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Fig. 3. Emission spectrum of 1.85-mm-thick LNP at wc = 1.53. Oscil- 

latmg mode spacing 1s 1.8, A. 
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Fig. 4. Emission spectrum of 3.67-mm-thick LNP at wc = 1.53. Oscil- 
lating mode spacing is 0.9, A. 

The oscillating mode spectrum was analyzed with a JASCO single 
grating  spectrometer  with  a resolusion of 0.1 A. A  cooled S-1 photo- 
multiplier and a lock-in amplifer were used to record the laser spectrum. 

Fig. 2  shows the measured output spectrum at various pump powers, 
where wc is the relative pump power P/Pth. It is found  that  the laser 
oscillates in 1 longitudinal  mode. This is due to the  etalon effect  of the 
crystal.  Since the free spectral range of the  etalon of 0.3-mm thickness 
is 12 A and  the fluorescence  linewidth  of LNP is 17 A [7],  the second 
longitudinal mode is out of the gain curve and  the single4ongitudinal 
mode is kept sufficiently at  typical pump levels. 

To confirm the  etalon effect of the crystal, we pumped 1.85-mm and 
3.67-mmthick LNP crystals in the same cavity c o n f i a t i o n .  The re- 
sults are shown in Figs. 3 and 4. The emission spectrum  consists of 
multilongitudinal  modes  separated by Ah = 1.88. A for  the 1.85-mm- 
thick  crystal and Ah = 0.95 A for  the 3.67-mm-thick crystal. The  mode 
spacing coincides with that resulting from  the  mode selecting laser 
crystal. The bandwidth  of the spectrum increased with pump power 
initially, then decreased to  the  constant value of about 2 A for both 
crystals. This is probably due  to  the saturation effect of the population 
in the 4F3n manifold at the steady state. 

Despite the fast energy diffusion due  to  the hcgh Nd ion density, the 
second mode appeared  as soon as  threshold was reached.  Adopting 
numerical values from Nd :YAG [ 81 and extrapolating for LNP using 
the spectroscopic data [7],  the diffusion  distance is calculated to be 
about 4400 A, which is longer than a quarter-wavelength of the 
1.0477-pm line inside the LNP crystal (1658 A). Therefore, one would 

consequently expect spontaneous single frequency  operation  for pump- 
ing up to 6  times  threshold in a CW LNP laser. However, the observed 
multimode  operation in these thick crystals shows that  the spatial dif- 
fusion in LNP is slower than  the  theoretical estimation and is not suf- 
ficient to result spontaneous single frequency operation. 

In conclusion, we have demonstrated  the CW single-longitudinal-mode 
operation in the 0.3-mm-thick LNP laser, using the frequency selecting 
effect  of the crystal. With the  pump power  of 8 mW a t  5145 A, which 
is 6.5 times the threshold, the  output power  of the desired single mode 
was 2.2 mW. However, the emission spectrum in the LNP crystal of the 
thickness over 1 mm consisted of  multilongitudinal  modes  as  a con- 
sequence  of the spatial  hole  burning effect,  and single-mode operation 
was not observed. 

Single-longitudinal-mode operation  is of  great interest because of the 
prospect  of  compact  miniature laser pumped longitudinally  with  a  light 
emitting  diode. 
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The  Effective  Autocorrelation  Function 
of Maximum Entropy  Spectra 

RICHARD E. DUBROFF 

Abstma-The  technique  and  the relative advantages of  maximum 
entropy spect~um analysis have been discussed by Burg [l ] ; [2]. 
Evaluation of the inverse Fouria transform of the maximum entropy 
spectrum shows that this method does, indeed, correspond to a rea- 
sonable nonzero extension  of  the autocorrelation  function. 

I. INTRODUCTION AND NOTATION 
The maximum entropy power spectrum  may, in theory,  be con- 

structed  by  the following procedure, as has been  shown by Burg 11 ] ,  
[2] and Barnard [3].  The  known values of  the  autocorielation  func- 
tion h x ( r )  of  a zero mean random process x at N equally spaced lags 
are used to construct an  autocorrelation  matrix a, according to Qmn = 
r # ~ ~ ~ [ ( m - n ) A r ]  f o r a l l r n a n d a l l n E [ l , N + l ] .  I fwedefineifand 
$ as N +  1 d imyiona l  row  vectors according to if= (1, r1, r2, r3, 

rN and PN may be determined by solving 

% 

. . .  , r N ] ,  and P [PN, 0, 0, . . . , 01 , then  the  quantities rl through 

?.$=$.  (1) 

The vector if is frequently referred to as the prediction  error fiter [ l  1, 
since the convolution of  with  the sampled process xi, which isgiven 
by x i +  rkxi-k,  is the error in estimating xi from a  minimum 
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mean-square error linear combination  of N preceding values of xi. 
Having determined f ,  the maximum entropy power spectrum, S o  
is given by 

where. the syperscript H denotes  the  complex conjugate  transpose; 
Z=elwAT;Z=[Zo,Z’,ZZ,...,ZN];and~isaconstant . Thefact 
[ 3 ]  that (8 . pH) is never zero for IZI < 1, and  that (f jH) is never 
zero for IZI 1 will be used later. 

The following section will show that the inverse Fourier transform of 
( 2 )  is given by 

S( f )e iwkAr   d f  = @A(kAr) ,  for all integers k (3) 

where NB = Nyquist band,  and @A(&AT) is recursively constructed as 

for O < k < N  

and,  of course, @A is an even function. Note that the effective auto- 
correlation function @A agrees with.&  when Ikl < N and appears to 
be  an  extension of when I kl > N. 

11. INVERSE FOURIER TRANSFORM OF SPECTRUM 
We introduce  the following def i i ions:  

z = (5) 

~ K ’ [ P , z 1 , z z , ’ ’ . , z K ] ,  for  K > N 
(a K + 1 dimensional  row  vector) ( 6 )  

f N ~ K [ [ l , r l , r Z , . . . , r N , O , ’ . ’ o ] ,  f o r K > N  

(a K + 1 dimensional row vector) (7) 

XK =LB Scf) eiwKArdf,  forK > N  (8) 

and,  in  addition, we defiie a(K) as a (K + 1 )  X (K + 1 )  matrix ac- 
cording to 

Qmn(K) E 
@ A [ ( m - n ) A s ] ,  whenO< Im-nl < K - 1  

X K ,  when Im- nl = K  
(9 1 

f o r a l l m E [ l , K + l ] a n d a l l n E [ l , K + l ] .  

In order  to prove ( 3 )  when k = N + 1, it is sufficient to show that 
XN+l = [(N + l ) A z ] .  Since S(f) must  satisfy  a set of  constraint 
equations [ l ] ,   [ 2 ] ,  which  can be  obtained  by considering ( 3 )  for 
Ikl < N ,  we may incorporate (8) into (3) by using (8), (9) ,  and (5) 
f o r K = N + l , a n d w e f i n d t h a t  

Qmn(N + 1 )  = S ( n Z ( m - n ) d  I,, f 
(10) 

which may be  written  in a matrix  form, similar to the  form used by 
Barnard [ 3 ] ,  as 

where the  path  of  integration is the unit circle in the z plane. Re 
multiplying ( 1 1 )  by P N , N + l ,  cancelling common  factors in the 
integrand, and noting that (iN+l . fig, N + l )  is never zero inside the 
unit circle, the last column  of ( 1   1 )  becomes 

Comparing ( 1 2 )  with ( 4 )  indicates that XN+l = @A [(N + l ) A r ] .  
The  next  step in the inductive  proof of ( 3 )  is to assume that ( 3 )  is 

valid when Ikl < M, and show that (3) is also valid when Ikl = M +  1. 
It is sufficient t o  show that 

X M + ~  = @A [(M+ 1)ArI ( 1  3) 

by evaluating 

The evaluation of (14) is entirely analogous to  the evaluation of 
(11) .  Therefore,  after  multiplying both sides of (14)  by f N , M + l  and 
considering only  the last column  of  the resulting equation, it is found 
that 

N 
+ rneA [(M+ 1 - n)Ar]  = 0. (15) 

n=l 

Comparison with ( 4 )  indicates that XM+l = @A [(M+ l ) A r ]  . 
111. CONCLUSION 

The validity of ( 3 )  is not surprising in hght of  the recent  work of 
Ulrych and Bishop [ 4 ] ,  since @ A ( k A ~ )  is essentially the result of 
using the prediction  error fiier  to predict future values of the auto- 
correlation function. It is also interesting to note  that in spite  of the 
fact  that maximum entropy spectra  correspond to   an   in f i ie ly  long 
autocorrelation  function, it is still possible to compute these  spectra 
using a finite number of  operations, as shown  by ( 2 ) .  This result con- 
trasts sharply with  the conventional power spectrum analysis [ S I  in 
which the window function causes the inverse Fourier transform  of 
the spectrum to  be  nonzero  only over a finite length  of  time, thereby 
causing sidelobes to appear in the conventional  spectrum, as noted  by 
Burg [11.  
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An Alternate  Derivation of the Maximum Iikelihood 
Estimator of a Covariance Matrix 

RAMON NITZBERG 

Abstmcl-An alternate derivation of the maximum likelihood esti- 
mator of a covariance matrix is given. The derivation is based upon 
the eigennlue properties of the paduct of the inverse of the covari- 
ance matrix md the  sample covariance matrix 
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