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ABSTRACT

The influence of wall slip on the instability of a non-wetting liquid film placed on a solid substrate is analyzed in the limit of negligible inertia.
In particular, we focus on the stability properties of the film, comparing the performance of the three lubrication models available in the
literature, namely, the weak, intermediate, and strong slip models, with the Stokes equations. Since none of the aforementioned leading-order
lubrication models is shown to be able to predict the growth rate of perturbations for the whole range of slipping lengths, we develop a
parabolic model able to accurately predict the linear dynamics of the film for arbitrary slip lengths.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0028105., s

I. INTRODUCTION

Liquid films play a central role in many engineering applica-
tions, in biological and physiological processes, and in geophysics,
to name a few. Apart from the fascination they hold for theoreticians
for their rich dynamics, their great practical importance is evidenced
by the existence of extensive reviews covering a large number of fun-
damental and applied studies,1–4 to which the reader is referred to
for a panoramic view of the subject. Many systems, such as plas-
monic devices or biofluids as in the case of a tear film, involve
coatings in the form of ultra-thin liquid films, which can be unsta-
ble if their height is below about 100 nm. Indeed, at these scales,
the long-range van der Waals (vdW) forces can exceed the stabi-
lizing surface tension force if the perturbation wavelength is above
a certain cutoff.5–7 Many relevant applications involve the use of
thin polymer films such as silicone oils, which are known to expe-
rience a substantial slip when they flow over a solid impermeable
substrate.8–10 In these cases, the success of continuum mechanics
to account for the observed phenomena requires the use of a slip
length λs, defined as the distance to the wall at which the tangen-
tial velocity extrapolates to zero. The most commonly used wall-slip

model is the linear boundary condition first derived by Navier,11 and
later on by Maxwell in the case of gases.12 Slippage is important
in many fields, ranging from microfluidics13 to fracture and geo-
physical flows, or industrial flows involving polymer melt extruders,
where slip-induced instabilities frequently occur14 (see Refs. 15 and
16 for a review).

We report the influence of wall slip on vdW-unstable liquid
films, contemplating their linear stability. Since slippage is often
found in the flow of polymeric films, the effects of inertia will be
neglected herein, rendering the flow effectively Stokesian. More than
40 years ago, de Gennes8 conjectured that the no-slip boundary con-
dition at a rigid solid in contact with a semi-dilute or concentrated
high-molecular-weight polymer solution may not apply. He argued
that for any shear rate, under the ideal conditions of a perfectly
smooth non-adsorbing wall, the monomers do not create strong
binds with the solid, and thus, viscous forces in the liquid domi-
nate over the friction with the substrate, leading to slip lengths as
large as λs ∼ 100 μm. Even larger slip lengths of λs ∼ 1 cm can be
achieved by covering the substrate with a lubricant. Under semi-ideal
conditions, it was shown a decade later both theoretically9 and exper-
imentally10,17 that the slip length in polymer melt flows depends on

Phys. Fluids 32, 102107 (2020); doi: 10.1063/5.0028105 32, 102107-1

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1063/5.0028105
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0028105
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0028105&domain=pdf&date_stamp=2020-October-15
https://doi.org/10.1063/5.0028105
https://orcid.org/0000-0002-2109-8145
https://orcid.org/0000-0002-8663-0382
https://orcid.org/0000-0001-9749-2520
mailto:amcalvo@ing.uc3m.es
mailto:damoreno@pa.uc3m.es
mailto:asevilla@ing.uc3m.es
https://doi.org/10.1063/5.0028105


Physics of Fluids ARTICLE scitation.org/journal/phf

the interaction between the monomers and the solid and on the
shear stress acting on the liquid. In particular, in this weakly grafted
regime, usually known as the mushroom regime, where bounded
polymer chains do not overlap each other, it was shown by the lat-
ter authors that the slippage is strongly reduced (λs ∼ 10 nm) due
to the local binding of chains. However, as the shear rate increases,
the slip velocity undergoes a sharp transition due to the coil-stretch
transition of the polymer blobs, whose elongation reduces the fric-
tion, inducing an increase in the slip length. Non-ideal conditions
occur when the chains are bound to many locations along the sub-
strate, as in the case of a strong brush, and where the slippage is
almost completely suppressed.18 Therefore, for thick films such that
λs/ho ≪ 1, where ho is the initial height of the film, a pressure gradi-
ent induces the standard semi-parabolic velocity profile. In contrast,
for ultra-thin films where λs/ho ≫ 1, a plug-flow velocity profile is
expected.

To date, most of the theoretical and numerical studies of the
dynamics of non-wetting ultra-thin liquid films rely on leading-
order lubrication models. However, it has been recently shown that
the leading-order no-slip lubrication model fails to predict the near-
rupture dynamics of ultra-thin films.19 In the case of slipping films,
there are three lubrication models available in the literature, namely,
the weak,20 intermediate,21 and strong22 slip models. In Ref. 22,
the dispersion relation of a slipping vdW-unstable liquid film was
deduced from the complete Navier–Stokes equations. However, it
was not used to quantify the error of the two lubrication models
available at that time. Here, we show that none of the leading-order
models can cover the whole range of slip lengths, from the no-slip
limit, λs/ho≪ 1, to the opposite limit of a free film, λs/ho≫ 1. Indeed,
the dispersion relations derived from the leading-ordermodels fail at
predicting the linear growth rates of small disturbances for arbitrary
values of λs/ho. Specifically, we will show that the strong-slip model
(SSM) provides a reasonably accurate approximation for λs/ho ≳ 10
and any value of ho, whereas the validity of the weak-slip model
(WSM) is restricted to λs/ho ≲ 0.1, provided that ho/a ≳ 4, where a
is the molecular length defined below. Finally, the intermediate-slip
model (ISM) is only valid within a narrow range of λs/ho. It should
be emphasized that these three models are still actively employed
to describe the linear and nonlinear dynamics of the liquid film, for
instance in a recent numerical study,23 where the intermediate lubri-
cation model is used, to explain the instability in slipping dewetting
rims24,25 or in numerical and experimental dip-coating studies with
porous substrates, where the strong-slip model is used.26

In view of these limitations and given the present rele-
vance of thin-film flows, the need to develop accurate lubrication

approximations naturally arises. Thus, one of the main contribu-
tions of the present work is to develop a second-order lubrication
model able to accurately predict the linear stability properties of
the slipping film for arbitrary values of λs/ho. Our development is
inspired by previous studies dealing with second-order lubrication
theory in similar contexts such as falling films27–30 and axisymmetric
liquid threads.31–33

This paper is organized as follows. In Sec. II, we present an exact
continuum formulation of the flow in terms of the Stokes equations
subject to a Navier slip condition at the substrate. In Sec. III, we
present the three leading-order lubricationmodels developed in pre-
vious studies, followed by the development of a novel second-order
lubrication approximation in Sec. IV. A detailed derivation of the
parabolic lubrication model is presented in the Appendix.

II. THE STOKES EQUATIONS

Figure 1 shows a schematic of the flow configuration under
study, together with the definition of the main governing variables.
The flow equations are made dimensionless using the unperturbed
liquid film height ho as the length scale, the vdW-induced velocity
A/(6πμh2o) as the velocity scale, their ratio 6πμh3o/A as the time scale,
and the characteristic disjoining pressure A/(6πh3o) as the pressure
scale, where μ is the liquid viscosity andA is the Hamaker constant.34

Neglecting the inertia of the liquid, the flow is governed by the Stokes
equations,

∇ ⋅u ≙ 0, and 0 ≙ −∇ϕ +∇ ⋅T , (1)

where u = (u, v) is the two-dimensional fluid velocity field in Carte-
sian coordinates (x, y), T = −pI + ∇u + (∇u)T is the stress tensor
of an incompressible Newtonian fluid, p is the pressure field, and
ϕ = h−3 is the dimensionless vdW potential. The accompanying
boundary conditions include the Navier slip11,12 and no penetration
conditions,

u ≙ ℓs
∂u

∂y
, v ≙ 0, (2)

at the substrate wall y = 0, where the non-dimensional parameter ℓs
= λs/ho compares the slip length, λs, with the initial height of the film,
ho. The stress balance and the kinematic boundary condition,

T ⋅n + Ca
−1(∇ ⋅n)n ≙ 0, n ⋅ (∂txs − u) ≙ 0, (3)

are imposed at the interface y = h(x, t), where Ca ≙ A/(6πσh2o)
≙ (a/ho)2 is the Capillary number, a = [A/(6πσ)]1/2 is the molec-
ular length scale,1 σ is the liquid–air surface tension coefficient,

FIG. 1. Schematic of the flow configuration with an accompanying system of reference. Note that the complete streamwise domain −π/k < x < π/k is not fully represented in
the sketch.
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xs = (x, h(x, t)) is the parameterization of the free surface, and ∇ ⋅n

≙ C ≙ −∂
2
xh∥1 + (∂xh)2∥−3/2 is the mean curvature of the inter-

face, with associated unit normal vector n. The flow is thus governed
by two dimensionless parameters, namely, Ca (or equivalently ho/a)
and ℓs.

III. LEADING-ORDER LUBRICATION MODELS

Let us now present the three leading-order lubrication models
developed in previous studies. These simplified models took advan-
tage of the existence of three possible dominant balances in the slen-
der flow of liquid films, depending on the slip length. Specifically,
these are the weak, intermediate, and strong slip limits, derived in
Refs. 20, 21, and 22, respectively.

The weak-slip model holds when p = ϕ = O(ε−1) and ℓs = O(1),
where ε ≪ 1 measures the slenderness of the film, thus being the
effect of a slip small correction to the flow driven by vdW forces.
This scaling yields the classical lubrication balance leading to a semi-
parabolic profile of an axial velocity, accommodating the slip condi-
tion at the substrate and the stress-free condition at the interface. In
this case, the evolution of the thin film is described by the following
weak-slip equation for h(x, t):20

∂th − ∂x[h2(h + 3ℓs)
3

∂x(Ca−1C + h
−3)] ≙ 0, (4)

where the standard no-slip lubricationmodel is recovered in the reg-
ular limit ℓs → 0,4,35 which has been used extensively in thin-film
problems.2,4,36,37

The assumption of a parabolic axial velocity profile fails when
ℓs ≳ 1 due to a change in the dominant balance. In particular, the
strong-slip limit ℓs ≫ 1 has associated characteristic scales p = ϕ
= O(ε) and ℓs = O(ε−2), thus the flow being driven by the slip veloc-
ity at the substrate, which, at a leading order, provide the strong-slip
equations describing the coupled evolution of h(x, t) together with
the plug-flow velocity u(x, t),

∂th + ∂x(hu) ≙ 0, (5a)

4

h
∂x(h∂xu) − ∂x(Ca−1C + h

−3) ≙ u

ℓsh
, (5b)

which, in the limit ℓs →∞, reduce to the free-film equations derived
in Ref. 38 and have been used in a myriad of relevant configura-
tions.39–44

Finally, the intermediate-slip limit can be deduced from either
(4) or (5). Indeed, it was shown in Refs. 21 and 24 that it can be
obtained from (4) upon letting t → ℓ

−1
s t and ℓs → ∞, or from (5)

taking u→ ℓsu and ℓs → 0, yielding the intermediate-slip equation,

∂th − ℓs∂x[h2∂x(Ca−1C + h
−3)] ≙ 0, (6)

with a certain range of validity around ℓs ∼ 1 to be compared against
the other models below.

IV. SECOND-ORDER LUBRICATION THEORY

A large number of higher-order lubrication models have been
derived in the past to describe a wide variety of free-surface flows. In

particular, regular expansions in powers of the slenderness parame-
ter and weighted-residual approximations have been used to derive
second-order models for cylindrical liquid threads31,33 and falling
liquid films,27–30 respectively. However, to the authors’ knowledge,
there is no second-order lubrication model available in the literature
to describe the dynamics of ultra-thin liquid films on horizontal sub-
strates, neither in the standard no-slip case nor to account for wall
slip. To fill this gap, here, we present a second-order parabolic model,
which has O(ε2) accuracy.

The model, derived in detail in the Appendix, consists of three
coupled equations for the evolution of the film height, h(x, t), and
the leading- and second-order longitudinal velocities, u0(x, t) and
u2(x, t), respectively, and reads

∂th + {h[u0(1 + h

2ℓs
) + h2u2

3
]}′ ≙ 0, (7a)

− (Ca−1C + h
−3)′ + 3u

′′

0 + 2u2 + ((h2u0)′
hℓs

)′

− (2(h2u′0)′h′
h

+
h2

2
(u′′0 + 2u2)′ − 2(h2u2)′)′ ≙ 0, (7b)

(u′′0
2

+ 3u2)′′ − 3u0

ℓsh3
+
3u′′0
h2

+
12 h′u′0

h3
−
6u2

h2
+
3 h′2u0

ℓsh3

+
9u′′0
2ℓsh

+
12 h′u′0
ℓsh2

−
3 h′2u′′0

h2
+
6 h′2u2

h2
+
12 h′u′2

h
≙ 0, (7c)

where primes indicate derivatives with respect to x. The accuracy of
the parabolic model (7) to account for the linear dynamics of the film
will be assessed below.

V. LINEAR STABILITY ANALYSIS

In this section, we revisit the stability of slipping ultra-thin liq-
uid films destabilized by the long-range vdW forces. Our aim is to
perform a systematic comparison of the dispersion relations pre-
dicted by using the different lubricationmodels presented in Secs. III
and IV with those obtained from the Stokes equations (1)–(3).

A. Stokes equations

To obtain the dispersion relation ω = ω(k) relating the lon-
gitudinal wavenumber k with the temporal growth rate ω, the
flow is decomposed into normal modes of the form (u, v, p,h)
≙ (0, 0, 1, 1) + δ(û, v̂, p̂, ĥ) exp(ikx + ωt), where hats denote the
eigenfunctions and δ≪ 1 is the disturbance amplitude. Introducing
the normal-mode decomposition into (1)–(3) yields the following
closed-form solution:

ω ≙
3 − Ca−1k2

2k

2kℓs cosh(2k) + sinh(2k) − 2k(ℓs + 1)
1 + (4ℓs + 2)k2 + 2ℓsk sinh(2k) + cosh(2k) , (8)

describing the temporal instability modes of the film for 0 < k < kc
≙

√
3Ca and any value of Ca > 0. Equation (8) is a particular case

of the dispersion relation derived in Ref. 22 in the limit of negligible
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liquid inertia. The dispersion relation for the case with the no-slip
condition is recovered from (8) by taking the limit ℓs → 0, yielding

ωno-slip ≙
3 − Ca−1k2

2k

sinh(2k) − 2k
1 + 2k2 + cosh(2k) , (9)

first obtained in Ref. 45. In addition, the squeezing mode of a sus-
pended free film is recovered in the opposite limit of perfect slip, ℓs
→∞, in which

ωfree ≙
3 − Ca−1k2

2k

cosh(2k) − 1
2k + sinh(2k) , (10)

first obtained in Ref. 46. Note that, to obtain the same result as in
Ref. 46, it is necessary to perform the substitution k→ k/2 since here
we have taken the height of the film as the characteristic length scale,
which is equivalent to half the height of the equivalent free film. It is
also worth pointing out that the existence of a finite slip regularizes
the temporal amplification curve of the free film in the Stokes limit,
in which the maximum growth rate and the associated wavenumber
are ωm

free → 3/4 and km → 0. Indeed, the non-zero wall shear stress
induced by a finite slip provides a low-wavenumber regularization
mechanism alternative to liquid inertia. The temporal growth rate
predicted by Eq. (8) increases monotonically with ℓs since the fluid
is able to drain faster due to the wall slippage.

B. Lubrication theory

Following the same procedure explained in Sec. V A, we obtain
the corresponding dispersion relations of the three leading-order
lubrication approximations (4)–(6) and the one associated with the
parabolic model (7), namely,

ωw ≙
k2(3 − Ca−1k2)(1 + 3ℓs)

3
, (11a)

ωi ≙ ℓsk
2(3 − Ca−1k2), (11b)

ωs ≙
k2(3 − Ca−1k2)

4k2 + ℓ−1s
, (11c)

ωp ≙
k2(3 − Ca−1k2)∥4 + (6 + k2)2ℓs/3∥

12 + k2 {24 + 48ℓs + k2∥4(4 + k2)ℓs − 3∥} , (11d)

where the subscripts denote the weak-slip (hereafter WSM),
intermediate-slip (hereafter ISM), strong-slip (hereafter SSM), and
parabolic models, respectively. Note that the growth rate predicted
by using the WSM recovers the particular case of a perfect no-slip
condition at the substrate, in which ωw → k2(3 − Ca−1k2)/36,35 as
ℓs → 0, but fails catastrophically for ℓs ≳ 1. In the opposite limit, the
growth rate obtained from the SSM recovers the free-film lubrication
dispersion relation, ωs → (3 − Ca−1k2)/4 as ℓs →∞,38 but vanishes
for ℓs → 0. The ISM is seen to fail in both limits. Most importantly,
the second-order parabolic model developed herein is regular for all
the values of ℓs and perfectly captures both the no-slip and free-film
limits.

Figures 2(a)–2(c) show the amplification curves obtained from
the different models for Ca = 5.31 × 10−2 (ho/a = 4.34, a similar
value to the one reported by Refs. 47 and 48) and different values of

the dimensionless slip length ℓs indicated in the legends. Note that,
for convenience, k has been rescaled with the cutoff wavenumber
kc in Figs. 2(a)–2(c) so that the effective length scale is h2o/(√3a)
instead of ho in these plots. The amplification curves obtained from
the WSM, ISM, and SSM are shown as solid lines in Figs. 2(a)–2(c),
respectively, while the results of the parabolic model (11d) and the
Stokes equations (8) are also shown for several cases using dashed
and dotted lines, respectively. Figures 2(a)–2(c) reveal that, for Ca
= 5.31 × 10−2, the results of the parabolic model are almost identical
as those obtained from the Stokes equations for any value of ℓs. As
revealed by Fig. 2(a), the WSM exhibits relative differences of about
10%with respect to the Stokes results, even for ℓs = 0, and introduces
100% errors when ℓs ∼ 5. The ISM is seen to have large associated
relative errors even for values of ℓs ∼ 1, as deduced from Fig. 2(b).
Finally, Fig. 2(c) shows that the SSM performs remarkably well, even
for values of ℓs ∼ 1.

To quantify the performance of the lubrication models,
Figs. 2(d) and 2(e) display the wavenumber for maximum ampli-
fication, km, and the corresponding growth rate, ωm, as functions of
ℓs, for several values of Ca indicated near each curve. In addition,
the relative errors in km and ωm, measured with respect to the Stokes
solution, are shown in Figs. 3(a)–3(f). Note that km and ωm can be
obtained analytically from the lubrication models, yielding

k
m
w ≙

√
3Ca

2
≙

kc√
2
, ω

m
w ≙

3Ca(1 + 3ℓs)
4

, (12a)

k
m
i ≙

√
3Ca

2
≙

kc√
2
, ω

m
i ≙

9Caℓs

4
, (12b)

k
m
s ≙

1

2

√(1 + 12ℓsCa)1/2 − 1
ℓs

, ω
m
s ≙

1 + 6ℓsCa −
√
1 + 12Caℓs

8Caℓs
,

(12c)
whereas the exact expressions for km and ωm deduced from the
parabolic model are implicit and are not shown here for concise-
ness. As shown in Figs. 2(d), 2(e), and 3(a)–3(f), the SSM provides a
good approximation to the Stokes equations for ℓs ≳ 1 and Ca ≲ 1.
Note that the maximum admissible value of Ca under realistic con-
ditions is Ca ≈ 1 since it corresponds to ho ≈ a, i.e., amolecularly thin
film. TheWSM is seen to perform reasonably well for ℓs ≲ 10 and Ca
≲ 10−2, where the error in ωm, which in this case is the most restric-
tive one, is always below about 10%. The ISM has small relative
errors within an extremely narrow window of slip lengths for any
value of Ca, as shown in Figs. 2(e) and 3(d) and 3(f), which strongly
compromises its practical use. Finally, the relative errors in ωm and
km associated with the parabolic model are always below 1% and 4%,
respectively, for arbitrary values of ℓs and Ca.

We will now take into account that the unstable range of
wavenumbers is 0 ≤ k ≤ kc with kc = (3Ca)1/2. Since kc ≤ 1 for Ca
< 1/3, further analytical insight into the different lubrication models
can be gained by performing small-k expansions of the difference
between their respective dispersion relations (11a)–(11d) and the
Stokes result (8) to yield

ω − ωw ≙ −
9 + 15ℓs(3 + 4ℓs)

5
k
4
+O(k6), (13a)
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FIG. 2. [(a)–(c)] Amplification curves ω(k) for Ca = 5.31 × 10−2 (ho/a = 4.34) and several values of ℓs indicated in the legends for (a) the weak-slip, (b) the intermediate-slip,
and (c) the strong-slip lubrication models [(11a)–(11c)], respectively (solid lines). Also shown in (a)–(c) are the results of the second-order parabolic model (11d) and the Stokes

dispersion relation (8) (dashed and dotted lines, respectively). Note that k is scaled with the cutoff wavenumber kc =
√

3Ca. (d) Wavenumber of maximum amplification, k
m,

scaled with (3Ca/2)1/2, and (e) the corresponding maximum growth rate, ωm, as functions of the dimensionless slip length ℓs, obtained from the five frameworks, as indicated
in the legend.

ω − ωi ≙ k
2
− ( 1

3Ca
+
9 + 15ℓs(3 + 4ℓs)

5
)k4 +O(k6), (13b)

ω − ωs ≙ k
2
− ( 1

3Ca
+
9ℓs(1 + 5ℓs)

5
)k4 +O(k6), (13c)

ω − ωp ≙
k4

5
− ( 1

15Ca
+
27 + 70ℓs

28
)k6 +O(k8), (13d)

which are formally valid for Ca < 1/3. The errors associated with
the weak and parabolic lubrication models are O(k4), although in
the latter case, the slip length appears only at O(k6), and in addition,
its k6 coefficient is much smaller than that of the weak model (not

shown). Moreover, in the no-slip limit, ℓs → 0, the k4 coefficient is
nine times smaller in the case of the parabolic model, which explains
its much better performance when Ca→ 1.

The two key variables that can be extracted from the linear sta-
bility analysis to compare with the experiments are the film rupture
time, tR, and the wavenumber of maximum temporal amplifica-
tion, km, which allow us to estimate the characteristic length scale
of the dewetting pattern as λ ∼ 2π/km. Thus, we will finally assess
the predictions of the film rupture time, tR, provided by the differ-
ent models. To that end, we take into account that when the initial
disturbance amplitude δ ≪ 1, the thinning of the film follows the
linearized dynamics during most of its time evolution,19 hmin(t) = 1
+ δ exp(ωmt), where hmin(t) is the minimum film thickness, leading
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FIG. 3. The relative errors in the [(a)–(c)] wavenumber and [(d)–(f)] growth rate of most unstable perturbations defined for the four lubrication models, indicated in the legend,
with respect to the Stokes equations for Ca = 10−3 in (a) and (d), 10−2 in (b) and (e), and 10−1 in (c) and (f).

to the estimation tR = ln(ε−1)/ωm. The WSM, ISM, and SSM models
yield closed analytical expressions,

twR
ln(ε−1) ≙ 4

3Ca(1 + 3ℓs) , (14a)

tiR
ln(ε−1) ≙ 4

9Caℓs
, (14b)

tsR
ln(ε−1) ≙ 8Caℓs

1 + 6Caℓs −
√
1 + 12Caℓs

≙
4

3
+

4

3
√
3Caℓs

−
2

9Caℓs
+O(Ca−3/2ℓ−3/2s ). (14c)

To obtain explicit equations for tR in the case of the parabolic model
and the Stokes equations, it is first necessary to perform a small-k
expansion and then expand in powers of Ca (i.e., inverse powers of
ho/a). In the weak-slip limit ℓs ≪ 1, the resulting predictions for the
rupture time are

t
p
R

ln(ε−1) ≙ 4

3Ca(1 + 3ℓs) + 4 + 6ℓs(3 + 4ℓs)(1 + 3ℓs)2 +O(Ca), (15a)

tStokesR

ln(ε−1) ≙ 4

3Ca(1 + 3ℓs) + 6∥3 + 5ℓs(3 + 4ℓs)∥
5(1 + 3ℓs)2 +O(Ca), (15b)

while in the strong-slip limit ℓs ≫ 1,

tStokesR

ln(ε−1) ≙ t
p
R

ln(ε−1) ≙ 4

3
+

4

3
√
3Caℓs

+
3 + Ca

9Caℓs
+O(ℓ−3/2s ), (16)

which yields exactly the same result in both frameworks and slightly
different from the SSM (14c). In particular, both equations, (14c)
and (16), are independent of Ca at a leading order, which can be
obtained in the free-film limit, ℓs ≫ 1. Moreover, note that (14a),
(15a), and (15b) are identical at a leading order and recover the result
obtained in Ref. 19 for a non-slipping ultra-thin liquid film in the
Stokes regime.

VI. CONCLUSIONS

A comprehensive analysis of the linear stability properties of
slipping ultra-thin films has been carried out in the limit of negli-
gible inertia. The three lubrication models available in the literature
to account for wall slip during the thinning of the film, derived for
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weak,20 intermediate,21 and strong22 slip regimes, have been criti-
cally assessed by a systematic comparisons of their predictions with
those stemming from a linear stability analysis of the fully two-
dimensional Stokes equations, with emphasis on the two key mag-
nitudes predicted by the stability analysis, namely, the maximum
growth rate and the associated optimal wavenumber.

The weak and strong lubrication models show a good quanti-
tative performance for small and large slip lengths, respectively. In
the case of the weak-slip model, the agreement requires the film to
be initially slender, which is guaranteed for small enough values of
the capillary number, Ca≪ 1 or, equivalently, for large enough val-
ues of the initial film thickness compared with the molecular length
scale, ho ≫ a. In the case of the strong-slip model, since the opti-
mal wavenumber km → 0 as ℓs ≫ 1, the agreement is independent
of Ca and corresponds to the free-film limit. More importantly, the
intermediate-slip model, which is routinely used,23 has an extremely
narrow window of validity of O(1) slip lengths, a conclusion that
should be taken into account in future studies of slipping films.

Due to the limitations of the leading-order lubrication mod-
els, we have developed a second-order parabolic lubrication model,
whose performance in the linear regime is on par with the full
Stokes equations for arbitrary slip lengths. The latter result sug-
gests that the new second-order lubrication model could be helpful
in future numerical analyses of slipping ultrathin films. In particu-
lar, the parabolic model requires integrating three coupled nonlinear
partial differential equations for the film height and the leading- and
second-order velocities, arising in a regular asymptotic expansion in
which the small parameter is the transverse coordinate.31,33
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APPENDIX: DETAILED DERIVATION OF THE
PARABOLIC MODEL

Following the previous studies,31,33 the second-order lubrica-
tion model is derived by introducing the following rescaled charac-
teristic variables:

xc ≙ yc ≙
ho

ε
, tc ≙

6πμh3o
εA

, (A1a)

uc ≙ vc ≙
A

6πμh2o
, hc ≙ ho, pc ≙

A

6πh3o
, (A1b)

where ε = ho/L≪ 1, with L being a characteristic longitudinal length.
We expand all the flow variables in y ∼ ε as follows:

u(x, y, t) ≙ u0(x, t) + u0(x, t)
ℓs

y + u2(x, t)y2 + u3(x, t)y3 +⋯, (A2a)
v(x, y, t) ≙ −u′0(x, t)y − u′0(x, t)

2ℓs
y
2
−
u′2(x, t)

3
y
3
−⋯, (A2b)

p(x, y, t) ≙ p0(x, t) + p1(x, t)y + p2(x, t)y2 +⋯, (A2c)

where the expansions of u and v satisfy the continuity equation (1),
as well as the slip and no penetration boundary conditions at the wall
given by Eq. (2).

AtO(ε2), the kinematic condition at y = εh and the hierarchy of
equations obtained from the axial momentum equation read

∂th + [h(u0(1 + h

2ℓs
) + h2u2

3
)]′ +O(ε4) ≙ 0, (A3a)

− (p0 + h
−3)′ + ε(u′′0 + 2u2) +O(ε2) ≙ 0, (A3b)

− p
′

1 + ε(u′′0
ℓs

+ 6u3) +O(ε2) ≙ 0, (A3c)

− p
′

2 + ε(u′′2 + 12u4) +O(ε2) ≙ 0, (A3d)

where the functions p1(z, t) and p2(z, t) can be determined from the
corresponding orders of the y-momentum equation, which are then
substituted back into (A3c) to determine u3(x, t), yielding

p1(x, t) ≙ − εu′0
ℓs

+O(ε2), (A4a)

p2(x, t) ≙ − ε
2
(u′′0 + 2u2)′ +O(ε2), (A4b)

u3(x, t) ≙ − u′′0
3ℓs

, (A4c)

as well as the following equation for (A3d):

(u′′0 /2 + 2u2)′′ + 12u4 +O(ε) ≙ 0. (A5)

To obtain a closed system for h(x, t), u0(x, t), and u2(x, t), we need
to obtain p0(x, t) in (A3b) and u4(x, t) in (A5) from the normal and
tangential stress balances at O(ε2),

p0(x, t) ≙ Ca−1C − 2εu′0 − ε2 (h2u0)′
hℓs

+ ε
3(2(h2u′0)′h′

h
+
h2

2
(u′′0 + 2u2)′ − 2(h2u2)′) +O(ε4),

(A6)

ε
3
u4(x, t) ≙ − u0

4 h3ℓs
+ ε( u′′0

4 h2
+
h′u′0
h3
−

u2

2 h2
)

+ ε
2(h′2u0

4ℓsh3
+
3u′′0
8ℓsh

+
h′u′0
ℓsh2
)

+ ε
3(h′2u2

2h2
−
h′2u′′0
4h2

+
u′′2
12

+
h′u′2
h
), (A7)

respectively. Introducing (A6) into (A3b) and (A7) into (A5) and
eliminating ε upon the substitution x → εx, t → εt, u2j → u2j/ε

2j (j
= 0, 1), and ℓs → εℓs yield the parabolic model (7) as a closed system
to determine h(x, t), u0(x, t), and u2(x, t).
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