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The effect of weak inertia on the emptying of a tube

Alain de Rycka)

École des Mines d’Albi-Carmaux, route de Teillet, 81013 Albi Cedex 09, France

~Received 26 October 2000; accepted 1 April 2002; published 21 May 2002!

We present an extension of the classical axisymmetric Bretherton theory giving the thickness of the

liquid film left on the walls of a drained tube, treating the case of weak inertia by a regular

perturbation method. The results obtained by numerical integration fit Taylor’s @J. Fluid Mech. 10,

161 ~1961!# experiments, obtained with viscous fluids ~glycerine and strong sucrose solutions!, and

Aussillous and Quéré’s @Phys. Fluids 12, 2367 ~2000!# experiments with low viscosity liquids

~hexamethyldisiloxane and water! when inertia becomes important. The discrepancies observed

between the theory and high Reynolds numbers experiments ~Re.1000! are commented on.

© 2002 American Institute of Physics. @DOI: 10.1063/1.1480267#

I. INTRODUCTION

Coating flows, which are liquid flows leading to a depos-

ited liquid layer on the surface of a solid, have been exten-

sively studied1 for their practical importance in many tech-

nologies: Painting, printing, emulsion deposition in

photographic industry, air displacement in wetted porous me-

dia. This last topic has received some attention for its rel-

evance to oil recovery and to the understanding of air pen-

etration into the lungs. An idealized situation, sketched in

Fig. 1, is the emptying of a pore or a capillary filled with a

wetting liquid and drained by pushing a fluid of lower vis-

cosity, leading to a deposited liquid layer. The experimental

work by Taylor,2 measuring the amount of several highly

viscous liquids left behind when the liquid is blown out of a

tube, showed a limit in liquid recovery when increasing the

drainage velocity. The thickness e of the deposited film has a

limiting value of approximately one third.

Bretherton3 studied, both experimentally and theoreti-

cally, the drainage of a capillary at low velocity. His theory,

valid when the deposited film is thin compared to the tube

radius, also describes the two-dimensional ~2D! drainage be-

tween two parallel plates, and is similar to the one proposed

by Landau and Levich4 for plate or wire coating. In all these

cases, the velocity dependence of the deposited film thick-

ness is written

e51.34k21 Ca2/3, ~1!

where Ca5hV/g is the capillary number, which compares

the viscous and capillary forces ~h and g are, respectively,

the viscosity and surface tension of the liquid and V is the

drainage velocity!. k is the difference of curvature between

the static meniscus ~weakly deformed at low velocity! and

the thin film. For a tube of radius r, a Hele–Shaw cell of

spacing r, or a fiber of radius r, we have k21
5r . For a plate

withdrawn out of a liquid bath, k21
5Ag/2rg , where r is

the specific density of the fluid. The numerical constant is

obtained by matching the curvature of the meniscus with the

asymptotic curvature of the thin film.3,4

At higher velocity, some discrepancies are observed be-

tween Eq. ~1! and experimental results. For plate coating, the

drainage by gravity of the film becomes non-negligible. For

the tube ~respectively wire! coating, a first semiempirical

correction, proposed by White and Tallmadge for wire

coating,5 is to write k21
5r2e ~respectively, r1e!. This

extends the validity of the theoretical Bretherton law to situ-

ations in which the thickness of the remaining film becomes

comparable with the capillary radius. In the tube case, a lim-

iting value at high capillary numbers is then found: e/r

→1, quite different from Taylor’s observations:2 e/r→0.34.

To go to higher velocities, Cox6 proposed a theory giv-

ing the amount of liquid left on the walls of the tube based

on an exponential shape for the driving bubble but the fit

with the Taylor’s results is not so good. The two-dimensional

finite element calculation with a free interface by Reinelt and

Saffman,7 leads to a very good agreement with these experi-

mental results, but does not take into account inertia. But, for

liquids of low viscosity like water or ethanol, encountered in

washing processes for example, the liquid inertia leads to a

noticeable thickening of the remaining film, for drainage at

capillary numbers smaller than unity.8

Giavedoni and Saita9 presented numerical results, both

in the axisymmetric and plane cases, obtained by a boundary

integral method.10 Their work included the inertial forces and

they found a thinning effect due to inertia for Reynolds num-

bers up to 70. This work has been recently completed by

Heil11 in the 2D-channel case using a finite element method.

It demonstrates a small thickening effect due to inertia for

higher Reynolds numbers up to 280.

Here, we propose an extension of the Bretherton’s clas-

sical axisymmetric analysis to include weak fluid inertia ef-

fects. This study is an alternative of the Giavedoni and Saita9

and Heil11 works. Its numerical part is reduced to the reso-

lution of a third-order ordinary differential equation,12,13 and

is inspired by previous theoretical work introducing weak

fluid inertia in plate14–16 and wire coating,17,18 and by 2Da!Electronic mail: deryck@enstimac.fr
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channel drainage.19 In the latter case, the theory takes also

into account the drainage by gravity.

After the presentation of the equations describing the

drainage of a cylinder in Sec. II, they are solved at leading

order in Sec. III using the lubrication approximation. In Sec.

IV, a first-order approximation is used, introducing the iner-

tial terms. Two cases are then studied: Highly viscous liquids

and liquids of low viscosity. The results obtained are com-

pared, respectively, with the Taylor’s experiments2 and the

recent ones by Aussillous and Quéré.8

II. DESCRIPTION OF THE PROBLEM

We consider an infinite tube of circular geometry ~radius

r!, full of liquid and drained by air at a constant velocity V .

In a frame attached to the air bubble, we define the axial

origin and direction x from the apex to the air side. The

radial direction y is chosen from the tube wall inwards. In

these coordinates, the axial and radial liquid velocities are u

and v . In this frame, the walls of the tube have velocity V .

The profile of the film surrounding the bubble is h(x), de-

creasing from r to the constant value e for x ranging from 0

to infinity.

The steady-state Navier–Stokes equations in these coor-

dinates are written3

hH ]2u

]x2 1

]2u

]y2 1

1

r2y

]u

]r
J 5

]p

]x
1rS v

]u

]y
1u

]u

]x
D ~2!

and

hH ]2
v

]x2 1

]2
v

]y22

1

r2y

]v

]y
2

1

~r2y !2 vJ
5

]p

]y
1rS u

]v

]y
1u

]v

]x
D , ~3!

where h and r are, respectively, the viscosity and specific

mass of the liquid, and p the pressure. The liquid is incom-

pressible, so we have

]v

]y
2

v

r2y
1

]u

]x
50. ~4!

The boundary conditions at the walls are

for y50, u5V and v50. ~5!

On the air–liquid interface, y5h(x), neglecting the gas vis-

cosity, the stresses are due to the interface curvature and are

written

psnI 2s= snI 5ponI 2gcnI , ~6!

where g is the surface tension of the liquid and po the air

pressure. The subscript s means that the value is taken at the

liquid–gas interface. The vector nI is normal to the surface

and s= the viscous stress tensor. They are written

nI 5

1

A11hx
2
S 1

2hx
D

and

s= 5hS 2
]v

]y
2

]u

]y
2

]v

]x

2

]u

]y
2

]v

]x
2

]u

]x

D , ~7!

where the subscript x means differentiation with respect to

the axial coordinate. The curvature c is given by

c5

hxx

~11hx
2!3/2 1

1

~r2h !A11hx
2

. ~8!

III. LEADING ORDER SOLUTION

Assuming the slope of the thin film to be small and

radial velocity to be much smaller than the axial velocity, the

radial component of the Navier–Stokes equation ~3! reduces

to ]p/]y50. The pressure is then uniform in the thin film

and is written, using the radial projection of Eq. ~4!

p5ps5po2gc , with c5hxx1

1

r2h
. ~9!

Equation ~6!, in the axial direction yields

]u

]y
U

s

50. ~10!

Finally, Eq. ~2!, the axial component of the Navier–Stokes

equation, reduces to

]

]y
S ~r2y !

]u

]y
D5

1

h
px~r2y !, ~11!

may be integrated twice to give the velocity profile

u5V1

1

h
pxS ~r2y !2

4
2

r2

4
2

~r2h !2

2
ln

r2y

r
D . ~12!

A last integration gives the flux Q, which is a constant in

steady-state regime. Its value is related to the thickness e of

the deposited film by

Q5E
h

r

2pyu dy5E
e

r

2pyV dy . ~13!

Introducing Eq. ~12! into Eq. ~13! leads to

FIG. 1. Sketch of a tube full of liquid and drained by an air bubble.
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~r2h !2
2~r2e !2

5

1

Ca
cxS r4

8
2

r2~r2h !2

2
1

3

8
~r2h !4

1

~r2h !4

2
ln

r2h

r
D . ~14!

Finally, since the normalized thickness E5e/r , ratio be-

tween the thickness of the deposited film and the tube radius,

remains a small parameter, we have truncated Eq. ~14! to the

two first terms of its Taylor expansion close to E50. It then

reduces to

Y XXX53
12Y

Y 3 S 11E
Y 21

2
D2

E2

Ca2/3 Y X , ~15!

when using the same reduced variables as those used by

Bretherton:3 A film thickness scaled by e, the thickness of the

film at infinity (h5eY ), and an axial coordinate scaled by a

length ,, where ,5eCa21/3(x5,X).

We then obtain a generalized version of the

Landau–Levich3,4 equation with the additional terms in E

coming from the cylindrical geometry: The first from the

expression of the flux, the second from the radial curvature.

A. Numerical integration

Since the profile does not depend explicitly on x, we use

the thickness y as the variable of integration and integrate

numerically a second order differential equation for G(Y )

5Y X . This method leads to more stability in the numerical

integration ~we have used a commercial code—ode45 rou-

tine from Matlab—based on a 4 to 5 Runge–Kutta

method20!, but does not allow to find a nonmonotonous pro-

file since by construction, we impose a univocal relation be-

tween y and its derivative y x .

The integration is started close to the thin film using the

linearized conditions:3,13 Y o511esX, Y o85sesX and Y o9

5s2esX, where e5esX is a small quantity ~1024 in our cal-

culations! and where s is solution of the following equation

obtained by linearization of Eq. ~15!:

s3
1

E2

Ca2/3 s1350. ~16!

The initial conditions for G then is written

G~11e !5se , and
dG

dY
~11e !5s . ~17!

For a given Ca and E, we integrate G from Y511e to 1/E .

Figure 2~a! shows several bubble profiles obtained for Ca

50.05.

We observe that there is a critical thickness y at which a

matching to a sphere is possible, i.e., there exists a point on

the profile ~small circles in Fig. 2! where the two radii of

curvature are equal

Y XX5

E

Ca2/3

1

12EY
. ~18!

With this matching, we insure that the profile ends with a

static zone where the pressure is constant. This matching is

represented in Fig. 2~a!. The profiles are matched at the

circle point with a curve solution of hzz521/(r2h) ~dotted

lines!. E50.0973 is the highest value allowing a matching at

Ca50.05. There is no matching feasible for E50.05 for this

value of the capillary number.

B. Results

In Fig. 3, we have compared this maximum matching

thickness ~dotted line! with the experimental values obtained

by Taylor ~denoted by squares!. In the same figure, these

results are also compared to the asymptotic matching by

Bretherton @Eq. ~1!, dashed and dotted line#. Both are only

valid for very small capillary numbers, but the denominator

in Eq. ~18! ensures a saturation effect.

In order to improve the accuracy, we used the full ex-

pression of the curvature. The film profile is then given by

CX53
12Y

Y 3 S 11E
Y21

2
D , ~19!

FIG. 2. ~a! Approximate curvature. Bubble profile for Ca50.05 and E

50.05, 0.0973, and 0.15. Dash and dotted lines: Walls of the tube. Dashed

lines: approximated spheres (y xx521/(r2y)). Circles: matching points;

there is no matching for E.0.0973. ~b! Exact curvature. Bubble profile for

Ca50.05 and E50.05, 0.1206, and 0.15.
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where C is the normalized curvature

C5

Y XX

~11Ca2/3Y X
2 !3/2 1

E

Ca2/3

1

~12EY !~11Ca2/3Y X
2 !1/2 .

~20!

With this correction, we obtain more realistic bubble profiles,

as shown in Fig. 2~b!. As previously, for each capillary num-

ber, a maximum thickness allowing matching is found. This

value fits the experimental data well for capillary numbers up

to 0.25 as can be observed in Fig. 3 ~solid line!. Neverthe-

less, we still observe some discrepancies for higher capillary

numbers which here do not come from inertia since, in the

Taylor’s experiments, the Reynolds numbers (Re5rVr/h)

were always lower than unity.

IV. FIRST-ORDER SOLUTION

To achieve a more accurate solution when the thickness

of the deposited film increases, we need to obtain the first-

order correction the leading order result described in the pre-

vious section. Up to the first order in Ca1/3, the terms previ-

ously neglected have been written using the expressions of

the velocity obtained at the zeroth order.

To first order, the pressure at the liquid–bubble interface

is written

ps52gc12h
]vo

]y
U

s

, ~21!

where the subscript o means that the velocity is computed at

the zeroth order. Using the incompressibility of the liquid

@Eq. ~4!# leads to

ps52gc22h
]uo

]x
U

s

22h
uos

h
hx , ~22!

where uo is given by Eqs. ~12! and ~13!

uo5VS118
~r2h !2

2~r2e !2

r4
24r2~r2h !2

13~r2h !4
24~r2h !4 ln~r2h !/r

3S~r2y!2

2
2

r2

2
2

~r2h!2

2
ln

r2y

r
D D . ~23!

The pressure profile inside the thin film is given by Eq. ~3! at

first order:

hH ]

]y
S 2

]uo

]x
D J 5

]p

]y
, ~24!

and leads together with Eq. ~22! to

p52gc2h
]uo

]x
U

s

2h
]uo

]x
12h

uos

r2h
hx . ~25!

At this same order, Eq. ~2! is written

hH 1

r2y

]

]y
S ~r2y !

]w

]y
D J 5

]p

]x
1rS vo

]uo

]y
1uo

]uo

]x
D .

~26!

The last step is to integrate this equation three times in order

to obtain the flux as in the previous section and then to

expand the expression versus E. We obtain finally in the

reduced Landau–Bretherton coordinates

CX53
12Y

Y 3 S 11E
Y21

2
D13

Ca2/3

Y 3 H Y XXY F4327Y

40

1E
21291270Y261Y 2

240
G

1Y X
2 F24122Y

20
1E

41239Y 22Y 2

40
G J

1

1

35
FECa4/3

Y X

Y 3 F6~291Y1Y 2!

1E
172821131Y 2171Y 2

1134Y 3

32
G , ~27!

where C is still the reduced curvature given by Eq. ~20!. F

5rgr/h2
5Re/Ca is a nondimensional number which de-

pends only on the nature of the liquid and of the radius of the

tube. For water in a tube of radius 1 mm, F572 000. For

glycerol in the same tube, F50.36.

In Eq. ~27!, two new terms appears, compared to Eq.

~19!, both expanded in powers of E. The first one is a cor-

rection to the lubrication approximation. After Bretherton,

Spiers et al.21 introduced this correction in the case of plate

coating. The second one is an inertial correction. First intro-

duced by Esmail and Hummel14 for the plate coating prob-

lem, this inertial term has been shown to lead to a thickening

of the film entrained by a plate16 or a fiber withdrawn from

of a liquid bath.18

Together with Eq. ~20!, Eq. ~27! leads again to a third

ordinary differential equation for the film profile. The nu-

merical integration still starts from a point close to the thin

film: Y 511esX, where s is obtained by the linearization of

the system. With the new terms, Eq. ~16! is replaced by

FIG. 3. Thickness of the deposited film scaled by r vs the capillary number.

Dashed and dotted line: Eq. ~1!. Dashed line: Maximum thickness allowing

a matching with a spherical cap using an approximated curvature. Solid line:

the same, but using an exact curvature expression. Squares: Taylor’s experi-

ments ~Ref. 2!.
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s3
1

E2

Ca2/3

s

~12E !2 132Ca2/3s2S 27

10
1E D

1FECa4/3sS 6

5
2

E

2
D50. ~28!

The final step is the same as previously. For a given param-

eter number F, we search, for each value of the capillary

number Ca, the maximum value of the reduced film thick-

ness E allowing a matching of the film profile with a spheri-

cal cap. This has been done in two cases. First, with F50,

for liquids of high viscosity, and then for parameter numbers

higher than 10 000, representative of liquids of low viscosity.

A. Highly viscous liquids

For highly viscous liquids, the inertial correction re-

mains negligible for capillary number less than unity, as is

the case of the experiments by Taylor.2 Figure 4 compares

them with the maximum thickness allowing a bubble profile

ending with a spherical cap with F50. The agreement is

quite good. In Fig. 5, several bubble shapes obtained for Ca

ranging from 0.001 to 1 are compared. The matching points,

not shown, are close to the axis of revolution except for

Ca51. In that latter case, the matching occurs at half the

bubble size. In all cases we observe that the bubbles are only

slightly deformed: the thin film of constant thickness is at-

tained above a distance x from the top of the cap close to

(r2e).

B. For liquids of low viscosity

Finally, the system of equations has been integrated us-

ing as parameter F519 330 and 67 670, values representa-

tive of a low viscosity silicone oil drained out of a tube of

radius 0.4 and 1.4 mm. The maximum thickness curves are

compared in Fig. 6 with the Aussillous and Quéré

experiments.8

We observe that the threshold and the beginning of

thickening due to inertia are well represented by the theory.

Nevertheless, for higher capillary numbers, the theory over-

estimates the experimental values obtained. Several hypoth-

eses may be put forward to explain this discrepancy. First,

FIG. 4. Taylor’s experiments ~Ref. 2! and the maximum value of E allowing

a bubble profile ending like a sphere for F50.

FIG. 5. From left to right: bubble shapes for Ca50.001; 0.01; 0.1, and 1.

Dash and dotted lines: Positions of the walls.

FIG. 6. ~a! Experimental deposited film thicknesses and the theoretical

maximum ones allowing a matching with a spherical cap. Black points:

Experiments with hexamethyldisiloxane ~Ref. 8! ~r50.76 kg/m3, h50.5 cP

and g515.9 mN/m! and a tube of radius 0.4 mm (F519 330). Solid line:

Theory with the same parameter. White points: Taylor’s experiments ~Ref.

2!. Dashed line: Theory with F50. ~b! Experimental deposited film thick-

nesses and the theoretical maximum ones allowing a matching with a spheri-

cal cap. Black points: Experiments with hexamethyldisiloxane ~Ref. 8! and

a tube of radius 1.4 mm (F567 670). Solid line: Theory with the same

parameter. White points: Taylor’s experiments ~Ref. 2!. Dashed line: Theory

with F50.
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the theory presented here includes inertia as a first order

perturbation and therefore has no reason to describe high

inertia situations. Secondly, the method used computes only

steady-state axisymmetric bubble profiles, with no oscilla-

tions of the film thickness and of maximum thickness for a

given capillary number. This solution is perhaps not the most

stable at high velocity. In particular, further work should be

made to check if the maximum thickness criterion leads, at

high velocity, to the less dissipative solution.

Finally, there are some limitations to this visco-inertial

regime in the Aussillous and Quéré’s experiments.8 As de-

scribed by the authors, the finite length of the liquid reservoir

leads to a deposited film thickness limited by the viscous

boundary layer. Another point is that the steady-state visco-

inertial regime is not reached in these experiments, which

were performed with an air–liquid front displacement of

about 20 cm. But it can be observed in the simulations that

the size of the transition zone between the apex and the thin

film, given by L5,/s becomes very large compared to the

tube radius r at high Reynolds numbers. As an example, we

have plotted on Fig. 7 the profiles obtained for F567 670.

We observe that, contrary to the F50 case ~Fig. 5!, the

bubble is highly deformed for Ca>0.01. In Fig. 8, we have

plotted this length L of the transition zone, scaled by r, ver-

sus the capillary number. We observe that as long as inertia

remains negligible, the bubble length is small compared to

its width. But when inertia becomes important ~Re.1000!,
the bubble length grows and may reach about 10 cm.

V. CONCLUDING REMARKS

We presented an extension of the classical axisymmetric

Bretherton theory, including weak inertial effects, based on a

regular perturbation method. By numerical integration of the

film profile and looking for the maximum value of the de-

posited film thickness allowing a matching with a spherical

cap, a velocity dependence of this thickness is obtained and,

for liquids of low viscosity, a thickening due to inertia is

observed. The agreement between these numerical results

and the experimental results up to moderate Reynolds num-

bers ~Re,1000! is quite good. This thickening is not what is

reported by Giavedoni and Saita.9 They report a slight thin-

ning due to inertia for Reynolds numbers up to 70. We in-

deed retrieve this result when looking at low Reynolds or F

numbers, as shown on Fig. 9 where E, the film thickness

scaled by r, is plotted versus the number F for different

capillary numbers. In particular, it can be noticed that this

thinning, which may attain 20% for Ca51, is maximum for

Re around 100. This could explain why the last experimental

points by Taylor are slightly under the theoretical curve in

Fig. 4. The values of F for the experiments he performed at

a capillary number greater than one may be evaluated at

around 0.5 ~glycerol and tube radius of 1.5 mm!. In Fig. 9, it

can be seen that this leads to a correction of 6% for Ca51.

Finally, some points remain to be investigated. The

thickness numerically obtained is a maximum thickness and

it is not clear why it is this thickness which gives good

correspondence with the experimental values.

FIG. 7. From left to right: bubble shapes for F567 670 and Ca50.001,

0.01, 0.1, and 1.

FIG. 8. Size of the transition zone scaled by r vs Ca. Black line: F50.

Dashed and dotted line: F519 330. Dashed line: F567 670.

FIG. 9. Maximum deposited thickness ~scaled by r! E vs F for three capil-

lary numbers. The circles indicates Re51000.
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Another remaining issue is the description of the rapid

draining of capillaries, for Reynolds numbers higher than

1000. For the present problem, a finite Reynolds numbers

theory, like the numerical theory by Heil,11 is necessary.
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