - (F +F ) (8.7)

~ By multiplying Eq. (B.3) by o, and Eq. (B.6) by a, and then subtracting

each other, we obtain

» v, , v,
o, (agp, +p,C.) Bt (O‘zpz *0,C) 5T

. oV
+ {loga vpv+oc Pe V( 1)] V, - o, CV(A- 2)V }-TV

- {[a a0yt pQC (1 A)] V +a.p, C AV } ““&

N F(Vi-dvvz- alvv) -_ast+ azav(pz- pY)g;,alevf‘dvoz (3'8)
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Conservation of vapor energy:

3 L2 3 o, -
3t (@08, ) (a Py VP g7V )+ Pt =g+ (8.9)

where Q and Q are the heat transfer per un1t vo]ume from wall to vapor

and from 1nterface, respectively.

Conservation of liquid energy:

3 - o0

3 v o
=~ _8—2 (G.RIVRI)- P W = sz - Q-s . (B.]O)

5t (@gege z)+ (“zpz Vg )+ P i

where le is the heat transfer per unit volume from wall to 1iqufd.

Let us construct the form of

A(x) 2%+ B(x) 3—" +C(x) = 0, - (8.11)

where x is a column vector of independent variables,

_ T
X = ((X,P,Vv,vl,ev,ez)
It is assumed that the density of both 1iquid and vapor is ‘the function

of pressure. Here a, and a, denote the sound velocity of vapor and

Tiquid, fespective]y}
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—; lo a2 | 7]
v viv
-2
=Py %8
Pyt Pply | 9Py PeCy
. -2 :
oyeyt P “yeyay %Py
-p,e,- P a 2| a,p
P87 7 | aPrl %gPq |
_ o -
| oV la Vv a -2 o p.
vy |lvvyv: vV
-2
-0oVy |%Vedy %Py
! &P vy PeVy
[alpvfpzcv -[(1-a)p2+pl
= (A-1)]V Cv(1-l)]V2
pzcv(l 2)V -pZCvVVA
p.e V _
Vovy -2 :
+ va 0‘vevvvav : o‘vpvev’kpo‘v %Py vv
-p,e V. .
27272 -2 .
-y, | (e degVeag %gPeBy” oy P 2PV
2‘ A
In order to get the characteristics from Eq. (A.2)
" Det (pA-B) =
Reducing the terms related to the energy equations from Eq. (B.12),

-'we get

(B.12)

(8.13)

(B.14)



Det

From
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a, o, (u- Vv) X azpz(u- Vl)x

. -pov(A-Z)(VV-VQ) +p2cvx(yv-v£)

“2,0 | E |
pylu-V,) o '(“f'vv) Py 0
L, _
‘DQ(U‘ vz) ) azal (U' yz? 0 : -ang
0 - -1 Coopy, (u- v, ) . 202(11 -V )
0-' 0 (alo +o2 v)(u -V ) —(agpg+pgchu -Vl

,the.térms related to the energy equations we obtained u= VV,VR.

Physically this means that energy is transferred by only convection.

For simplicity w1th ‘the assumption that av>>V and a£>>v , that is,

incompressible flow is used, we neglect

“zag-z(“‘vz) andAavavfz(u-Vv)

We may predict that these terms are related to the sonic velocities

transfefred through 1liquid and vapor.

- Det

From

"Now we get the simplified determinant form

ov(u-VY) ey 0
-pz(u-vg) 0 ~a,0, - 0
0 (azpv+pzcv)(“-vv) -(a£p2+pzc )(U v )
pch(A—Z)(VV-VQ) +pzc A (v v )
o

Eq. (B.16) we obtain an-algebraic equations of the: form

(B.16)1



=14
"y )
ag- +bg+c =0,

_ .2
where a=a" p, + 0Py + Y

o
1]

[y(2-)1) + 2ava2p£]vr

~n

c = [aqupk+ a, y(1-2)1v,.

Yy'= pzcv
q=u-.Vv
vV =V -V

In order for our system to have real and distinct characteristics

b2 - dac> 0
b2-4ac = 2(12 +4(1-M)a. ) + 4 (1-x) 2( 4» )
2 Tt A T
v _ o . A
. -4(.X.V(X2 PVPQ] : .

i) :Theré is no virtual mass; c,=0.
2

- 3
b"- dac = -4ayu2 PPy

Therefore the system with no virtual mass élways has two
complex characteristics except the single phase region

(avé 0 or a, = 0)

(B.17)

(8.18)



ii)

iii)

iY)

v)

vi)
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If o > 0, b2- dac = v2(r- 2)2

' . 1im
If C,# 0 and A# 2, 0,70 (b - 4ac) >0

If o> 0, bP- dac = yA?

' C lim . 4.2 -
If ch;¢ 0 and A # 0, 1o (b“- 4ac)>v0

7R 3

If A=1, b™- dac =y - 4ava£ PyPy

/4 3
If c 4o al Py ,b2-4ac> 0

v Py

If 0 < A < 1, ¢Z[A%+ 4(1-A)ay ] + 4 002 ¥(1-) (1

4

. o Py.
As 4(1-A)a,>0 “and 4ava2.2Y'('|-)\)(1- p—‘;)> 0,

P
C ZAZ >4a o 3 s
v e p2

/ o
(C,A)>Y 4o 3.y

v’ p2

. .
If 1< A< 2, CVZ(AAZ)Z- 4ava 2 > 4o, q, > —

v 2 Py

2, 12 2 . Py
CV (r-2)"> 4ava2 .[Cv+ a, 5, 1

(8.19)

Py

Note that as A approaches 2 or 0, the required value of Cv'becomes

larger and larger.
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'The effect of virtual mass on stability can be’simply'illustrated
by using the characteristics analysis. If the.mass exchange, standard
drag force, wall friction; and fhe energy equations are neglected in
order to know-é1ear1y the-éffect of virtual mass on stability, D in
Eq. (A.70) redUceslto zero. | |

Now as étatéd befdre; the dispeksion relationship can bé obtained

from thé characteristics simply by equating %vto_u.
W = ku o ' - (B.20)

Thé stébi]ity condition, Im(w) < O for all roots w is the same as the

condition for the real and distinct characteristjcs.
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C. NUMERICAL STABILITY .

Here we shall examine a difference scheme fOrmédiin a simi]ar'i
way fo THERMIT [13]. For the samé.reason as in the stability analysis,
mass exchange, standard drag fbrce, and wall frictidﬁ are neglected.
Also energy equations are dropped‘because they only represent‘convective

properties as we say in the characteristic analysis

vapor mass
- +1 n '
(a AN B .
V V'] viv’'j n+] n n+'|
it +az Legey V)i - (aley vyt 121= 0 (c 1
1iquid mass
1 n -
(o,p )r!+ = {a,p,)%:
»Q'»QJ »Qa,Q, n+] +'|
At Az [(ay %2 z Ve )j+]/2 (o gpg ) )J 1/2] 0 (C. 2)

momentum equations

n+l_yny AV

n+1 ny

: (v revy g (v
n ‘v v’ j+1/2 n ‘"2 L J+1/2 v
(avpv) At f (“zpz) At (o pv v Az J+1/2
AV (P.,,- P : _ : .
'Q' n ) . J+] J = . ’ L
* (O‘zpz L Az j+1/2 Az 0 o (C.3) .
1 n . n+l _
AT (v )
n n 'y vij+l/2 - n n 2 L74+1/2
o, [ogey+pyC,] a0y [ogegte,C] At
Ava'
+ {<a£ WPyey pZC (A- 'I)]V - o,Py v()\ Z)VSL)KZ_
AV2 n =0 . ~(c.4)

-_<[oa a pgta pZC (1 A)]V +a pgc >\V T }J+]/2
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The above numerical scheme can be modified as follows:

vapor mass

n+1 n+1 n n, ntl  n At n ,n+l
.+ - = -
vi (@™ - ay); .avJ (pv. )5 * 37 [pvj'vvjﬂ/2 |
on.on “n . n+1 N n -
' (9vj 'avj-1)+ vi-1 Yvjerzz (Pyy- Pyj-1)

n n o+ | n+l _
vi-1 Pug-1 Wygarya Vygory2)1 = 0

ta vj-1

v liquid mass

Same as Eq. (C.5) with a& replaced by Qg subscript v by 2.

momentum  equations

(ava)n (Vn+1‘ n +(a292) (v 2+1 %;)j-'

+ At [(avvav)"‘(v- -V : )"+ (a ng 2)n (V -V,

Az vj vj-] Jv -1
n+l
* Pynye Py 1/2) 1=
n ,,ntl . n ,,n+l .n _
[azp + pz c,1m (v, ‘ Vv)J Lo o,te,C 10 (V) - Y&)j |

v

+ {<[a2’pv+ pQ,C (A-])]VV - pg' (>\ Z)V,Q, AZ (v VJ-])

0

Treating the coefficients as constants and using Von Neumann local

At o n
<[agp, + pzc (- A)]vZ + P LAV > (VQJ' VoY :

(C.6)

(c.7)

(c.8)

stabi]jtylanalysis, U= ;n exp(ikjaz), Wevobtain the determinant form

, J
for a nontrivial solution.
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p, -1+ V )} a, av(cjlf V)| . o,e,za 0
=~ -2 -
'DR(C']-"vz) a,Q, a'z(C']'*' Vz) 0 azpz zq
Det 0 zq a,0,(c-1+V ) 0gpe (2=14y) =0
o 0 | (e, *0,C)(E-T) -(a,p tp,C ) (z-1)
+Hlogp +0,C, (-1 1V |- {(agpp+o,C (1-_A)JV2
p,C, (A-2) V,} *04C,y AV 1
- (C.9)
~ At .
where V= v, (1-exp(-ikaz))
v at .
Vo =5V ('I-exp(-1kAz))
_ o At kAz
q = 2i A sin (
= I . .- .. : A
k = maz SN 1nJ :J: the number of axial mesh.
For simplicity we assume in the same way as in ‘the previous ana1ysi's |
that av>>Vv3 a2>>V2
Then the determinant reduces to the 3 x3 determinant
p e-1+V,) a0, g 0
Det | -p,(c-1+ 7V )| 0 0gPeLq =0 (c.10)
0 (azp + C )(C']+Vv) '(ang“'.pzcv)(z;']"'vz)
TregC, (A= 2)(v vg)’ P C AV, = V)
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AsAwe.notice_that‘cq appéars as a common coefficient, resolving the

determinant“we obtéin the modified determinant

pv(“'vv) “%yPy 0
Det : - - =0 ~(c.11)
-pgC, (2D (VyVy) | #0gC (Y, - V) ]

where u = -(z-1)

The above determinant, Eq. (C.11) is in the exact same form as Eq. (8.16).'

Therefore we can use Eq. (B.17) as follows:

ag” + bV g+ cvi=0 | (c.12)

.. where a = oy Py + 0Py + pzcv

b

c ='QVGLQR+ GVDQCV(I-A) 

‘q=u-V

2

For nhmerica] stability the absolute value of the growth factor, |z],
should be less than 1.

From Eq. (C.12)

q = 2a r

S N (R F)
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-1 =-u=-(v, +q

(2a-b +vb2- dac = . bi/b2- dac - J
3

C-‘=-[ %a . vz !

If A=1 and p§C5>>4avagp£pv, for +V/ bz- 4ac

el = (“zpv'*pzcv)vv+‘(“vazpz)vz

2 ) .
alpv+ avagpl'+ plcv

‘= -p + p exp(-ikaz) ,

2 o At At
(ogpy*t PeC ) a7 Yyt loyagen) 75V,

where p . 5
%Py * avalp2+ pzcv

Z Plane y
stability region

z = z(x,y)

‘Fig. 1:. Stability Diagram of Eq. (C.16)

(C.14)

(C.15)

(c.16)
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For numerical stability 0< P< ]

At

At
0 < (azp +e0y) 37 Vot (oygeg) 1o Yy
<(¥p+pc+aap) | S (C.17)
NNy L°v JA) . : . ) )
If At V<1 and AL v ‘<:1' the above fne ua]%t {é always met.
Az v Az "0 A Fquality 1 Y A

For - /b?-'4ac

At

o (“ v) Az V + (pgC,* ayoy0) 3 Vz
-1 == 7
agp,*p,C+ avazpz /
=-r+r ekp (-ikaz) , ‘ . : (C.18)
2 At At
(agp.;) V + (p,C + a0 0,) v
where r = 2 v A; v Po! Az 2
| agPyt Poly* 000y
‘For numerical stability 0<r< 1
o< At ot
0< 0‘ py) 3z Yyt (Rl t ayappg) 57V
< (o 2p +p,C,+ o000 ) (c.19)
%Py L7V 27 : : :
‘ . At . . .
Also if Az Vv,<] and Z? V2< 1, the above inequality is always met.

Therefore, it can be concluded that, if A =1 and

C,> >v 4o aip /ey, 5 the finite difference scheme is reStricted'on1y‘by

the convective stability conditions.
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