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The lungs consist of a network of bifurcating airways that are lined with a thin liquid film. This film
is a bilayer consisting of a mucus layer on top of a periciliary fluid layer. Mucus is a non-Newtonian
fluid possessing viscoelastic characteristics. Surface tension induces flows within the layer, which
may cause the lung’s airways to close due to liquid plug formation if the liquid film is sufficiently
thick. The stability of the liquid layer is also influenced by the viscoelastic nature of the liquid,
which is modeled using the Oldroyd-B constitutive equation or as a Jeffreys fluid. To examine the
role of mucus alone, a single layer of a viscoelastic fluid is considered. A system of nonlinear
evolution equations is derived using lubrication theory for the film thickness and the film flow rate.
A uniform film is initially perturbed and a normal mode analysis is carried out that shows that the
growth rate g for a viscoelastic layer is larger than for a Newtonian fluid with the same viscosity.
Closure occurs if the minimum core radius, Rmin�t�, reaches zero within one breath. Solutions of the
nonlinear evolution equations reveal that Rmin normally decreases to zero faster with increasing
relaxation time parameter, the Weissenberg number We. For small values of the dimensionless film
thickness parameter �, the closure time, tc, increases slightly with We, while for moderate values of
�, ranging from 14% to 18% of the tube radius, tc decreases rapidly with We provided the solvent
viscosity is sufficiently small. Viscoelasticity was found to have little effect for ��0.18, indicating
the strong influence of surface tension. The film thickness parameter � and the Weissenberg number
We also have a significant effect on the maximum shear stress on tube wall, max��w�, and thus,
potentially, an impact on cell damage. Max��w� increases with � for fixed We, and it decreases with
increasing We for small We provided the solvent viscosity parameter is sufficiently small. For large
��0.2, there is no significant difference between the Newtonian flow case and the large We
cases. © 2010 American Institute of Physics. �doi:10.1063/1.3294573�

I. INTRODUCTION

The lung consists of a branching network of airways,
which are responsible for conducting air to and from the
small �300 �m in diameter� respiratory sacs called alveoli.
These airways and alveoli are coated on the inside with a
thin liquid layer whose thickness is 2%–4% of the airway
diameter under normal conditions,1,2 but may be as much as
20% in disease.3 In the first 15–16 airway generations, this
film is a bilayer consisting of a mucus layer on top of a
serous, or periciliary, fluid layer.4 The mucus is a non-
Newtonian fluid5 that exhibits viscoelastic and shear thinning
characteristics, and possesses a yield stress.6,7 In the terminal
bronchioles, beyond generation 17, there is essentially a
single fluid layer whose viscous properties are similar to
those of water.

It is well recognized that the liquid lining of the lung can
cause the closing off of a small airway.8,9 This can happen as
the result of a liquid plug �lens� forming due to a capillary
�surface tension� instability known as the Rayleigh instabil-
ity. In addition, this surface tension instability may provoke
the collapse of the compliant airway wall, resulting in a
capillary-elastic instability. Investigation of plug formation

from a liquid coating the inside of a small tube was per-
formed by Everett and Haynes,10 who found that a critical
volume of liquid is required, above which a plug forms and
below which the liquid only coats the wall but does not form
a plug. The critical volume Vc is approximately 5.47a3,
where a is the tube radius. A similar value was also found in
a subsequent study specifically related to airway closure.11

Airway closure can occur in healthy adult subjects, chil-
dren born prematurely, and aging adults.12,13 An airway may
close near the end of expiration when its diameter is small.
The critical lung volume at which closure occurs is called the
closing volume. The single-breath nitrogen washout test, one
component of a standard pulmonary function test, is often
used to measure the occurrence of airway closure. When this
test shows the early stages of airway closure, it is often in-
terpreted that the ventilation distribution is inhomogeneous
within the lung, which may be caused by a number of normal
and pathological conditions.14,15 It is known that naturally
occurring surfactants in the lung are found in the airway fluid
and reduce the surface tension to approximately 20
dynes/cm,16 much lower than the normal air-water value of
about 70 dynes/cm. The experimental studies in Liu et al.17

of a model airway showed that adding surfactant prevented
liquid plug formation and allowed air flow to pass.
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A plugged airway at the end of expiration can be re-
opened during inspiration as incoming air flow pushes the
liquid plug downstream and the airway diameter increases.
Once the plug ruptures, air flow is re-established and gas
exchange may continue. However, there are clinical situa-
tions such as asthma, emphysema, and cystic fibrosis where
the liquid contains large amounts of abnormal mucus whose
non-Newtonian properties, such as shear-dependent viscos-
ity, yield stress and viscoelasticity can prevent the closed
airway from reopening. This can lead to serious and some-
times fatal results.18

There have been many fluid mechanical models of the
statics and dynamics of airway closure.11,19–29 Hammond30

was one of the first to formulate a model to study the stabil-
ity of an annular thin liquid film coating a rigid tube with
circular cross section assuming a passive air-core phase. He
found that waves initially amplified but eventually saturated
into almost disconnected liquid collars. By including a more
accurate approximation for the interfacial curvature in
Hammond’s model, Gauglitz and Radke31 established that if
the ratio of film thickness to tube radius, �, exceeds a certain
threshold, �c�0.12, liquid plug formation can occur. This
value is related to the critical liquid volume10 mentioned
above. More recently Halpern and Grotberg27 showed that
the stress generated by an oscillatory core flow could have a
stabilizing effect and increase �c.

In this paper we focus our attention on the role of mucus
alone, and examine the stability of a single viscoelastic fluid
layer coating the inner surface of a rigid tube with circular
cross section. We use the Oldroyd-B model to describe the
viscoelastic properties of the fluid occupying the annular re-
gion. Shear thinning will not be included in the current
model. We also consider simpler constitutive equations such
as the Maxwell and Jeffreys models. The air-core phase is
assumed to be passive. The governing equations are given in
Sec. II of the paper. In Sec. III, lubrication theory is used to
approximate the governing equations. We first consider the
weakly viscoelastic limit and carry out a regular perturbation
analysis similar to that employed in Ref. 32 for small Weis-
senberg numbers We. At leading order, the Newtonian case,

which has been previously studied, is obtained. We also in-
vestigate the evolution of the air-liquid interface for larger
values of We but use the Jeffreys model instead of the
Oldroyd-B model. An algebraic-differential equation is de-
rived for the position of the interface using an approach that
is similar to that used to investigate the rupture of a vis-
coelastic liquid layer on a solid substrate.33,34 The main dif-
ference between the Oldroyd-B and the Jeffreys models is
that the Jeffreys model does not include nonlinear upper con-
vective terms representing the advection and rotation of the
stress tensor. A linear stability analysis, described in Sec. IV,
is used to determine the initial growth rate of the air-liquid
interface when it is perturbed by a small amplitude wave.
Numerical results obtained by solving the nonlinear evolu-
tion equations are given in Sec. V for the Oldroyd-B and
linear viscoelastic models. Application of the current model
to airway closure is discussed in Sec. VI, and some conclu-
sions appear in Sec. VII.

II. GOVERNING EQUATIONS

In this section, we provide the basic equations of motion
and the boundary conditions for a model of airway closure in
which the film consists of a single layer. We consider an
axisymmetric configuration in a tube of radius a containing
two immiscible fluids, the core fluid being air and occupying
the region 0�r��b and the other being an annular layer
b�r��a of non-Newtonian fluid coating the inner surface
of the tube, as shown in Fig. 1. The air-core phase is assumed
to be passive. The interface is perturbed from its equilibrium
position, r�=b, so that it is located at r�=R��z� , t��, where
�r� ,� ,z�� are the usual cylindrical coordinates and t� is time.
The velocity in the film layer is defined by u�= �u� ,0 ,w��,
where u� and w� are the radial and axial components of ve-
locity, the stress tensor is given by T�=−p�I+�� where p� is
the fluid pressure, and �� is the deviatoric component of the
stress tensor, which is defined below.

The liquid film continuity and momentum equations are

�� · u� = 0, �� �u�

�t�
+ �u� · ���u�� = − ��p� + �� · ��.

�1�

The Oldroyd-B model is used to describe the viscoelastic
character of the liquid film. It assumes a diluted concentra-
tion of a polymer in a Newtonian solvent. A typical polymer
chain is modeled as a linear elastic dumbbell, and with the
aid of kinetic theory a constitutive equation can be derived to
describe polymeric stresses.35 The stress tensor �� is written
as the sum of a Newtonian contribution connected with the
solvent and a contribution S� due to the polymer,

�� = �s
����u� + ���u��T� + S�, �2�

where �s
� is the solvent viscosity. The tensor S� satisfies the

following equation:

b a R*(z*,t*)

r*

z*

FIG. 1. Variables describing geometry of the air-liquid interface: r�=a is the
tube radius, r�=b is the unperturbed location of the air-liquid interface, and
r�=R��z� , t�� denotes the perturbed position of the interface at time t�.
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�� �S�

�t
+ �u� · ���S� − ���u�� · S� − S� · ���u��T�

+ S� = �p
�����u�� + ���u��T� , �3�

where � is a characteristic relaxation time and �p
� is the

viscosity of the polymer. The above equations are solved
subject to the boundary conditions described below. At the
tube wall no-slip and penetration conditions are applied, so
that

u��r�=a = 0 . �4�

The stress and kinematic boundary conditions at the air-
liquid interface are given by

− p�n + �� · n = − pair
� n + 	
�n ,

�5�
�u� − Ẋ�� · n = 0,

where pair
� is the pressure of the air phase, which is assumed

to be constant, n= �1+Rz�
�2�−1/2�1,0 ,−Rz�

� � is the unit normal
vector pointing into the liquid film, 
�=�� ·n is the curvature
of the interface, 	 is the surface tension, which is assumed
to be constant, and X�= 	R��z� , t�� ,� ,z�
 is a position
vector defining the location of the air-liquid interface. Peri-
odic boundary conditions are imposed at z�=0,L�, the tube
ends,

u��z�=0 = u��z�=L�, ��p��z�=0 = ��p��z�=L�,

�6�
R��z�=0 = R��z�=L�.

III. LUBRICATION THEORY

In this section, lubrication theory is used to derive a
system of simplified differential equations that describe the
evolution of the air-liquid interface by assuming that the film
thickness parameter �= �a−b� /a is small. Previous Newton-
ian models that predict plug formation20,36 introduced a local
radial coordinate y= �a−r�� /� and retained the leading order
terms in � in the momentum and continuity equations and
boundary conditions but with two important exceptions. The
curvature 
� was not expanded in powers of � in the normal
stress condition. In particular, the 1 /R� dependency in the
transverse component of curvature was kept in the evolution
equation. Also, the axisymmetric form of the kinematic
boundary condition was used as opposed to the planar form,
which is obtained at leading order in �. In this paper, we do
not replace the terms containing r� with the local coordinate
y that appear in the governing equations and boundary con-
ditions. The justification for doing this will be briefly dis-
cussed later in the validation Sec. V A.

The governing equations and boundary conditions are
nondimensionalized as follows:

r =
r�

a
, z =

z�

a
, R =

R�

a
, p =

p�

�	/a
,

w =
w�

Ucap
, u =

u�

�Ucap
, t =

t�

a/Ucap
,

�7�

�zr =
�zr

�

�2	/a
, �zz =

�zz
�

�	/a
, �rr =

�rr
�

�3	/a
, ��� =

���
�

�3	/a
,

Szr =
Szr

�

�2	/a
,Szz =

Szz
�

�	/a
, Srr =

Srr
�

�3	/a
, S�� =

S��
�

�3	/a
,

where Ucap=�3	 /�� is a capillary velocity scale and
��=�p

� +�s
� is the total viscosity. To leading order in �, the

momentum and continuity equations are given by

�p

�z
=

1

r

�

�r
�r��Srz + �2�r

�w

�r
�� +

�Szz

�z
,
�p

�r
= 0,

�8�
1

r

�

�r
�r�u� +

�w

�z
= 0,

where �s=�s
� /��. The constitutive Eq. �3� become

We� �Szr

�t
+ w

�Szr

�z
+ �u

�Szr

�r
− �

�w

�r
Srr −

�w

�z
Szr

− �
�u

�r
Szr −

�u

�z
Szz� + Szr = ��p

�w

�r
,

We� �Szz

�t
+ w

�Szz

�z
+ �u

�Szz

�r
− 2�

�w

�r
Szr − 2

�w

�z
Szz�

+ Szz = 0, �9�

We� �Srr

�t
+ w

�Srr

�z
+ �u

�Srr

�r
− 2�

�u

�r
Srr − 2

�u

�z
Szr�

+ Srr = 2��p
�u

�r
,

where We=�Ucap /a is the Weissenberg number and
�p=�p

� /��. The equation for S�� is not given since it is not
required for the models considered in Secs. III A and III B.
The tangential and normal stress boundary conditions �5� are
given by the following expressions:

�1 − � �R

�z
�2���Szr + �2�s

�w

�r
� =

�R

�z
Szz,

�10�

�p =

�2R

�z2

�1 + � �R

�z
�2�3/2 −

1

R�1 + � �R

�z
�2�1/2 +

1

�1 − ��
.

The kinematic boundary condition �5� can be written as

�R

�t
=

1

R

�Q

�z
, �11�

where Q=R
1wrdr is the axial flow rate in the film layer.
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A. Small Weissenberg limit

In this section, we consider a weakly viscoelastic fluid,
and assume that We�1. A regular perturbation scheme is
used where all the dependent variables are expanded in
power series in We in a manner similar to Ref. 32. The
leading order problem corresponds to a Newtonian film coat-
ing the tube wall. The constitutive equations yield

Szr
�0� = ��p

�w�0�

�r
,

Szz
�0� = 0, �12�

Srr
�0� = 2��p

�u�0�

�r
.

The first two equations of Eq. �12� are substituted into the
axial momentum Eq. �8� to yield

1

r

�

�r
�r�2�w�0�

�r
� =

�p�0�

�z
. �13�

This is then integrated twice to yield the axial component of
velocity,

w�0� = −
1

4�2

�p�0�

�z
�1 − r2 + 2R�0�2 log r� , �14�

where the stress free condition �w�0� /�r=0 has been applied
at r=R�0�. The radial component of velocity is determined
from the continuity equation and is given by

u�0� = −
1

16�3r

�2p�0�

�z2

��1 − 2R�0�2 + r2�r2 − 2 + 2R�0�2 − 4R�0�2 log r��

+
1

4�3r

�p�0�

�z

�R�0�

�z
R�0��1 − r2 + 2r2 log r� . �15�

The stress component Srr
�0�=2��p�u�0� /�r is thus

Srr
�0� =

�p

8�2r2

�2p�0�

�z2

��1 − 2R�0�2 − r2�3r2 − 2 − 2R�0�2 − 4R�0�2 log r��

−
�p

2�2r2

�p�0�

�z

�R�0�

�z
R�0��1 − r2 − 2r2 log r� . �16�

The leading order evolution equation for R�0� is obtained by
substituting w�0� into the kinematic boundary condition �11�,
and is given by

�R�0�

�t
=

1

R�0�
�Q�0�

�z

= −
1

16�2R�0�
�

�z
���1 − R�0�2��1 − 3R�0�2�

− 4R�0�4 log R�
�p�0�

�z
� . �17�

The order We momentum and continuity equations are
of the same form as the leading order equations. The consti-
tutive equations at this order can be written as

��p
�w�1�

�r
− Szr

�1� =
�Szr

�0�

�t
+ w�0��Szr

�0�

�z
+ �u�0��Szr

�0�

�r

− �
�w�0�

�r
Srr

�0� −
�w�0�

�z
Szr

�0� − �
�u�0�

�r
Szr

�0�

−
�u�0�

�z
Szz

�0�,

Szz
�1� = 2�

�w�0�

�r
Szr

�0�, �18�

2��p
�u�1�

�r
− Srr

�1� =
�Srr

�0�

�t
+ w�0��Srr

�0�

�z
+ �u�0��Srr

�0�

�r

− 2�
�u�0�

�r
Srr

�0� − 2
�u�0�

�z
Szr

�0�.

The interfacial boundary conditions �10� become

�Szr
�1� + �2�s

�w�1�

�r
−

�R�0�

�z

1 − � �R�0�

�z
�2Szz

�1� = 0,

�p�1� =

�2R�1�

�z2

�1 + � �R�0�

�z
�2�3/2 −

3
�2R�0�

�z2

�R�0�

�z

�R�1�

�z

�1 + � �R�0�

�z
�2�5/2

+
R�1�

R�0�2�1 + � �R�0�

�z
�2�1/2

+

�R�0�

�z

�R�1�

�z

R�0��1 + � �R�0�

�z
�2�3/2 , �19�

�R�1�

�t
=

1

R�0�� �Q�1�

�z
−

�

�z
�ws

�0�R�0�R�1�� −
R�1�

R�0�
�Q�0�

�z
� ,
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where Q�1�=R�0�
1 w�1�rdr is the axial flow rate correction

and ws
�0� is the surface axial component of velocity. The

stress component Szz
�1� is determined from the constitutive

Eq. �18�,

Szz
�1� = 2�Szr

�0��w�0�

�r
=

�p

2�2� �p�0�

�z
�2�r −

R�0�2

r
�2

. �20�

Szr
�1�+��s�w�1� /�r is then obtained by substituting Eq. �20�

into the axial momentum equation, integrating the resulting
equation and applying the tangential stress condition at
r=R�0�,

Szr
�1� + ��s

�w�1�

�r

=
1

2�

�p�1�

�z
�r −

R�0�2

r
� −

�p

4�3

�p�0�

�z

�2p�0�

�z2

��r3 − 4R�0�2r + 3
R�0�4

r
+ 4

R�0�4

r
log

r

R�0��
+

�p

�3 � �p�0�

�z
�2�R�0�

�z
R�0�

��r −
R�0�2

r
− 2

R�0�2

r
log

r

R�0�� . �21�

The axial component of velocity w�1� is determined by inte-
grating the constitutive equation for Szr

�1� Eq. �18�,

w�1��z,r,t� = −
1

4�2� �p�1�

�z
+ �p

�2p�0�

�zdt
��1 − r2 + 2R�0�2 log r� +

�p

8�4r2� �p�0�

�z
�2�R�0�

�z
R�0�

���r2 − 1��r2 − R�0�2� + 6r2�1 − R�0�2�log r + 4R�0�2r2�4 log R�0� − log r�log r� −
�p

32�4r2

�2p�0�

�z2

�p�0�

�z

���R�0�2 − 1��2r2 − R�0�2 − 9r2R�0�2 + 2R�0�4� + 4r2�1 − 4R�0�2 + R�0�2r2 + 2R�0�4 log r + 5R�0�4

− 8R�0�4 log R�0��log r� −
�p

�2

�p�0�

�z

�R�0�

�t
log r . �22�

The axial flow rate Q�1�=0
Yw�1�rdr is given by

Q�1� = −
1

16�2��p
�2p�0�

�z � t
+

�p�1�

�z
���1 − R�0�2��1 − 3R�0�2� − 4R�0�4 log R�0�� −

�p

32�4� �p�0�

�z
�2�R�0�

�z
R�0�

���R�0�2 − 1��R�0�2 − 7� + 4R�0�2�8 − 5R�0�2 + 6R�0�2 log R�0��log R�0�� +
3�p

64�4

�p�0�

�z

�2p�0�

�z2

���1 − R�0�2��1 − 3R�0�2� − 4R�0�4 log R�0���1 − R�0�2 + 2R�0�2 log R�0�� +
�p

4�2

�p�0�

�z

�R�0�

�t
�1 − R�0�2 + 2R�0�2 log R�0�� ,

�23�

which can then be substituted into the kinematic boundary
condition �19� to yield an evolution equation for R�1�. In the
results section, the Oldroyd-B model derived above will be
compared with the Jeffreys based model derived in the next
section for arbitrary We.

B. Evolution equations for arbitrary We

In this section we relax the restriction that the Weissen-
berg number is small, and we follow the same approach
taken by Refs. 33 and 34 by assuming that �zr is the domi-
nant component of the stress tensor and neglecting the other
components and by neglecting the upper convective terms of
the Oldroyd-B model. The first assumption about the shear
stress is based on the scalings introduced in Eq. �7�, which
imply that �zr

� �rr
� and �zz

� �rr
� since ��1. These inequali-

ties suggest that the streamwise normal stress and the shear
stress are the most dominant components of stress. In addi-
tion, the small We analysis performed in the previous section
showed that there was no contribution to Szz at leading order.
However, this does not fully justify the assumption of drop-
ping Szz and neglecting the upper convective terms for arbi-
trary We. In the case where �zr is assumed to be dominant,
the approximate axial and radial momentum equations and
the continuity equation in the film region are

�p

�z
=

�

r

�

�r
�r�zr�,

�p

�r
= 0,

�w

�z
+

�

r

�

�r
�ru� = 0. �24�

The linearized form of the constitutive Eq. �3� without the
nonlinear upper convective terms is known as the Jeffreys
model. For the shear component, Szr, it is given by
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�1 + We
�

�t
�Szr = ��p

�w

�r
. �25�

A constitutive equation for �zr can be obtained by applying
the operator �1+We� /�t� to �zr=��s�w /�r+Szr and by us-
ing Eq. �25�,

�1 + We
�

�t
��zr = ��1 + �2

�

�t
� �w

�r
, �26�

where �2=We�s is known as the retardation parameter. Note
that the Newtonian relationship between stress and rate of
strain is recovered by setting We=0 �⇒�2=0� in Eq. �26�.
The tangential and normal stress boundary conditions are
given by the following expressions:

�zr = 0,

�27�

�p =

�2R

�z2

�1 + � �R

�z
�2�3/2 −

1

R�1 + � �R

�z
�2�1/2 +

1

�1 − ��
.

Since the pressure is independent of r, the axial momen-
tum Eq. �24� can be integrated to obtain the following ex-
pression for �zr:

�zr =
1

2�

�p

�z
�r −

R2

r
� . �28�

Note that a stress free boundary condition �zr=0 has been
applied at r=R. An equation for the axial component of ve-
locity is then obtained by substituting the latter into the con-
stitutive Eq. �26� and integrating it,

�1 + �2
�

�t
�w = −

1

4�2�1 + We
�

�t
�

�� �p

�z
�1 − r2 + 2R2 log r�� . �29�

The kinematic boundary condition can also be written as

�R

�t
=

1

R

�Q

�z
, �30�

where Q=R
1wrdr satisfies

Q + �2� �Q

�t
+ R

�R

�t
ws�

= −
1

16�2� �p

�z
+ We

�2p

�z � t
�

���1 − R2��1 − 3R2� − 4R4 log R�

+
We

4�2R
�R

�t

�p

�z
�1 − R2 + 2R2 log R� , �31�

and ws is the axial component of velocity evaluated at the
interface r=R. We follow the approach taken in Ref. 33 to
obtain an expression for ws. �There seems to be an error in
the derivation of the evolution equation for the film thickness
that is used to describe the rupture of a thin liquid layer

found in Appendix B of Ref. 34. They derive an equation for
the surface velocity by directly substituting the surface loca-
tion �equivalent to r=R�z , t� in the current paper� into Eq.
�29� without taking into account that ��w /�z� �r=R�z,t�
��w �r=R�z,t� /�z� Equation �29� is integrated with respect to t,

w =
1

�2
�

−�

t

e−�t−t̂�/�2�1 + We
�

� t̂
�Fdt̂ , �32�

where

F = −
1

4�2

�p

�z
�1 − r2 + 2R2 log r� .

Next, Eq. �32� is integrated by parts and then evaluated at
r=R,

ws = −
1

4�s�
2

�p

�z
�1 − R2 + 2R2 log R� −

1

4
�1 −

1

�s
�

���1 − R2�F̂ + 2 log RĜ� , �33�

where F̂ and Ĝ satisfy

F̂ + �2
�F̂

�t
=

1

�2

�p

�z
, Ĝ + �2

�Ĝ

�t
=

1

�2R2�p

�z
. �34�

In order to determine R�z , t�, Eq. �30� is solved numerically
subject to Eqs. �31�, �33�, and �34�.

IV. LINEAR STABILITY ANALYSIS

A standard normal mode analysis can be used to inves-
tigate the effects of viscoelasticity using the Jeffreys model
described in Sec. III. Note that the Oldroyd-B model reduces
to the Jeffreys model since the nonlinear upper-convective
terms play no role since they are negligibly small when the
base state is quiescent. We let

R = 1 + ��Aegt+ikz − 1� , �35�

where k is the wave number of a disturbance wave on the
air-liquid interface, g is the growth rate, and A is a small
amplitude. Equation �35� is substituted into Eqs. �30�, �31�,
�33�, and �34�, which are then linearized in the limit �→0.
The growth rate satisfies the following quadratic equation:

3�2g2 + �3 − k2�1 − k2�We�g − k2�1 − k2� = 0. �36�

Solving the above equation for the unstable root yields

g =
1

6�2
�− �3 − k2�1 − k2�We�

+ ��3 − k2�1 − k2�We�2 + 12�2k2�1 − k2�� �37�

for �2�0. Figure 2 shows a plot of the growth rate versus
the wave number for several values of We with the solvent
viscosity �s=0.5. Instability occurs when g�0, that is for k
in the range 0�k�1 for any We. The maximum growth rate
occurs at k=1 /�2, independent of We, and increases with
We, indicating that viscoelastic effects are initially destabi-
lizing. If �2=0, corresponding to the simple Maxwell model,
Eq. �36� only has one solution, and g is given by
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g =
k2�1 − k2�

3 − Wek2�1 − k2�
. �38�

As for �2�0, instability occurs if 0�k�1, but only
for small We. The maximum growth rate has a value of
1 / �12−We�, which becomes unbounded at We=12. Similar
results have been found by Ref. 34 who investigated the
instability of a thin viscoelastic film, which ruptures due to
van der Waals forces. This blow up corresponding to a non-
physical singularity at finite wave number can be removed
by either including inertia or by considering the retarding
effect of a solvent fluid ��2�0�.

Figure 3 shows the effect of �r on g. For all �s�0,
g�0 in 0�k�1. As �s increases, the maximum growth
rate, which occurs at k=1 /�2, decreases. The variation of the
maximum growth with respect to We is shown in Fig. 4 for
different values of �s.

V. NONLINEAR STABILITY RESULTS

The linear stability analysis described in Sec. IV is only
valid at early times when the disturbances are infinitesimally
small. Nonlinear terms in the evolution equations derived in
Sec. III A for the small We Oldroyd-B model and in Sec.
III B for the arbitrary We Jeffreys model equation become
important once the disturbances are not so small. These
equations are solved numerically on a uniform grid covering

the domain 0�z�L. In both cases, systems of algebraic and
differential equations are obtained by replacing the spatial
derivatives with fourth order finite differences. These sys-
tems are then solved numerically using DASPK,37,38 a large
scale differential algebraic system solver, in the domain
0�z�L subject to periodic boundary conditions. The ini-
tially flat interface is perturbed such that the initial condition
for R takes the form

R�z,0� = 1 − ��A cos
2�z

L
+ 1� . �39�

In all the computations A=0.01 and L=23/2� is the most
dangerous wavelength based on the linear stability theory
presented in Sec. IV for a Newtonian layer.

A. Validation

Gauglitz and Rakde31 showed numerically using a lubri-
cation theory model that for the evolution of a Newtonian
liquid layer, there is a critical value of �, �c�0.12, above
which the liquid film breaks up, resulting in the formation of
liquid plugs. We have confirmed this critical value by �i�
using the lubrication theory model described in Sec. III and
by �ii� solving numerically the Navier–Stokes and continuity
equations together with the interfacial and boundary condi-
tions �4�–�6� using the finite volume method. In Fig. 5 the
minimum core radius Rmin=R�0, t� is plotted as a function of
time t for a Newtonian liquid layer with �=0.13. As can be
seen, the lubrication theory model agrees very well with the
direct numerical simulation, which was obtained by solving
the Navier–Stokes equations and boundary conditions using
a finite volume method.39 All the parameters in the finite
volume simulation were the same as in the lubrication theory
model except that unsteady effects were retained. The
Ohnesorge number, Oh=�s /��	a, the ratio of viscous
forces to inertial and surface tension forces was large, equal
to 10. Also, this figure shows that evolution toward liquid

FIG. 2. Results from normal mode analysis using the Jeffreys model with
�s=0.5 showing how the growth rate g varies with wave number k for
different values of We.

FIG. 3. The effect of the solvent viscosity �s=�2 /We on the growth rate
using the Jeffreys model, with We=15. Note that in the limit as �s→0
��2→0�, the linear Maxwell model is recovered, and for this choice of We,
the growth rate is singular at k=0.526 and k=0.851.
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FIG. 4. The effect of the Weissenberg number We and the ratio of solvent
viscosity to total viscosity �s on the maximum growth rate, gmax. Note that
the linear Maxwell is obtained in the limit �s→0, and in this case gmax is
singular at We=12. For �s�0 and any We the maximum growth rate re-
mains finite.
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plug formation �Rmin=0� is very fast once Rmin reaches ap-
proximately 0.4 so that the closure time can be fairly accu-
rately predicted by solving the lubrication theory model.

In order to validate the evolution equation based on the
Jeffreys model derived in Sec. III B, comparisons were made
with the Oldroyd-B fluid model developed in Sec. III A for
small Weissenberg number. The solvent viscosity was chosen
to be �s=0.5, based on rheological properties of biological
fluids.32 As shown in Fig. 6, agreement is very good for
small values of We. It is perhaps not too surprising that the
two models agree when disturbances are initially small since
this is when the upper-convective terms that appear in the
Oldroyd-B model are negligible. Also at later times, for
small We, the two models do not deviate too much from the
Newtonian case. This figure also shows that Rmin decreases

more rapidly for We�0, which is consistent with the linear
stability results presented in the previous section.

In Fig. 7, the evolution of a Newtonian liquid layer is
shown, with �=0.13, A=0.01, and L=23/2�. As a result of
the jump in normal stress due to surface tension, a pressure
gradient is established in the liquid layer that drives flow into
a growing bulge near z=0. The O�We� correction to the lo-
cation of the interface R1 is plotted in Fig. 8 at the same
times as the leading order profiles shown in Fig. 7. Near the
growing bulge R1�z , t��0, implying that the instability is
more severe for a viscoelastic layer �with We�0�. By mass
conservation, R1 has to be positive in parts of the domain,
implying that the viscoelastic layer thins more rapidly in
places than a Newtonian layer.

t

R
m

in

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Lubrication theory
Finite volume method (CFD)
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B. Nonlinear stability results for arbitrary We

In this section, we present results for arbitrary We using
the Jeffreys ��2�0� models. Figure 9 shows a typical
evolution of the interface for a non-Newtonian layer with
�=0.13, We=10, and �s=0.5. As with the small We
Oldroyd-B model, a growing lobe forms near z=0 as fluid
drains into it. At early times, this flow is strongly dependent
on We and �s, and is quite slow for quite small We and/or
large �s �see Fig. 13 later�. It is also slow once the film layer
becomes very thin �but before closure occurs�. The wall
shear stress �w=�zr �r=1 Eq. �28�, the pressure p given by Eq.
�27�, and the wall shear rate ��w /�r �r=1 are shown in Figs.
10–12, respectively. The maximum �w and pressure gradient
increase with time and occur where the film layer is thinnest.
There are two constant pressure regions corresponding to
two growing lobes, where the velocity must be quite small.
The larger lobe eventually blocks the air-core phase. It can

be inferred from Figs. 10 and 12 that the apparent viscosity,
the ratio of shear stress to shear rate, can be less than one
in the bulge region, suggesting that the rate of filling of
the bulge for a viscoelastic layer is faster than that of a
Newtonian layer.

Closure, or tube occlusion, occurs if Rmin=R�0, t�→0 in
finite time, and this is provided there is sufficient fluid in the
film layer. In Figs. 13�a� and 13�b�, Rmin is plotted as a func-
tion of time for different values of We using the Jeffreys
model with �a� �s=0.5 and �b� �s=0.01. The film thickness
parameter is �=0.13. �Note that the We=0 case corresponds
to a Newtonian liquid layer.� These figures show that the
initial growth rate increases with We, which is consistent
with the linear stability results of the previous section and
that Rmin→0 faster as We increases. This indicates that a
more viscoelastic fluid drains more quickly into the domi-
nant growing bulge at z=0 and reaches the critical volume
required for closure more quickly. The influence of �s on
Rmin is particularly noticeable for large We and small �s at
early times as displayed in Fig. 14 for We=10 and �=0.13.
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FIG. 9. Air liquid interface R�z , t� plotted as a function of z at different
times �shown in the figure� during evolution toward closure for a Jeffreys
fluid. Here �=0.13, We=10, �s=0.5.
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FIG. 11. The film pressure p vs z for the same parameter values as in the
previous figure.
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FIG. 12. Wall shear rate vs z for the same parameters as in Fig. 9.
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As �s decreases the initial growth rate increases. This is
because the film reacts like a solid as opposed to a viscous
fluid. At larger times, this behavior changes, and the film
behaves more like a viscous fluid.

In order to examine the effect of the film thickness pa-
rameter � on the closure time it is convenient to introduce
new parameters and variables that do not depend on �. We
define a time scale Ts=a� /	 so that the original time scale

Tcap=Ts /�3. The Weissenberg number We���=� /Tcap is also
dependent on �. Therefore, when varying �, the Weissenberg
number changes in the following way:

We��� =
�

Tcap
= � �

�ref
�3

Weref,

where Weref=��ref
3 /Ts. We chose �ref=0.12 in the results

shown below.
Airway closure normally occurs toward the end of expi-

ration since this is when � reaches its maximum value �i.e.,
when the airway radius attains its minimum�. Therefore, it
seems reasonable to stipulate that airway closure must hap-
pen within one breath. The closure time Tc is defined to be
the time taken for Rmin�Tc�=0. Also, due to the periodic na-
ture of the breathing cycle, Tc�Tb, where Tb is the time
taken for one breath. It is not possible to compute Tc exactly
and the lubrication theory model breaks down once Rmin be-
comes small. Instead we choose the following definition:

Rmin�Tc� � 0.4 and Tc � Tb.

For the time being we relax this definition and do not apply
the second inequality, which specifically applies to pulmo-
nary airway closure, and discuss its consequences in the next
section.

As shown earlier, direct numerical simulations of the
Newtonian case reveal that the evolution toward closure is
very fast once Rmin reaches 0.4 for small values of �, such as
�=0.13. This suggests that the closure time can be accurately
extrapolated once Rmin reaches 0.4. In Figs. 15�a� and 15�b�
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FIG. 13. The effect of the Weissenberg number We on the minimum core
radius Rmin=R�0, t�, for two different solvent viscosities �a� �s=0.5 and �b�
�s=0.01. The film thickness parameter is �=0.13.
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the closure time tc=Tc /�3 is plotted as function of the film
thickness parameter � for different Weref and �s. For fixed
Weref, tc decreases with increasing �. For small �, tc increases
slightly with increasing Weref, but for larger � tc decreases
with increasing Weref, which is consistent with the results
shown in Fig. 9. For moderate � there is a significant drop in
tc at large Weref provided �s is fairly small �see Fig. 15�b��.
At larger ��0.2, even for small �s, tc is not strongly depen-
dent on Weref, indicating the strong influence of surface
tension.

In Fig. 16 the maximum wall shear stress �w=�w
� / �	 /a�

evaluated when Rmin reaches 0.4 is shown to increase with
increasing �. For large �s, Weref has no significant effect on
�w, as indicated by Fig. 16�a�. However, as shown in Fig.
16�b�, for small � and �s �w decreases with increasing Weref,
but for large ��0.2, there is no significant difference be-
tween the Newtonian case and large Weref�5.

VI. APPLICATION TO PULMONARY AIRWAY CLOSURE

In the results section we defined the closure time Tc such
that Rmin�Tc��0.4 and Tc�Tb without applying the second
inequality. Here we discuss its significance as it relates to
airway closure. The value of Tb can vary significantly be-
tween adults and neonates. Adults typically breathe 12–16
breaths per minute while neonates breathe between 40 and
70 breaths per minute.40 Therefore, the dimensional breath
cycle ranges from 0.86 to 5 s. In order to estimate dimen-
sional values for closure time from the values of tc shown in
Fig. 15, we also need to specify the viscosity of the liquid
layer ��, the tube radius a, and the surface tension 	. The
viscosity of mucus ranges from 100 Poise to 10 000 Poise.
So it is reasonable to expect that the effective viscosity of the
airway liquid is somewhat smaller due to the presence of the
periciliary liquid. In a study of surfactant spreading on a
viscoelastic liquid layer,32 �s

� was chosen to be approxi-
mately 0.01 Poise and 0.01 Poise��p

� �100 Poise.41 The

airway radius, an
�, which decreases with airway generation

number n, can be approximated using the following
formula:42

an
� = a0

�2−n/3,

where a0
��0.45 cm is the radius of an adult trachea. We

choose the surface tension to be 	=20 dynes /cm. If we
set �p

� =1 Poise and consider airway generation 12 with
a12

� =0.028 cm, the time scale Ts=a12
� �� /	=0.0014 s.

Therefore, Tb=3520 for a typical breath that lasts 5 s. Ac-
cording to the results presented in Fig. 15�b�, closure can
occur for any value of Weref provided ��0.18, and does not
occur within 5 s if ��0.14 for the values of Weref that were
considered. For intermediate values of �, 0.14���0.18,
closure can occur provided Weref is sufficiently large. At
the other extreme, for a much less viscous polymer, say
�p

� =0.01 Poise, Ts�2.8�10−5 s and Tb�1.8�105. Conse-
quently closure can occur for most of the chosen values of �
displayed in Fig. 15�a�. These conclusions about closure de-
pend on the value of Tb, which critically depends on the time
for one breath, the airways radius �generation�, the film vis-
cosity, and the surface tension. A decrease in Tb has a “sta-
bilizing” effect. This occurs if either the airway radius or the
film viscosity increases, or the surface tension decreases.

The maximum wall shear stress during the closure
event can also be estimated. The capillary pressure scale is
	 /a12

� �714 dynes /cm2, and based on the results shown in
Fig. 16, 7 dynes /cm2��w

� �32 dynes /cm2. These levels
are somewhat smaller than those that cause epithelial cell
damage43,44 because the computed stresses shown in Fig. 16
were evaluated when Rmin=0.4. However, stress levels of
this magnitude are thought to stimulate physiologic re-
sponses. For example, the major cytoskeletal components of
alveolar epithelial cells can be disassembled by shear stresses
of the order of 30 dynes /cm2.45 It is also well known that
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FIG. 16. Influence of the film thickness parameter � and the Weissenberg
number Weref on the maximum wall shear stress �w, for two different solvent
viscosities �a� �s=0.5 and �b� �s=0.01.
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biochemical and electrical signals can be induced by fluid
stresses on endothelial cells. This phenomenon is known as
mechanotransduction.46

VII. CONCLUSIONS

In this paper we investigated the stability of a viscoelas-
tic liquid layer coating the inner surface of a rigid cylindrical
tube as a simplified model of airway closure, focusing on the
viscoelastic character of the liquid layer. Several different
constitutive equations were used to model the viscoelastic
fluid. One model used the Oldroyd-B equation, which in-
cludes upper convective terms. Combined with lubrication
theory, a regular perturbation analysis for small We was car-
ried out, from which a set of evolution equations for the film
thickness were obtained. The other model that was consid-
ered used the Jeffreys constitutive equation, and did not in-
clude the nonlinear upper-convective terms. For the linear
constitutive model, a system of four coupled partial differen-
tial equations was derived using lubrication theory that de-
scribes the evolution of the air-liquid interface and the axial
flow rate of the film layer for arbitrary We.

A linear stability analysis was performed to investigate
the initial temporal growth of a sinusoidal small amplitude
perturbation. In the very early stages of growth, the
Oldroyd-B and Jeffreys models behave in a similar fashion
since the nonlinear upper convective terms are negligibly
small. For the Jeffreys model, the system is unstable for the
same range of wave numbers as a Newtonian fluid and the
maximum growth rate increases with We implying that vis-
coelasticity is initially destabilizing. As the solvent viscosity
parameter �s decreases the maximum growth rate increases.
The linear Maxwell model is obtained in the limit as
�s→0. For �s=0 and We�12, a singularity appears, and the
growth rate can become unbounded at some finite wave-
length. When We1, the relaxation time scale is much
larger than the capillary-viscous time scale, and the response
of the polymeric fluid in the film layer to an interfacial per-
turbation can be instantaneous like that of an elastic material
�see also Ref. 34�. A similar singularity was obtained by
Halpern and Grotberg20 who investigated the stability of a
liquid-lined elastic tube with and without wall damping. The
singularity disappears when the Jeffreys model is used in-
stead of the linear Maxwell model since the effect of a sol-
vent is included, which provides viscous damping.

The nonlinear simulations yielded several interesting re-
sults. For sufficiently small values of ��0.119, closure does
not occur within a breathing cycle Tb

�. This result seems to be
unaffected by viscoelasticity, and is due to the fact that the
film layer becomes exceedingly thin with time and the drain-
ing flow into larger growing bulge is very slow. For
intermediate values of �, closure time can be significantly
affected by viscoelasticity. For example, from the results
shown in Fig. 15�b�, tc�2�102 for Weref=10, but tc�104

for Weref�1. We also examined the influence of the film
thickness parameter � and the Weissenberg number We on
the maximum shear stress evaluated at the tube wall,
max��w�, because of its potential impact on cell damage. We
found that max��w� increases with � for fixed We due to the

greater destabilizing effect of surface tension and larger
flows within the layer, and that it decreases with increasing
We for small � provided �s is sufficiently small. For large
��0.2, there was no significant difference between the New-
tonian flow case and the large We case.

Finally, we would like to make a few concluding re-
marks about some of the underlying assumptions. The lubri-
cation theory models presented in this paper will ultimately
break down. This is true for a Newtonian liquid layer as well
as a viscoelastic one. Once the layer becomes sufficiently
thick and the flow layer sufficiently large, some of the ne-
glected viscous, unsteady, and convective terms become im-
portant. In addition, for a viscoelastic liquid layer described
by the Oldroyd-B constitutive relation, the upper convective
terms will ultimately become important and have to be in-
corporated in order to fully understand the complete dynam-
ics of airway closure.
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