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1 Introduction

Three-dimensional effective theories arising from M-theory on eight-dimensional compact

manifolds are of both conceptual as well as phenomenological interest. For example M-

theory backgrounds that admit a torus fibration allow a lift of the three-dimensional

theories to four dimensions [1] that can be phenomenologically compelling. The four-

dimensional theories are minimally supersymmetric admitting four supercharges if the

three-dimensional effective theories are N = 2 supersymmetric. With this motivation in

mind, we will study in this work a general class of M-theory reductions and argue that they

are compatible with N = 2 supersymmetry. More precisely, we analyse the perturbations

of warped solutions with an eight-dimensional compact internal manifold and background

fluxes.

The background solutions of interest have first been considered in [2]. At leading order

the background is simply a direct product of three-dimensional Minkowski space and a

Calabi-Yau fourfold without background fluxes. When including background fluxes and all

relevant higher-derivative terms it was shown that the internal background is conformally

Kähler with vanishing first Chern class, but that the metric is non-Ricci-flat even when

allowing for a conformal rescaling including the warp factor [3, 4]. A complete check

of supersymmetry at this order of derivatives is still missing. However, using a proposed

correction the eleven-dimensional gravitino variations based on [5, 6] it was shown in [4] that

supersymmetry can be preserved by this background. The fluctuations of this solution were

then studied in [7] and their three-dimensional effective action was derived by dimensional
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reduction. More precisely, a finite number of Kähler deformations of the metric and vector

deformations of the M-theory three-form were included when reducing the leading eleven-

dimensional supergravity action of [8] corrected by the terms fourth order in the Riemann

curvature [9–15], and the higher-derivative terms quadratic in the M-theory three-form [16].

The resulting effective action was given to quadratic order in the scale parameter α ∝ ℓ3M ,

where ℓM is the eleven-dimensional Planck length. The present work is a continuation of [7],

which discusses in more detail the scalar potential and the supersymmetry properties of

the three-dimensional effective theory.

In reference [7] it was shown that the number of Kähler deformations and vector zero

modes are still given by the dimension of the second cohomology of the compact manifold.

While the Kaluza-Klein reduction is originally no longer performed by an expansion into

harmonic forms of the underlying Calabi-Yau geometry, it was shown that all corrections,

associated with these alternative fluctuations, drop from the effective action. The kinetic

terms for the deformations and vectors in the three-dimensional effective theory were writ-

ten in terms of a single higher-curvature building block Zmm̄nn̄ = 1
4!(ǫ8ǫ8R

3)mm̄nn̄, where R

is the internal Riemann tensor in the underlying Calabi-Yau metric.1 Furthermore, in [7]

the warp-factor was fully included in the reduction. It was shown that the effective action

contains integrals depending on the bare warp-factor and its first derivatives with respect

to the Kähler structure deformations. Remarkably, these derivative couplings only appear

through covariant derivatives under a moduli dependent scaling symmetry under which the

Kähler structure deformations and the warp-factor transform. The classical leading order

three-dimensional N = 2 theory obtained from M-theory on a Calabi-Yau fourfold with

background fluxes was first found in [18, 19], while recent derivations of N = 1 effective

theories arising from M-theory flux compactifications can be found in [20–22]. Let us note

that previous works on warped compactifications of M-theory and Type IIB include [23–

33]. Our analysis of the N = 2 supergravity data also extends the works [34–36], which

presented a partial reduction from eleven to three dimensions including some of the rel-

evant higher-derivative terms. Recent interesting results on dimensional reductions with

higher-derivative terms can also be found in [37, 38].

In a first step, and as completion of the results of [7], we derive the scalar potential

for the Kähler structure deformations by dimensional reduction. Interestingly, reducing

the higher-curvature terms on the leading order Calabi-Yau background it appears that

they become massive with a coupling purely depending on the geometry. However, we will

show that these mass terms are precisely cancelled by the higher-order corrections in the

solution arising as a back-reaction effect. The remaining scalar potential is only induced

by background fluxes as in [19]. This gives a further test that the included fluctuations are

indeed the relevant light degrees of freedom and highlights the interplay from back-reaction

effects in the solution and the corrections to the effective theory.

In order to reveal the supersymmetry properties of the three-dimensional effective ac-

tion we discuss its promotion into the standardN = 2 form. In three space-time dimensions

massless vectors are dual to scalars and the dynamics of the light modes therefore should be

1The equivalent quantity on a Calabi-Yau threefold was found to be important in [17].
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describable by a Kähler potential and a set of complex coordinates. We study the order by

order expansion of the Kähler potential and complex coordinates in the Kähler structure

fluctuations. The coefficients are deduced by comparison with the dimensionally reduced

action. We infer compatibility with N = 2 supersymmetry and argue that a no-scale condi-

tion can be implemented. Since the dimensional reduction only includes the leading-order

terms in the fluctuations we are not able to completely fix all coefficients by the comparison

alone. The fundamental ‘all-order’ expression, as it is known for the classical reduction

without higher-curvature terms [18, 19], turns out to be even more difficult to find. We

argue that this problem lies in fixing the complex coordinates and should be approached

by introducing divisor integrals. These integrals should be matched with the actions of

M5-branes wrapped on divisors. We make steps towards finding an all order expression for

the complex coordinates and Kähler potential. An intriguing interplay between variations

of warped divisor integrals and higher-curvature terms via the warp-factor equation allows

the compatibility with the dimensional reduction to be shown. As a byproduct this suggests

that the M5-brane action should receive higher-curvature corrections that parametrise the

non-harmonicity of the fourth Chern-form of the background geometry.

The paper is organised as follows. In section 2 we recall the background solutions,

introduce an appropriate set of fluctuations, and review the dimensionally reduced effective

action following [7]. In addition, we analyse the scalar potential and comment on a scaling

symmetry of the effective action. The N = 2 supersymmetric structure and the no-

scale condition are discussed in section 3. We derive the Kähler potential and complex

coordinates as an expansion in the fluctuations and later propose a definition using divisor

integrals.

2 Dimensional reduction of the M-theory action

In this section we first review the background solution of eleven-dimensional supergravity

including higher-derivative terms following [3, 4]. We then introduce the variations of the

solutions considered in [7] and show that at order α2 they only admit a scalar potential due

to background fluxes. We recall the complete three-dimensional effective action including

all order α2-terms following [7] and discuss its various building blocks and symmetries.

2.1 Higher-order background solution

To begin with we first review the warped solutions following [3, 4]. These backgrounds sat-

isfy the eleven-dimensional field equations to order α2 =
(4πκ2

11)
2
3

(2π)432213
. The eleven-dimensional

metric in this background takes the form

dŝ2 = eα
2Φ(e−2α2W ηµνdx

µdxν + 2eα
2W ǧmn̄dy

mdyn̄) +O(α3), (2.1)

where ηµν is the three-dimensional Minkowski metric and

ǧmn̄ = gmn̄ + α2g(2)

mn̄ +O(α3) . (2.2)

The internal compact manifold will be denoted by Y4 and Φ and W are scalar functions

on this space. W is the warp-factor and is constrained by a differential equation (2.9). For
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simplicity, and in contrast to [4, 7], we will not always indicate the α-order at the symbol,

i.e. we write Φ ≡ Φ(2) and W ≡ W (2). Furthermore, we will use gmn̄ ≡ g(0)

mn̄ to denote

the zeroth-order metric. All quantities, such as higher-curvature terms on Y4, are always

evaluated in this zeroth-order metric gmn̄ unless indicated explicitly. This will simplify

the notation compared to [4, 7]. For example, Φ represents an eleven-dimensional Weyl

rescaling and is given in terms of the lowest order metric gmn̄ as

Φ = −
512

3
Z , Z = ∗(J ∧ c3) , (2.3)

where ∗ is the Hodge-star on Y4 in the metric gmn̄, J is the Kähler form built from gmn̄

and c3 is the third Chern form built from gmn̄ as

c3 = −
i

3
Rm

n ∧Rn
r ∧Rr

s . (2.4)

In this expression we have used the definition of the two-form Rm
n that is built from the

Riemann tensor as Rr
s = Rmn̄r

sdymdyn̄.

In order to give the expressions (2.2) and (2.3) we note that at zeroth order in α the

background is a direct product and gmn̄ is a Ricci flat metric on a Calabi-Yau fourfold. We

therefore can introduce complex indices, which here and in the following always refer to the

zeroth order complex structure on the internal manifold. On a Calabi-Yau fourfold there

exists a nowhere vanishing covariantly constant Kähler form J and holomorphic (4, 0)-form

Ω satisfying

dJ = dΩ = 0 . (2.5)

In what follows we will work in conventions in which the internal space indices are raised

and lowered with the lowest order internal space metric gmn̄. At second order in α the

metric is corrected by g(2)

mn̄ in (2.2). This is constrained by the higher-derivative Einstein

equations that are solved by

g(2)

mn̄ = 768∂m∂̄n̄F̃ , F̃ = ∗(J ∧ J ∧ F4) . (2.6)

Here F4 is a four-form parameterising the non-harmonic part of the third Chern-from.

Since c3 is closed on a Kähler manifold we may write

c3 = Hc3 + i∂∂̄F4 , (2.7)

where H indicates the projection to the harmonic part associated with the metric gmn̄.

The expression (2.6) implies that the metric ǧmn̄ introduced in (2.2) is still Kähler and

that the internal part of the eleven-dimensional metric (2.1) is conformally Kähler.

The background also includes a flux for the four-form given by

Ĝmn̄rs̄ = αGmn̄rs̄ +O(α3) , Ĝmnrs = αGmnrs +O(α3) ,

Ĝµνρm = ǫµνρ∂me−3α2W +O(α3) . (2.8)

In order that the eleven-dimensional field equations are solved to order α2 by this back-

ground the flux G must be self-dual in the lowest-order metric gmn̄. This condition allows
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(2, 2) and (4, 0) + (0, 4) components of the flux with respect to the lowest order complex

structure. The profile of the warp-factor W depends both on the background flux G and

the higher-curvature terms through the equation

d†de3α
2W ∗8 1− α2Q8 +O(α3) = 0 , (2.9)

where

Q8 = −
1

2
G ∧G− 32213α2X8 = −

1

2
G ∧G+ 3072 c4 . (2.10)

In this expression c4 is the fourth Chern-form evaluated in the metric gmn̄ given by

c4 =
1

8
(Rm

nRn
mRr

sRs
r − 2Rm

nRn
rRr

sRs
m) . (2.11)

Asserting that Y4 is compact, the warp-factor equation (2.9) implies the global consistency

condition
1

32214

∫

Y4

G ∧G =
χ(Y4)

24
, (2.12)

where χ(Y4) = −4!
∫

Y4
X8 =

∫

Y4
c4 is the Euler number of Y4. This implies that, by using

the self-duality of G, the higher-derivative terms cannot be consistently ignored if one

allows for a background flux.2

Supersymmetry of the solution (2.1), (2.8) has not been demonstrated to order α2.

This can be traced back to the fact that the supersymmetry variations of the fermions

have not been derived to this order. In [4] a proposal was made for the gravitino variations

including order α2 terms based on [5, 6], and supersymmetry was successfully checked.

Asserting that the gravitino variations, as the ones proposed in [4], are unchanged at linear

order in α, then the flux G satisfies

Gmnrs = 0 , (2.13)

i.e. its (4, 0) component vanishes, and respects the primitivity condition

G ∧ J = 0 . (2.14)

In this work we will provide further evidence that the solution preserves supersymme-

try. We derive the three-dimensional action and demonstrate compatibility with three-

dimensional N = 2 supersymmetry. Furthermore, we show that the scalar potential van-

ishes to order α2 when imposing (2.13) and (2.14) .

2.2 Considered variations of the background solution

Having reviewed the background solution in subsection 2.1, we now include a well-defined

set of variations around this vacuum and recall the derivation of their effective action.

Firstly, we will include vectors Ai that arise in perturbations of the M-theory three-

form Ĉ. These correspond to extra terms in the expansion of Ĝ of the form

δĜ = F i ∧ ω(v)

i , (2.15)

2The numerical factor in (2.12) can be attributed to our normalisation of G with α and can be removed

when moving to quantised fluxes Gflux = 1

3 26
√

2
G.
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where F i = dAi are the field strengths of Ai, and ω(v)

i are two-forms on the internal

manifold. Importantly, it was argued in [7] that in the expansion ω(v)

i = ω(0)

i
(v) + α2ω(2)

i
(v)

only the harmonic part of ω(v)

i contributes in the effective action. We may pick ω(0)

i
(v) to be

harmonic and drop ω(2)

i
(v). This implies that ω(v)

i can be chosen to be harmonic (1, 1)-forms

and one has i = 1, . . . , dim(H1,1(Y4)), where H1,1(Y4) is the (1, 1)-form cohomology of Y4
whose dimension is independent of the metric chosen on Y4.

Secondly, one can analyse the Kähler structure deformations of the conformally Kähler

metric in (2.1). We introduce variations

δgmn̄ = iδvi ω(s)

imn̄ , (2.16)

where gmn̄ is the Kähler metric given in (2.2). The δvi correspond to scalars in the three-

dimensional effective theory, while the ω(s)

imn̄ is a set of two-forms on Y4 chosen to ensure that

the Kähler condition remains to be satisfied. Remarkably, expanding ω(s)

i = ω(0)

i
(s)+α2ω(2)

i
(s)

it was again shown in [7] that only the harmonic part of ω(s)

i contributes in the effective

action. We therefore drop ω(2)

i
(s) and chose ω(0)

i
(s) to be the same harmonic (1, 1)-forms as

in (2.15) with i = 1, . . . , dim(H1,1(Y4)), i.e. we set

ω(0)

i
(s) = ω(0)

i
(v) = ωi , (2.17)

where ωi are the harmonic (1, 1)-forms in the Ricci-flat zeroth-order metric gmn̄. In the

following it turns out to be convenient to define scalars vi containing the background value

of gmn̄ by setting

gmn̄ + δgmn̄ = iviωimn̄ . (2.18)

When discussing Kähler structure deformations one has to carefully vary the complete

background solution. In particular, all metric dependent quantities, such as the scalar

function Z introduced in (2.3), vary non-trivially. The second order corrections to the

background turn out to be crucial when determining the mass of the fields δvi. Recall that

in general the primitivity condition (2.14) is not preserved by all δvi. This implies that one

expects a scalar potential depending on the flux G as studied in the Calabi-Yau fourfold

reductions with fluxes in [18, 19]. It could, moreover, be the case that the higher-curvature

terms induce additional potential terms. We will show in the next subsection that this

is not the case when including α2 corrections both in the background solution and in the

eleven-dimensional action.

2.3 Scalar potential

In this subsection we discuss the derivation of the scalar potential for the Kähler structure

fluctuation δvi introduced in (2.16). As already pointed out, we expect a flux-induced

scalar potential for all fluctuations that do not respect the primitivity condition (2.14).

To begin with we consider the terms containing Ĉ without derivative. Considering the

pure three-dimensional space-time part for Ĉ one easily sees

−

∫
(

1

6
Ĉ ∧ Ĝ ∧ Ĝ+ 32213Ĉ ∧ X̂8

)∣

∣

∣

∣

pot

= 0 , (2.19)
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which can be traced back to the fact that this combination is proportional to the tadpole

constraint (2.12). A pure flux-induced potential term arises from the reduction

−

∫

1

2
Ĝ ∧ ∗̂Ĝ

∣

∣

∣

∣

pot

= −α2

∫

M3

∗31

∫

Y4

1

2
G ∧ ∗′G , (2.20)

where ∗′ is the Hodge star of the perturbed internal metric (2.18). In order to derive the full

flux-induced potential, however, we need to also dimensionally reduce the higher-curvature

terms. Inserting the fluctuated ansatz into the R̂4-corrections to the eleven-dimensional

action we find
∫

t̂8t̂8R̂
4∗̂1 =

∫

M3

∗31

∫

Y4

(

1536 c4 − 768 δviδvj(∇a∇
aZ)ωimn̄ωi

n̄m ∗ 1
)

−

∫

1

24
ǫ̂11ǫ̂11R̂

4∗̂1 =

∫

M3

∗31

∫

Y4

1536 c4 . (2.21)

We thus encounter the integral over the forth Chern-form
∫

Y4
c4 = χ(Y4) and (2.12) can be

used to replace these terms with a flux-dependent contribution proportional to
∫

Y4
G ∧G.

Furthermore, there appears to be an additional mass term for the fluctuations δvi involving

the higher-curvature invariant Z. However, we still need to dimensional reduce the zeroth

order action inserting the α2-corrected background solution. Performing this reduction one

finds ∫

R̂∗̂1 = α2

∫

M3

∗31

∫

Y4

768 δviδvj(∇a∇
aZ)ωimn̄ωi

n̄m ∗ 1 , (2.22)

which precisely cancels the Z-dependent mass-term arising from the higher-curvature re-

duction in (2.21).

In summary, adding all terms (2.19)–(2.22) one finds the scalar potential term

Spot = −
α2

4κ211

∫

M3

∗31

∫

Y4

1

2

(

G ∧ ∗′G−G ∧G
)

. (2.23)

This term has to be still Weyl-rescaled to bring the action into the three-dimensional

Einstein frame. The rescaled result will be given in (2.26). As expected one can check that

the scalar potential vanishes for primitive (2, 2)-fluxes, i.e. for all (2, 2)-fluxes satisfying

Gmn̄ρs̄J
′r̄s = 0. This condition generically fixes a number of deformations δvi in the

vacuum. Note that this is the only effect stabilising moduli at order α2 in our setting.

2.4 Three-dimensional effective action

Having discussed the scalar potential, we now recall the complete three-dimensional effec-

tive action for the fluctuations δvi and vectors Ai following [7]. It was shown in this work

that it takes the remarkably simple form

κ211Seff = Skin + SCS + Spot , (2.24)

with kinetic terms given by

Skin =

∫

M3

(

1

2
R ∗ 1−

1

2
(GT

ij + V−2
T KT

i K
T
j )Dvi ∧ ∗Dvj −

1

2
V2
TG

T
ijF

i ∧ ∗F j

)

, (2.25)
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and flux-induced Chern-Simons terms and scalar potential given by

SCS =

∫

M3

1

2
ΘijA

i ∧ F i , Spot = −α2

∫

M3

∗31

∫

Y4

1

8V3
0

(

G ∧ ∗′G−G ∧G
)

. (2.26)

The Chern-Simons terms are dependent on the fluxes via Θij = α
2

∫

Y4
G ∧ ωi ∧ ωj . In the

following we introduce the remaining coefficient functions appearing in (2.24).

To begin with, as in the leading order reduction, we use the quadruple intersection

numbers Kijkl =
∫

Y4
ωi ∧ ωj ∧ ωk ∧ ωl to define

V =
1

4!
Kijklv

ivjvkvl , Ki =
1

3!
Kijklv

jvkvl , Kij =
1

2
Kijklv

kvl Kijk = Kijklv
l .

(2.27)

Here we have used the fully fluctuated vi defined in (2.18). In the background they take

the value vi0. In this case we write, for example, V as V0 and Ki as K0
i . V0 is simply the

background zeroth-order volume of Y4 also given by V0 =
∫

Y4
∗1.

Starting with the classical couplings, one can next include the warp-factor. It turns

out to be convenient to define the warped volume and the warped metric as

VW =

∫

Y4

e3α
2W ∗ 1 , GW

ij =
1

2VW

∫

Y4

e3α
2Wωi ∧ ∗ωj . (2.28)

The dimensionally reduced action also contains the first derivatives of the warp-factor with

respect to the moduli vi. They appear only through a covariant derivative

Dvi = dvi + α2 1

V0
dvj vi0

∫

Y4

∂vjW ∗ 1 . (2.29)

The significance of this fact will be discussed in detail in subsection 2.5, where we will recall

the invariance of the action under a moduli-dependent scaling symmetry. Finally, in order

to present to full result (2.24) we have to include the corrections due to higher-curvature

terms. We first define

Zmm̄nn̄ =
1

4!
ǫmm̄m1m̄1m2m̄2m3m̄3ǫnn̄n1n̄1n2n̄2n3n̄3R

m̄1m1n̄1n1Rm̄2m2n̄2n2Rm̄3m3n̄3n3 . (2.30)

This tensor satisfies the identities

Zmm̄nn̄ = Znm̄mn̄ = Zmn̄nm̄ , ∇mZmm̄nn̄ = ∇m̄Zmm̄nn̄ = 0 , (2.31)

and is related to the third and fourth Chern-form c3, c4 as

Zmm̄ = i2Zmm̄n
n =

1

2
(∗c3)mm̄ , Z = i2Zm

m = ∗(J ∧ c3) ,

∗(c3 ∧ ωi) = −2Zmn̄ωi
n̄m , Zmm̄nn̄R

m̄mn̄n = ∗c4 , (2.32)

with Z already given in (2.3).
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The tensor Zmn̄rs̄ is the basic building block to display the corrected metric GT
ij , the

coupling KT
i , and the volume VT . Explicitly they take the form

GT
ij = GW

ij + 256α2 1

V2
0

∫

Y4

Z ∗ 1

∫

Y4

ωimn̄ω
n̄m
j ∗ 1

−256α2 1

V0

∫

Y4

[

Zωimn̄ω
n̄m
j + 12Zmn̄rs̄ω

n̄m
j ωs̄r

i

]

∗ 1 ,

KT
i = K0

i + α2

∫

Y4

[

K0
i

V0
(3W − 128Z) ∗ 1− 1536Zmn̄ω

n̄m
i ∗ 1

]

,

VT = VW + 256α2

∫

Y4

Z ∗ 1 , (2.33)

where all quantities are evaluated in the background vi0. The coefficients in the expressions

for GT
ij ,K

T
i , and VT first appear to be unrelated. However, they are in fact precisely taking

values so as to ensure the identity

(GT
ij + V−2

T KT
i K

T
j ) = GT

ab

(

δi
a −

1

V0
va0K

0
i

)(

δj
b −

1

V0
vb0K

0
j

)

, (2.34)

which holds in the background vi0. As we will demonstrate in the next section, this identity

is one of the crucial ingredients to ensure supersymmetry of the three-dimensional effective

action.

2.5 Warp-factor scaling symmetry and integration

In this subsection we will have a closer look at the couplings in (2.24). In particular, it

was observed in [7] that the three-dimensional effective action permits a scaling symmetry

involving the rescaling of the warp-factor. More precisely, the action turns out to be

invariant under the symmetry

W → W + Λ , vi → e−α2Λvi . (2.35)

for any scalar function Λ = Λ(vi) that can be space-time dependent. The scalars vi in (2.24)

therefore have to appear with a covariant derivative (2.29), which can be extended to

include the fluctuations by writing

Dvi = dvi + α2Wjdv
j vi , Wj =

1

V

∫

Y4

∂jW ∗ 1 . (2.36)

It is conceivable that this scaling invariance persists beyond the α-order testable in the

current reduction. It is also interesting to note that one can introduce a potential W for

the connection in (2.36) as

Wj = ∂j

(

W

V

)

, W(vi) =
1

4!

∫

Y4

WJ4 , (2.37)

where J = viωi contains the fluctuated Kähler moduli.
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The scaling symmetry fixes a number of the warp-factor dependent terms in (2.24)

and one readily infers a potential W that appears in these couplings. However, there is

one contribution proportional to
∫

Y4
Wωi ∧ ωj ∧ J ∧ J that appears to be special. It arises

by expanding

GW
ij = −

1

2V
Kij +

1

2V2
KiKj −

3

4V

∫

Y4

Wωi ∧ ωj ∧ J ∧ J +
3

2V2
Kij

∫

W ∗ 1 , (2.38)

where we have used3

∗ ωi = −
1

2
ωi ∧ J ∧ J +

1

6V
KiJ

3 . (2.39)

At first, one might have suspected that all terms in (2.38) arise as derivatives of W as well.

However, evaluating4

∂j

∫

Wωi ∧ J3 = 3!KiWj + 3!
W

V
Kij , ∂jWi =

1

4!V

∫

Y4

(∂i∂jW )J4 , (2.40)

one infers that there is no term proportional to
∫

Wωi∧ωj∧J2. This is a first example of a

situation where one can connect couplings with zero and one index, but new structures arise

at the two-index level. We discuss similar issues arising in the higher-derivative sector next.

In order to integrate terms in the higher-derivative sector, one might want to start

with the scalar function

Z(vi) =
1

4!

∫

Y4

ZJ4 =

∫

Y4

J ∧ c3 . (2.41)

where we have used (2.32) and view Z as a function of the fluctuated moduli vi. It is then

straightforward to derive

Zi = ∂iZ =

∫

Y4

ωi ∧ c3 = −2

∫

Y4

Zmn̄ωi
n̄m ∗ 1 , (2.42)

where we again inserted (2.32). Note that when written with the Chern-form c3 it is

obvious that Zi is actually constant such that ∂jZi = 0. Thus, in complete analogy to the

warping terms, there appears to be no obvious potential that admits the two-index terms

∫

Y4

Zmn̄rs̄ω
n̄m
j ωs̄r

i ∗ 1 ,

∫

Y4

Zωi ∧ ωj ∧ J ∧ J , (2.43)

as derivatives. We will have to address precisely these obstacles when showing the super-

symmetry of the effective action in next section.

To close this section let us point out that the two terms in (2.43) are just part of a set

of higher derivative terms of the form

X
(r)
ijkl =

∫

Y4

ωi ∧Rm1m̄1 ∧Rm2m̄2 ∧Rm2m̄2 ω
n̄1n1
i ωn̄2n2

k ωn̄3n3
l (Y(r))

m1m̄1m2m̄2m3m̄3
n1n̄1n2n̄2n3n̄3

, (2.44)

3Note that this relation only holds for harmonic forms ωi.
4A simple way to show the first identity is to split the integral

∫
Wωi∧J

3 ∝ WKi, by using that ωi∧J
3

is harmonic.
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where the Y(r) are defined to encode all possible index contractions of mp with nq. The two

terms in (2.43) arise when contracting a particular set of X
(r)
ijkl with vk and vl. It would be

very interesting to study the properties of such X
(r)
ijkl. In particular, the variation of these

terms with the moduli vi might uncover interesting relations. Furthermore, it is worth

stressing that the terms X
(r)
ijkl including the contractions (2.43) depend on the chosen forms

ωi, i.e. not just on the class of ωi, for all appearing two-forms. In our study the ωi were

always harmonic, but it would be interesting to check if there are linear combinations of

the X
(r)
ijkl or its v

p contractions that only depend on the cohomology class of the two-forms.

3 Demonstrating the supersymmetric structure

In this section we determine the Kähler potential and complex coordinates compatible

with N = 2 supersymmetry in three dimensions. Our starting point will be the three-

dimensional effective action (2.24) obtained by dimensional reduction. We discuss its su-

persymmetric structure both in the frame when working with vectors Ai and in the dual

frame when the vectors are replaced by scalars ρi.

3.1 Comparing the reduction result with N = 2 supergravity

It turns out to be convenient to first work with three-dimensional vector multiplets with

bosonic fields (Li, Ai) and only later switch to chiral multiplets with complex scalars Ti.

The kinetic terms of an ungauged N = 2 supergravity theory can be written as

Skin =

∫

M3

(

1

2
R ∗ 1 +

1

4
K̃LiLjdLi ∧ ∗dLj +

1

4
K̃LiLjF i ∧ ∗F j

)

. (3.1)

In this expression K̃LiLj can be determined from a so-called kinetic potential K̃(L) via

K̃LiLj = ∂Li∂LjK̃. Dualising the vector Ai in the vector multiplet one can translate the

three-dimensional theory into an action for complex scalars Ti with kinetic terms given by

a Kähler potential K(T, T̄ ). The action then takes the form

Skin =

∫

M3

(

1

2
R ∗ 1−KTiT̄ j

dTi ∧ ∗dT̄ j

)

, (3.2)

where KTiT̄ j
= ∂Ti

∂T̄ j
K is the Kähler metric. Note that ReTi, K and Li, K̃ are related

by a Legendre transform as

Ti = K̃Li + iρi , K = K̃ −
1

2
(Ti + T̄ i)L

i , (3.3)

where ρi is the three-dimensional scalar dual to the vector Ai. One can now straightfor-

wardly derive that KTiT̄ j
= −1

4K̃
LiLj

, which uses the inverse of K̃LiLj . Note that K is

independent of the scalar ρi and thus a function K(ReTi). It is useful to recall the inverse

transformation

Li = −2KTi
, (3.4)
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where KTi
= ∂Ti

K. The theory formulated in the Ti coordinates can admit a scalar

potential of the form

Spot = −

∫

M3

(

KTiT̄ j∂Ti
T ∂T̄ j

T − T 2
)

∗ 1 + eK
(

KTiT̄ jDTi
WDTj

W − 4|W 2|) ∗ 1 , (3.5)

where KTiT̄ j is the inverse of the Kähler metric KTiT̄ j
. Here T is a real function of the fields

Ti, while W is a holomorphic superpotential in the Ti. The latter transforms non-trivially

under Kähler transformations and therefore appears with the Kähler covariant derivative

DTi
W = ∂Ti

W +KTi
W .

To read off K̃LiLj we compare the action (3.1) with the result from the dimensional

reduction (2.24). We first read off the coefficient of the F i ∧ ∗F j term and identify

K̃LiLj

∣

∣ = −
1

2
V2
TG

T
ij . (3.6)

Here we have used the notation f(vi)| = f(vi0), i.e. the vertical dash denotes evaluation

in the background setting all fluctuations δvi = 0. Supersymmetry implies that for the

correct definition of Li, this metric has to match the one in front of dLi ∧ ∗dLj . Applied

to (2.24) this implies the relation

V2
TG

T
ij = (GT

cd + V−2
T KT

c K
T
d )(δ

c
a + vc0W

0
a)(δ

d
c + vd0W

0
b )

∂va

∂Li

∣

∣

∣

∣

∂vb

∂Lj

∣

∣

∣

∣

, (3.7)

where W0
a = Wa| is defined in (2.36) and evaluating in the background. Then using (2.34)

we find that

∂jL
i| ≡

∂Li

∂vj

∣

∣

∣

∣

=
1

VT

(

δik −
vi0
V0

K0
k

)

(

δkj + vk0W
0
a

)

, (3.8)

where as above we abbreviate derivatives with respect to vi as ∂i ≡
∂
∂vi

. It turns out to be

complicated to integrate this condition. This can be traced back to the fact that there is an

evaluation and, as we discuss below, the fundamental objects to define Li itself might be

more involved. Nevertheless, we can already make some interesting observations. Firstly,

the higher-curvature corrections only appear through VT in (3.8). One suspects that this

can only be true in the background. In fact, we might imagine that ∂jL
i contains a term

∂jL
i ⊃ vi

∫

Y4

[

Zmn̄ω
n̄m
j − 2Zmn̄rs̄ω

n̄m
j ωs̄r

k vk
]

∗(0) 1 , (3.9)

which trivially gives zero when evaluated at vi0. Terms of this type, however, will turn

out to be crucial in order to determine the underlying objects of the theory. In contrast,

artificially switching off the higher-curvature corrections in (3.8) one finds that the Li in

the presence of warping actually takes the simple form

Li =
vi

VW
, (3.10)

where VW is the warped volume (2.28) now evaluated as a function of the perturbed vi.
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As a second requirement of supersymmetry we note that (3.3) implies

∂iReTj

∣

∣ = K̃LjLk∂iL
k
∣

∣ . (3.11)

Using (3.6) and (3.8) we conclude that

∂j ReTi

∣

∣ = K0
ij + 3α2K0

i W
0
j +

3

2
α2

∫

Y4

Wωi ∧ ωj ∧ J ∧ J
∣

∣ (3.12)

−256α2 1

V0
K0

ijZ0 − 1536α2 1

V0
K0

jZ
0
i

+256α2

∫

Y4

Zωi ∧ ωj ∧ J ∧ J
∣

∣+ 6144α2

∫

Y4

ωi
n̄mωj

s̄rZmn̄rs̄ ∗ 1
∣

∣ ,

where K0
ij and K0

i are introduced in (2.27) and evaluated at vi0.

3.2 Kähler potential and coordinates as a δv expansion

In the previous section we have deduced the expressions for ∂Li/∂vj and ∂ ReTj/∂v
i when

evaluated in the background vi = vi0. We will next try to infer directly the coordinates Ti

and the Kähler potential K. In order to do this we view Ti and K as being given by an

expansion both in α and δvi by writing

ReTi = ReT (0)

i + α2ReT (2)

i , ReT (2)

i = ReT (2)

i |+∂j ReT
(2)

i |δvj+
1

2
∂j∂k ReT

(2)

i |δvjδvk ,

K = K(0) + α2K(2) , K(2) = K(2)|+ ∂jK
(2)|δvj +

1

2
∂j∂kK

(2)|δvjδvk .

(3.13)

In the following we derive as much information as possible about the coupling functions

that appear in this expansion by comparing to the reduction result.

As a first step, recall that the zeroth order result in α was already determined in [18, 19].

With our above expressions one can check that

K(0) = −3 log(V) , ReT (0)

i = Ki , (3.14)

where now V and Ki depend on the varying vi. At the next order in α we note that there

are only few objects with zero or one index i that are non-trivial in the background. More

precisely, one can write

K(2)| =
µ1

V0
Z0 +

µ2

V0
W0 , (3.15)

where Z and W are defined in (2.41) and (2.37). The constants µ1, µ2 are undetermined at

this point. Clearly, the constant shifts inK are unimportant for the derivation of the Kähler

metric. However, the form of (3.15) might hint towards the fully moduli-dependent form

of K. To fix the coefficients µ2 one might be inclined to use the scaling symmetry (2.35).

Together with the classical form ofK one then infers that an invariantK requires µ2 = −12.
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We can proceed similarly for the one-index quantities. We first make an ansatz using

all one-index building blocks we have encountered so far by setting

ReT (2)

i | = ν̃1Zi + ν̃2V0W
0
i + ν̃3K

0
i Z0 + ν̃4K

0
i W0 ,

∂iK
(2)| =

µ̃1

V0
Zi + µ̃2W

0
i +

µ̃3

V0
K0

i Z0 +
µ̃4

V0
K0

i W0 . (3.16)

The constant coefficients ν̃α, µ̃α are not determined at this point, since there are no direct

relations fixing the background values of Ti and ∂iK. To fix at least some of the coefficients

in (3.16) one can again use the symmetry (2.35). Note that Ti are proper complex coordi-

nates that should be invariant under (2.35). This suggests that ν̃4 = 3 and ν̃2 = 0, where

we have used that the leading contribution to Ti is of third power in vi as in (3.14). In

contrast, we note that K should be invariant under (2.35), while ∂iK
(2) should transform as

a derivative and therefore contain the connection Wi. Using again the leading form (3.14)

and the expression (2.37) one concludes µ̃2 = −12 and µ̃4 = 0.

In contrast to (3.15) and (3.16) the form of ∂j ReT
(0)

i | and ∂j ReT
(2)

i | are fully fixed

by the reduction and are trivially read off from (3.13) with

∂j ReT
(2)

i

∣

∣ = 3K0
i W

0
j +

3

2

∫

Y4

Wωi ∧ ωj ∧ J ∧ J
∣

∣− 256
1

V0
K0

ijZ0 − 1536
1

V0
K0

jZ
0
i

+256

∫

Y4

Zωi ∧ ωj ∧ J ∧ J
∣

∣+ 6144

∫

Y4

ωi
n̄mωj

s̄rZmn̄rs̄ ∗ 1
∣

∣ . (3.17)

All other remaining terms in the expansion (3.16) are also not fully determined by our

results obtained from the reduction. However, we can use (3.4) to show that the general

relation

Li = −2
∂K

∂Ti
= −

∂K

∂vj
∂vj

∂ ReTi
, (3.18)

together with (3.16) gives

L(2)i = −Kij∂jK
(2)| −

1

V
vjKik∂kT

(2)

j |+KjlmKilKkm∂kK
(2)|δvj

−Kik∂j∂kK
(2)|δvj −

1

V
Kik∂kT

(2)

j |δvj +
1

V2
Kjv

lKik∂kT
(2)

l |δvj

+
1

V
KjmnK

imK lnvk∂lT
(2)

k |δvj −
1

V
Kilvk∂j∂lT

(2)

k |δvj +O(δv2) . (3.19)

From this it is straightforward to evaluate ∂iL
j and compare the result with (3.8) in the

background vi = vi0. One then infers that the coefficients in (3.16) have to satisfy the

relation

∂i∂j ReT
(2)

k vk| − VKijkK
kl∂lK

(2)|+ V∂j∂kK
(2)|

= 9
1

V0
K0

ijW0 + 18V0W
0
(iK

0
j) + 12V0K

0
ijkK

kl
0 W0

l −
3

2

∫

Wωi ∧ ωj ∧ J ∧ J
∣

∣

− 256

∫

Zωi ∧ ωj ∧ J ∧ J
∣

∣+ 3072
1

V0
K0

(iZ
0
i) − 1536

1

V2
0

K0
i K

0
jZ0

− 6144

∫

ωi
n̄mωj

s̄rZmn̄rs̄ ∗ 1
∣

∣+ 1536K0
ijkK

kl
0 Z0

l . (3.20)
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Imposing these conditions then implies that we match the metric (3.6). Note that this

analysis can be carried out independent of any gauge fixing of the scaling symmetry (2.35).

Also note that our first-order analysis does neither uniquely fix the Kähler coordinates nor

the Kähler metric. This can be traced back to the fact that we performed the dimensional

reduction only to leading order in the fluctuations δvi.

In order to fix the coefficients in (3.16) further, one can try to impose conditions that

might hold also at the higher-derivative level. For example, one may suspect that a no-

scale condition holds even when including α-corrections to the action. In three space-time

dimensions such a condition reads

KTi
KTiT̄ jKT̄ j

= 4 . (3.21)

It ensures that in the scalar potential (3.5) the negative −4|W |2 term cancels for a super-

potential independent of Ti. Using (3.4) and KTiT̄ j = −4K̃LiLj one rewrites (3.21) as

LiK̃LiLjLj = −4 . (3.22)

In the background this expression can be evaluated by using (3.19) together with (3.17) to

yield the condition5

∂iK
(2)vi| = 2304

1

V0
Z0 − 12W0

i v
i
0 . (3.24)

Keeping in mind that we have few objects with zero or one index, one can use this con-

dition as a further motivation to make an ansatz for the Kähler potential and match the

coefficients. This will be considered in the following section.

3.3 Completing the Kähler potential and complex coordinates

In this final subsection we comment on the completion of the Kähler potential and complex

coordinates as a closed expression in Kähler deformations. Our goal is to replace the δvi-

expansion (3.16) with an appropriate ansatz hinting towards the underlying structure of

the higher-derivative reduction. It should be stressed that we are only able to fully justify

the leading terms. However, we will also discover an intriguing interplay between warping

effects and higher-curvature terms.

To begin with, let us propose an ansatz for the Kähler potential. We have noted

in (3.15) that there are only few objects without indices. Using the quantities introduced

in (2.37) and (2.41) we suggest

K = −3 log

(
∫

Y4

e4α
2W ∗ 1 + 256µα2

∫

Y4

Z ∗ 1

)

(3.25)

= −3 log(V + 256µα2Z + 4α2W +O(α4)) ,

5We note also that a similar set constraints ReTi ReTjG
ij | = L

i
L

j
G

−1
ij | = L

i ReTi| = 4 and

∂k(L
i ReTi)| = 0 can all be satisfied if we demand (3.24) as well as

ReT
(2)
i | = ∂iK

(2)| −
1

3
Ki∂jK

(2)
v
j |+ 12W0

i + 3K0
i W0 − 4

1

V0
K

0
i W

0
j v

j
0 + 256

1

V
K

0
i Z0 . (3.23)
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where the functions that appear are now viewed as being dependent on the fields vi. In this

expression we fixed the factor in front of W by the fact that K has to be invariant under

the symmetry (2.35). The factor in front of the Z term is not fixed a priori and we have

introduced the constant µ to capture this freedom. Let us stress that it is straightforward

to compute the vi derivatives of K as defined in (3.25). In particular, one finds

∂iK = −3
1

V
Ki + 768µα2 1

V
ZKi − 768µα2 1

V
Zi − 12α2Wi . (3.26)

Clearly, in order to compute the actual Kähler metric we also have to supplement an ansatz

for the complex coordinates Ti. The involved form of the Kähler metric determined from the

dimensional reduction (2.24) and the rather simple form of the Kähler potential (3.25) as a

function of the vi suggests that the Ti have to capture most of the non-trivial information

about the N = 2 system.

To get some intuitive information about Ti, we note that these coordinates are expected

to linearise the action of M5-brane instantons on divisors Di. In fact, as discussed in [39]

a holomorphic superpotential of the schematic form W ∝ e−Ti can be induced by such

instanton effects. This implies that the Ti are expected to be integrals over divisors Di.

We therefore suggest that they take the form

Ti =

∫

Di

(

1

3!
e3α

2WJ ∧ J ∧ J + 1536α2F6

)

+ iρi , (3.27)

where Di are h
1,1(Y4) divisors of Y4 that span the homology H2(Y4,R). The six-form F6 in

this expression is a function of degrees of freedom associated with the internal space metric

and will be responsible for the more complicated higher derivative structures (2.43). It is

constrained by a relation to the fourth Chern form c4 such that F6 determines the non

harmonic part of c4 as

c4 = Hc4 + i∂∂̄F6 . (3.28)

This is in analogy to the quantity F4 introduced for c3 in (2.7). Note that (3.28) leaves

the harmonic and exact part of F6 unfixed and we will discuss constraints on these pieces

in more detail below. The justification of the first term in ReTi is simpler. It captures

the warped volume of an M5-brane wrapped on Di. In fact, the power of the warp-factor

turns out to be appropriate to ensure invariance under the scaling symmetry (2.35), in

accord with the expectation that Ti is invariant under this symmetry. Remarkably, this

definition of the Kähler coordinates as Di integrals will help us to obtain the couplings
∫

e3α
2WJ ∧ J ∧ ωi ∧ ωj , which, as we stressed in subsection 2.5, cannot be obtained as vi-

derivatives of the considered Y4-integrals. Note that the following discussion of the warping

is inspired by [33]. Here we will adapt and extend the arguments of [33] and include the

higher-curvature pieces. Interestingly they turn out to complete the analysis in an elegant

and non-trivial fashion.

In order to evaluate the derivatives of Ti with respect to vi and to make contact with

the Kähler metric found in (2.24), we have to rewrite the integrals over Di into integrals

over Y4. Due to the appearance of the warp-factor and the non-closed form F6 in (3.27)

this is not straightforward. In particular, one cannot simply use Poincaré duality and write
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Ti as an integral over Y4 with inserted ωi. Of course, it is always possible to write Ti as a

Y4 integral when inserting a delta-current localised on Di, i.e.

ReTi =

∫

Y4

(

1

3!
e3α

2WJ ∧ J ∧ J + 1536α2F6

)

∧ δi , (3.29)

where δi is the (1,1)-form delta-current that restricts to the divisor Di. Appropriately

extending the notion of cohomology to include currents [40, 41], we can now ask how much

δi differs from the harmonic form ωi in the same class. In fact, any current δi is related to

the harmonic element of the same class ωi by a doubly exact piece as

δi = ωi + i∂∂̄λi . (3.30)

This equation should be viewed as relating currents. Importantly, as we assume Di and

hence δi to be vi-independent, the vi dependence of the harmonic form ωi and the current

λi has to cancel such that ∂jωi = −i∂∂̄∂jλi. Importantly, once we determine ∂j ReTj

we can express the result as Y4-integrals without invoking currents. We therefore need to

understand how each part of Ti varies under a change of moduli. This will also fix the

numerical factor in front of F6 in (3.27).

In order to take derivatives of Ti we first use the fact that Di and hence δi are inde-

pendent of the moduli vi, which implies

∂j ReTi =

∫

Y4

(

1

2
e3α

2Wωj ∧ J ∧ J +
1

2
α2∂jWJ ∧ J ∧ J + 1536α2∂jF6

)

∧ δi . (3.31)

We next claim that we can replace δi with ωi such that finally

∂j ReTi =
1

2

∫

Y4

e3α
2Wωi ∧ωj ∧ J ∧ J +

1

2
α2

∫

Y4

∂jWωi ∧ J ∧ J ∧ J +1536α2

∫

Y4

ωi ∧ ∂jF6 .

(3.32)

Note that by using (3.30) the two expressions (3.31) and (3.32) only differ by a term

involving ∂∂̄λi. By partial integration this term is proportional to
∫

Y4

λi∂∂̄

(

1

2
e3α

2Wωj ∧ J ∧ J +
1

2
α2∂jWJ ∧ J ∧ J + 1536α2∂jF6

)

=

∫

Y4

λi

(

1

2
∂∂̄(e3α

2W )ωj ∧ J ∧ J +
1

2
α2∂∂̄(∂jW )J ∧ J ∧ J + 1536α2∂∂̄∂jF6

)

.

(3.33)

It is now straightforward to see that the terms multiplying λi are simply the ∂j derivative

of the warp-factor equation (2.9). One first writes (2.9) as

d†de3α
2W ∗8 1− α2Q8 = −

1

3
i∂∂̄(e3α

2W ) ∧ J ∧ J ∧ J − α2Q8 . (3.34)

Then one takes the vj-derivative of (3.34) by using the fact that Q8 is given via (2.10)

and (3.28). The moduli dependence of Q8 only arises from the term involving F6, i.e. one

has ∂iQ8 = i3072∂∂̄∂iF6. Hence one finds exactly the terms in (3.33) such that this λi

dependent part of the Ti variation vanishes due to the warp-factor equation (2.9).
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The final expression (3.32) is written using (2.27) and (2.37) as

∂j ReTi =
1

2

∫

Y4

e3α
2Wωi ∧ ωj ∧ J ∧ J + 3α2KiWj + 1536α2

∫

Y4

ωi ∧ ∂jF6 . (3.35)

The Li coordinates are then computed using (3.18) by inserting (3.26) and (3.35). This

gives the result

Li =
vi

V
− α2 v

i

V2
(3W + 256µZ) + 1536α2K

ij

V

(

Zj −

∫

Y4

J ∧ ∂jF6

)

. (3.36)

It is then straightforward to derive

∂jL
i =

δij
V

−
viKj

V2
−

δij
V2

(3W + 256µZ)−
1

V
vi(3Wj + 256µZj) +

1

V3
Kjv

i(3W + 512µZ)

− α2 1

V
768µKimKknKmnjZk − α2 1

V2
0

768µKikKjZk

+ α2 1

V
1536KimKknKmnj

∫

Y4

J ∧ ∂kF6 + α2 1

V2
1536K−1ikKj

∫

Y4

J ∧ ∂kF6

− α2 1

V
1536K−1ik

∫

Y4

ωj ∧ ∂kF6 − α2 1

V
1536K−1ik

∫

Y4

J ∧ ∂j∂kF6 . (3.37)

This allows to determine the derivatives of F6 by comparing (3.8) and (3.13) with (3.37)

and (3.35). We find that

∫

Y4

ωi ∧ ∂jF6| = 4

∫

Y4

Zmn̄rs̄ωi
n̄mωj

s̄r ∗ 1 +
1

3!

∫

Y4

Zωi ∧ ωj ∧ J ∧ J −
Kij

3!V
Z −

1

V
KjZi

∫

Y4

J ∧ ∂i∂jF6| = −4

∫

Y4

Zmn̄rs̄ωi
n̄mωj

s̄r ∗ 1−
1

3!

∫

Y4

Zωi ∧ ωj ∧ J ∧ J

− µ
1

3!V
KijZ−(1−µ)

1

V2
KiKjZ+(2−µ)

1

V
K(iZj)+

1

2
(2−µ)KijkK

klZl ,

(3.38)

in order for the results to match. This implies that the Kähler potential (3.25) and coor-

dinates (3.27) yield the metric matching with the reduction result.

The result (3.38) still depends on the free parameter µ introduced in the Kähler po-

tential (3.25). Clearly, one expects that such a freedom is not fundamental, but rather due

to the fact that we are only able to partially check the result. A dimensional reduction

including fluctuations to higher order is likely fixing µ unambiguously. Alternatively, we

can impose the no-scale condition (3.21), which we presume persists at higher curvature

level. This implies that µ = 1.

Let us note that the definition contains two ambiguities. Firstly, we did not specify the

divisor basis Di spanning H2(Y4,R). This can be shifted by a boundary of a seven-chain

Γi without changing the class as

Di → Di + ∂Γi . (3.39)
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This would result in a different choice for the currents δi and λi in (3.30). The result is

a modification of the N = 2 coordinates Ti given in (3.29). However, as we have shown

above, only the harmonic representative of the class enters in the variation ∂jTi, while

λi drops out due to the warp factor equation. In other words, the transformation (3.39)

is actually a symmetry of the Kähler metric. Secondly, the constraint (3.28) is invariant

under shifts of F6 by six-forms η6, which get annihilated by the derivatives. In other words,

one might transform

F6 → F6 + η6 , ∂̄η6 = ∂η6 = 0 . (3.40)

Clearly, this transformation will in general not respect (3.38). These conditions, however,

constrain only the harmonic part of F6 and allow for the the symmetry

F6 → F6 + dη̃4 . (3.41)

It would be interesting to investigate the implication of the symmetries (3.39) and (3.41)

in greater detail. This is particularly interesting when including a superpotential explicitly

depending on the coordinates Ti.

The presence of the F6 term in (3.27) implies, by the above relationship between Ti

and the action of a probe M5-brane on Di, that higher-derivative corrections are relevant in

the M5-brane action. Corrections of this type are also required for gravitational anomaly

cancellation [42–44] for an M5-brane in the background of eleven-dimensional supergravity.

From this anomaly analysis additional metric dependent contributions to the M5-brane

action that are related to certain topological classes are expected, in a way similar to the

relationship between F6 and c4. In future work it would be interesting to see if this analysis

can be used to infer a more direct definition of the F6 part of the correction in (3.27) and

so prove the constraints (3.38) that are necessary in our analysis.

4 Conclusions

In this work we continued the study of the three-dimensional effective action obtained

form dimensionally reducing M-theory on eight-dimensional compact manifolds initiated

in [4, 7]. The background solutions contain a warped product of an internal manifold Y4 and

three-dimensional Minkowski space. The warp-factor is induced by non-trivial background

fluxes for the M-theory four-form field strength, but crucially contains contributions from

higher-curvature terms of the eleven-dimensional action. Global consistency requires these

to be included for compact internal manifolds. The required higher-curvature terms are

suppressed by an additional factor of α2 ∝ ℓ6M . Within an α-expansion we were able to

consistently include all required higher-derivative terms when determining the background

solution and performing the dimensional reduction. The resulting three-dimensional action

was already presented in [7]. In this analysis we have so far included the deformations of the

Kähler structure of the geometry and the vector modes from the M-theory three-form. Due

to the increasing computational complexity we performed the derivations only to leading

non-trivial order in the fluctuations of the Kähler structure. Nonetheless we were able to

identify key features of the effective action associated with warping and higher-derivative
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terms. One focus of this work was on demonstrating compatibility with the structure of a

three-dimensional N = 2 supergravity theory.

As a first result we have shown that the scalar potential is only induced by background

fluxes. Interestingly the back-reaction at order α2 on the background solution was crucial

to establish this result. Dimensionally reducing the relevant higher-curvature terms (2.21)

on a Calabi-Yau fourfold we have found a scalar potential for the Kähler deformations

purely induced by geometry. However, these terms cancel precisely with term from the

back-reacted metric and led to a confirmation of the flux-induced result of [19]. We stress

that this cancellation arises only due to the non-trivial eleven-dimensional Weyl rescaling

involving the scalar Z cubic in the Riemann curvature. This rescaling can be also performed

in eleven dimensions to modify the starting action before the dimensional reduction.

The main focus of this work was the study of the dimensionally reduced action with

respect to three-dimensional supersymmetry. We used the result of [7] and determined

the form of the N = 2 Kähler potential K and complex coordinates Ti. The findings

of [7] were only at lowest order in the fluctuations δvi, which suggested that we may first

determine K, Ti as a δvi-expansion. Already in this evaluation the main complication of

the dimensional reductions at higher-derivative level became apparent. At lowest order

in α it is straightforward to take the fluctuated result for K, Ti and ‘integrate’ it into a

closed expression depending on the Kähler form. It is well-known that in this case the

Kähler metric, the Kähler potential, and the coordinates Ti only depend on topological

information, namely the intersection numbers, of the manifold Y4. At order α2, however,

the result of the dimensional reduction contains couplings that are not topological and

‘integrating’ these couplings into closed expressions turned out to be challenging.

As a first example, we found that the three-dimensional action contains kinetic terms

involving the warp-factor W in the integral
∫

Y4
Wωi ∧ ωj ∧ J ∧ J . This integral is not

topological and depends on the actual forms ωi chosen to give its expression. Throughout

this work ωi were the h
1,1(Y4) harmonic representatives in the lowest order Ricci-flat metric.

We have argued that there is at least no obvious integral over Y4 with only one free-index

ωi that yields the above integral upon taking a vi derivative. Remarkably, at least for the

warp-factor terms, one can find a way around this problem by defining Ti to be given by

integrals over divisors Di. Our key observation was that the vi-derivatives of the warp-

factor equation allows us to write ∂jTi as Y4-integrals. Furthermore, this vj-variation of

Ti was argued to only depend on the homology class of the divisor Di and not the precise

representative. One might reinterpret this as a statement that one now has to consider not

only topological integrals, but integrals that are ‘semi-topological’ up to usage of the warp-

factor equation. We believe that a deeper understanding of this fact will shed more light

onto the proper treatment of effective actions computed in warped string compactifications.

Importantly, since the warp-factor equation also contains higher-curvature terms, we have

shown that the terms including the warp-factor and the higher-derivative terms cannot be

analysed independently.

The analysis of the higher-derivative terms turned out to be even more involved. Sim-

ilar to the warp-factor terms we encountered after dimensional reduction non-topological

metric-dependent integrals, such as
∫

Y4
Zωi ∧ ωj ∧ J ∧ J and

∫

Y4
ωi

n̄mωj
s̄rZmn̄rs̄ ∗ 1, that
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should arise from a Kähler potential. As a δvi expansion we have shown compatibility of

this metric with the existence of a Kähler potential and complex coordinates Ti. How-

ever, fully integrating these expressions to all orders in the fluctuations turned out to be

challenging. We proposed an expression for K and Ti in (3.25) and (3.27). Remarkably,

the form (3.27) of Ti is severely constraint by the warp-factor equation. It does, however,

contain the six-form F6, which is constrained by (3.28) and therefore contains information

about the non-harmonicity of the fourth Chern-form c4 in the Ricci-flat metric. The form

F6 should capture the higher-derivative terms in the three-dimensional action, but we were

not able to give its full definition including its moduli dependence. The equation (3.28)

allows for arbitrary shifts of F6 with harmonic six-forms. Such shifts will in general modify

Ti and cannot be a symmetry of the system. By matching with the result of the dimensional

reduction we have found that the definition of F6 has to satisfy (3.38). These conditions

constrain the harmonic part of F6. It would be of crucial importance to give an indepen-

dent definition of F6 satisfying (3.28) and (3.38). Our findings suggest already that there

is a lot of structure in the higher-derivative terms appearing in the effective theory.

An immediate extension of our analysis is the dimensional reduction to next order in

the fluctuations δvi, since it would help to further uncover the underlying higher-derivative

structures. While all four-dimensional couplings at the leading order in the δvi-fluctuations

can be written to depend only on the higher-curvature quantity Zmm̄nn̄ a preliminary

analysis to the next order suggests that other higher-curvature couplings are relevant. It

would therefore be interesting to classify the relevant building blocks in the future.

Let us close by mentioning a further direction that deserves investigation. The pre-

sented results only deal with a three-dimensional N = 2 effective action. A natural next

step is to also investigate the F-theory uplift of our findings to a four-dimensional N = 1

theory. This requires for the internal manifold Y4 to be elliptically fibered. Shirking the

fiber volume then yields the appearance of an extra circle. This limit is clearly complicated

and requires the inclusion of further states that are not present in supergravity. How-

ever, applied to our reduction results the complications are even more immediate. In fact,

it is an interesting open question how non-topological terms, for example including the

warp-factor, are lifted to four space-time dimensions.
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[6] H. Lü, C.N. Pope, K.S. Stelle and P.K. Townsend, String and M-theory deformations of

manifolds with special holonomy, JHEP 07 (2005) 075 [hep-th/0410176] [INSPIRE].

[7] T.W. Grimm, T.G. Pugh and M. Weissenbacher, The effective action of warped M-theory

reductions with higher derivative terms. Part I, arXiv:1412.5073 [INSPIRE].

[8] E. Cremmer, B. Julia and J. Scherk, Supergravity Theory in Eleven-Dimensions,

Phys. Lett. B 76 (1978) 409 [INSPIRE].

[9] M.J. Duff, J.T. Liu and R. Minasian, Eleven-dimensional origin of string-string duality: A

One loop test, Nucl. Phys. B 452 (1995) 261 [hep-th/9506126] [INSPIRE].

[10] M.B. Green and P. Vanhove, D instantons, strings and M-theory,

Phys. Lett. B 408 (1997) 122 [hep-th/9704145] [INSPIRE].

[11] M.B. Green, M. Gutperle and P. Vanhove, One loop in eleven-dimensions,

Phys. Lett. B 409 (1997) 177 [hep-th/9706175] [INSPIRE].

[12] E. Kiritsis and B. Pioline, On R4 threshold corrections in IIB string theory and (p, q)-string

instantons, Nucl. Phys. B 508 (1997) 509 [hep-th/9707018] [INSPIRE].

[13] J.G. Russo and A.A. Tseytlin, One loop four graviton amplitude in eleven-dimensional

supergravity, Nucl. Phys. B 508 (1997) 245 [hep-th/9707134] [INSPIRE].

[14] I. Antoniadis, S. Ferrara, R. Minasian and K.S. Narain, R4 couplings in M and type-II

theories on Calabi-Yau spaces, Nucl. Phys. B 507 (1997) 571 [hep-th/9707013] [INSPIRE].

[15] A.A. Tseytlin, R4 terms in 11 dimensions and conformal anomaly of (2, 0) theory,

Nucl. Phys. B 584 (2000) 233 [hep-th/0005072] [INSPIRE].

[16] J.T. Liu and R. Minasian, Higher-derivative couplings in string theory: dualities and the

B-field, Nucl. Phys. B 874 (2013) 413 [arXiv:1304.3137] [INSPIRE].

[17] S. Katmadas and R. Minasian, N = 2 higher-derivative couplings from strings,

JHEP 02 (2014) 093 [arXiv:1311.4797] [INSPIRE].

[18] M. Haack and J. Louis, Duality in heterotic vacua with four supercharges,

Nucl. Phys. B 575 (2000) 107 [hep-th/9912181] [INSPIRE].

[19] M. Haack and J. Louis, M theory compactified on Calabi-Yau fourfolds with background flux,

Phys. Lett. B 507 (2001) 296 [hep-th/0103068] [INSPIRE].

[20] F. Bonetti, T.W. Grimm and T.G. Pugh, Non-Supersymmetric F-theory Compactifications

on Spin(7) Manifolds, JHEP 01 (2014) 112 [arXiv:1307.5858] [INSPIRE].

– 22 –

http://dx.doi.org/10.1016/0550-3213(96)00172-1
http://arxiv.org/abs/hep-th/9602022
http://inspirehep.net/search?p=find+EPRINT+hep-th/9602022
http://dx.doi.org/10.1016/0550-3213(96)00367-7
http://arxiv.org/abs/hep-th/9605053
http://inspirehep.net/search?p=find+EPRINT+hep-th/9605053
http://dx.doi.org/10.1088/1126-6708/2001/07/038
http://arxiv.org/abs/hep-th/0107044
http://inspirehep.net/search?p=find+EPRINT+hep-th/0107044
http://dx.doi.org/10.1016/j.physletb.2015.02.047
http://arxiv.org/abs/1408.5136
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.5136
http://dx.doi.org/10.1088/1126-6708/2004/10/019
http://arxiv.org/abs/hep-th/0312002
http://inspirehep.net/search?p=find+EPRINT+hep-th/0312002
http://dx.doi.org/10.1088/1126-6708/2005/07/075
http://arxiv.org/abs/hep-th/0410176
http://inspirehep.net/search?p=find+EPRINT+hep-th/0410176
http://arxiv.org/abs/1412.5073
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.5073
http://dx.doi.org/10.1016/0370-2693(78)90894-8
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B76,409"
http://dx.doi.org/10.1016/0550-3213(95)00368-3
http://arxiv.org/abs/hep-th/9506126
http://inspirehep.net/search?p=find+EPRINT+hep-th/9506126
http://dx.doi.org/10.1016/S0370-2693(97)00785-5
http://arxiv.org/abs/hep-th/9704145
http://inspirehep.net/search?p=find+EPRINT+hep-th/9704145
http://dx.doi.org/10.1016/S0370-2693(97)00931-3
http://arxiv.org/abs/hep-th/9706175
http://inspirehep.net/search?p=find+EPRINT+hep-th/9706175
http://dx.doi.org/10.1016/S0550-3213(97)00645-7
http://arxiv.org/abs/hep-th/9707018
http://inspirehep.net/search?p=find+EPRINT+hep-th/9707018
http://dx.doi.org/10.1016/S0550-3213(97)00631-7
http://arxiv.org/abs/hep-th/9707134
http://inspirehep.net/search?p=find+EPRINT+hep-th/9707134
http://dx.doi.org/10.1016/S0550-3213(97)00572-5
http://arxiv.org/abs/hep-th/9707013
http://inspirehep.net/search?p=find+EPRINT+hep-th/9707013
http://dx.doi.org/10.1016/S0550-3213(00)00380-1
http://arxiv.org/abs/hep-th/0005072
http://inspirehep.net/search?p=find+EPRINT+hep-th/0005072
http://dx.doi.org/10.1016/j.nuclphysb.2013.06.002
http://arxiv.org/abs/1304.3137
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.3137
http://dx.doi.org/10.1007/JHEP02(2014)093
http://arxiv.org/abs/1311.4797
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.4797
http://dx.doi.org/10.1016/S0550-3213(00)00091-2
http://arxiv.org/abs/hep-th/9912181
http://inspirehep.net/search?p=find+EPRINT+hep-th/9912181
http://dx.doi.org/10.1016/S0370-2693(01)00464-6
http://arxiv.org/abs/hep-th/0103068
http://inspirehep.net/search?p=find+EPRINT+hep-th/0103068
http://dx.doi.org/10.1007/JHEP01(2014)112
http://arxiv.org/abs/1307.5858
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.5858


J
H
E
P
1
2
(
2
0
1
5
)
1
1
7

[21] D. Prins and D. Tsimpis, Type IIA supergravity and M-theory on manifolds with SU(4)

structure, Phys. Rev. D 89 (2014) 064030 [arXiv:1312.1692] [INSPIRE].

[22] D. Prins and D. Tsimpis, 3d N = 1 effective supergravity and F-theory from M-theory on

fourfolds, JHEP 09 (2015) 107 [arXiv:1506.07356] [INSPIRE].

[23] K. Dasgupta, G. Rajesh and S. Sethi, M theory, orientifolds and G-flux,

JHEP 08 (1999) 023 [hep-th/9908088] [INSPIRE].

[24] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string

compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

[25] S.B. Giddings and A. Maharana, Dynamics of warped compactifications and the shape of the

warped landscape, Phys. Rev. D 73 (2006) 126003 [hep-th/0507158] [INSPIRE].

[26] C.P. Burgess et al., Warped Supersymmetry Breaking, JHEP 04 (2008) 053

[hep-th/0610255] [INSPIRE].

[27] G. Shiu, G. Torroba, B. Underwood and M.R. Douglas, Dynamics of Warped Flux

Compactifications, JHEP 06 (2008) 024 [arXiv:0803.3068] [INSPIRE].

[28] M.R. Douglas and G. Torroba, Kinetic terms in warped compactifications,

JHEP 05 (2009) 013 [arXiv:0805.3700] [INSPIRE].

[29] L. Martucci, On moduli and effective theory of N = 1 warped flux compactifications,

JHEP 05 (2009) 027 [arXiv:0902.4031] [INSPIRE].

[30] B. Underwood, A Breathing Mode for Warped Compactifications,

Class. Quant. Grav. 28 (2011) 195013 [arXiv:1009.4200] [INSPIRE].

[31] T.W. Grimm, D. Klevers and M. Poretschkin, Fluxes and Warping for Gauge Couplings in

F-theory, JHEP 01 (2013) 023 [arXiv:1202.0285] [INSPIRE].

[32] A.R. Frey and J. Roberts, The Dimensional Reduction and Kähler Metric of Forms In Flux

and Warping, JHEP 10 (2013) 021 [arXiv:1308.0323] [INSPIRE].

[33] L. Martucci, Warping the Kähler potential of F-theory/IIB flux compactifications,

JHEP 03 (2015) 067 [arXiv:1411.2623] [INSPIRE].

[34] T.W. Grimm, R. Savelli and M. Weissenbacher, On α′ corrections in N = 1 F-theory

compactifications, Phys. Lett. B 725 (2013) 431 [arXiv:1303.3317] [INSPIRE].

[35] T.W. Grimm, J. Keitel, R. Savelli and M. Weissenbacher, From M-theory higher curvature

terms to α′ corrections in F-theory, arXiv:1312.1376 [INSPIRE].

[36] D. Junghans and G. Shiu, Brane curvature corrections to the N = 1 type-II/F-theory

effective action, JHEP 03 (2015) 107 [arXiv:1407.0019] [INSPIRE].

[37] D. Ciupke, J. Louis and A. Westphal, Higher-Derivative Supergravity and Moduli

Stabilization, JHEP 10 (2015) 094 [arXiv:1505.03092] [INSPIRE].

[38] R. Minasian, T.G. Pugh and R. Savelli, F-theory at order α′3, JHEP 10 (2015) 050

[arXiv:1506.06756] [INSPIRE].

[39] E. Witten, Nonperturbative superpotentials in string theory, Nucl. Phys. B 474 (1996) 343

[hep-th/9604030] [INSPIRE].

[40] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley and Sons, Inc.

(1978).

[41] R. Bott and L.W. Tu, Differential Forms In Algebraic Topology, Springer-Verlag (1982).

– 23 –

http://dx.doi.org/10.1103/PhysRevD.89.064030
http://arxiv.org/abs/1312.1692
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.1692
http://dx.doi.org/10.1007/JHEP09(2015)107
http://arxiv.org/abs/1506.07356
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.07356
http://dx.doi.org/10.1088/1126-6708/1999/08/023
http://arxiv.org/abs/hep-th/9908088
http://inspirehep.net/search?p=find+EPRINT+hep-th/9908088
http://dx.doi.org/10.1103/PhysRevD.66.106006
http://arxiv.org/abs/hep-th/0105097
http://inspirehep.net/search?p=find+EPRINT+hep-th/0105097
http://dx.doi.org/10.1103/PhysRevD.73.126003
http://arxiv.org/abs/hep-th/0507158
http://inspirehep.net/search?p=find+EPRINT+hep-th/0507158
http://dx.doi.org/10.1088/1126-6708/2008/04/053
http://arxiv.org/abs/hep-th/0610255
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610255
http://dx.doi.org/10.1088/1126-6708/2008/06/024
http://arxiv.org/abs/0803.3068
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3068
http://dx.doi.org/10.1088/1126-6708/2009/05/013
http://arxiv.org/abs/0805.3700
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.3700
http://dx.doi.org/10.1088/1126-6708/2009/05/027
http://arxiv.org/abs/0902.4031
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.4031
http://dx.doi.org/10.1088/0264-9381/28/19/195013
http://arxiv.org/abs/1009.4200
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.4200
http://dx.doi.org/10.1007/JHEP01(2013)023
http://arxiv.org/abs/1202.0285
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.0285
http://dx.doi.org/10.1007/JHEP10(2013)021
http://arxiv.org/abs/1308.0323
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.0323
http://dx.doi.org/10.1007/JHEP03(2015)067
http://arxiv.org/abs/1411.2623
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.2623
http://dx.doi.org/10.1016/j.physletb.2013.07.024
http://arxiv.org/abs/1303.3317
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.3317
http://arxiv.org/abs/1312.1376
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.1376
http://dx.doi.org/10.1007/JHEP03(2015)107
http://arxiv.org/abs/1407.0019
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.0019
http://dx.doi.org/10.1007/JHEP10(2015)094
http://arxiv.org/abs/1505.03092
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.03092
http://dx.doi.org/10.1007/JHEP10(2015)050
http://arxiv.org/abs/1506.06756
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06756
http://dx.doi.org/10.1016/0550-3213(96)00283-0
http://arxiv.org/abs/hep-th/9604030
http://inspirehep.net/search?p=find+EPRINT+hep-th/9604030


J
H
E
P
1
2
(
2
0
1
5
)
1
1
7

[42] E. Witten, Five-brane effective action in M-theory, J. Geom. Phys. 22 (1997) 103

[hep-th/9610234] [INSPIRE].

[43] D. Freed, J.A. Harvey, R. Minasian and G.W. Moore, Gravitational anomaly cancellation for

M-theory five-branes, Adv. Theor. Math. Phys. 2 (1998) 601 [hep-th/9803205] [INSPIRE].

[44] K. Lechner, P.A. Marchetti and M. Tonin, Anomaly free effective action for the elementary

M5-brane, Phys. Lett. B 524 (2002) 199 [hep-th/0107061] [INSPIRE].

– 24 –

http://dx.doi.org/10.1016/S0393-0440(97)80160-X
http://arxiv.org/abs/hep-th/9610234
http://inspirehep.net/search?p=find+EPRINT+hep-th/9610234
http://arxiv.org/abs/hep-th/9803205
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803205
http://dx.doi.org/10.1016/S0370-2693(01)01390-9
http://arxiv.org/abs/hep-th/0107061
http://inspirehep.net/search?p=find+EPRINT+hep-th/0107061

	Introduction
	Dimensional reduction of the M-theory action
	Higher-order background solution
	Considered variations of the background solution
	Scalar potential
	Three-dimensional effective action
	Warp-factor scaling symmetry and integration

	Demonstrating the supersymmetric structure
	Comparing the reduction result with N=2 supergravity
	Kähler potential and coordinates as a delta v expansion
	Completing the Kähler potential and complex coordinates

	Conclusions

