
MATHEMATICS OF COMPUTATION, VOLUME 33, NUMBER 145
JANUARY 1979, PAGES 149-170

The Effective Choice of the
Smoothing Norm in Regularizaron*

By Jane Cullum**

Abstract.   We consider ill-posed problems of the form

(1) g(t) = jQKit, s)fis)ds,        0 < t « 1,

where g and K are given, and we must compute /.   The Tikhonov regularizaron

procedure replaces (1) by a one-parameter family of minimization problems—
2Minimize i\\Kf - g\\    + aft(/))—where ft is a smoothing norm chosen by the user.

We demonstrate by example that the choice of ft is not simply a matter of

convenience.   We then show how this choice affects the convergence rate, and

the condition of the problems generated by the regularization.   An appropriate

choice for ft depends upon the character of the compactness of K and upon the

smoothness of the desired solution.

1.   Introduction.  We consider ill-posed problems of the following type.  Given
a kernel K and a function g, find a function / such that

0) fQK(t,s)f(s)ds=g(t),      0</<l.

In (1) we assume K is square-integrable and its null space is {0}.   For example, if

K(t,s)=l,      t>s,

(2) =0,      t<s,

then the solution of (1) is the derivative of g.  We will also write (1) as Kf = g.
From (1), using quadrature rules, we can generate—in general rectangular but

typically square—linear algebraic systems

(3) Ax = b,

where A has full rank and whose solutions approximate the solution of (1).
A problem is ill-posed in the Hadamard sense, if its solution does not depend

continuously upon the data.  Equations of type 1 are ill-posed.  Note, however, that

Received May 16, 1977; revised April 17, 1978.
AMS iMOS) subject classifications (1970).   Primary 45L05, 65D25, 65F35.
* This research was sponsored by the Air Force Office of Scientific Research (AFSC),

United States Air Force, under contract F44620-76-C-0022.
**The material in this paper was presented at the 1976 Fall SIAM meeting, Atlanta,

Georgia, October 16-18, 1976.
© 1979 American Mathematical Society
0025-571 8/79/0000-0010/$06.50

149

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



150 JANE CULLUM

the associated algebraic systems (3) are well-posed, since A has full rank.   However,
for numerical computations problems must not only be well-posed, but also well-
conditioned.  Small variations in the problem data must not yield large variations in
the solution.  If we obtain the problem in (3) by applying standard quadrature rules to
(1), it is easy to demonstrate that we obtain ill-conditioned algebraic systems.  This
happens because the operator in (1) is compact; i.e., its singular values have a limit
point at 0.   Recall that each such operator has a singular value decomposition
Smithies [1],

(4) K=± onvnuT .
n=l

The functions un and vn, n = 1, 2,... , in (4) are, respectively, eigenvector systems
for the symmetric operators K*K and KK*.  The a2 are the eigenvalues of K*K and
the an are called the singular values of K.  Equality in (4) is in the L2 sense.

Since the matrices A approximate K and an I 0, the singular values of A will
also converge to zero as the approximation to K is refined.  Thus, A will become ill-
conditioned.  We note that for crude approximations, A may be fairly well-conditioned.

Our discussion focuses on the Tikhonov regularization procedure, Tikhonov [2].
Definition 1.  We say a one-parameter family of problems, denoted by P(ot) for

0 < a < 1, is a regularizing family for a problem P if
(a) For 0 < a < 1, each P(a) is well-posed; and
(b) The solution fa of P(a) converges to the solution f0 of the original problem

as a J, 0.
Convergence of the solutions is measured in some relevant norm. For numerical

work we want at least point wise convergence.
For an equation of type (1), Tikhonov [2] introduces the following regularizing

family

(5) P(a) : Minimize ||Ä7-#||2 + aSl(f).
In (5), H'H is typically an Z,2-norm, measuring the residual error in solving (1), and
Í2(/) is a smoothing norm which, in practice, is often set equal to

(6) ni(o=/¡/2+/yi))2-
We use /"' to denote the ;th derivative of /.

Regularization requires the assumption that the desired solution is smooth (has
several derivatives), and that any errors in the data supplied are random and not
smooth.  We want the regularization procedure to generate an approximation to our
given problem that (a) is better conditioned, (b) mollifies the effects of any random
noise in our data, and (c) gives us a physically meaningful solution that approximates
the true solution in some reasonable sense.

We cannot achieve these objectives by simply minimizing the residual error.  The
residual provides no measure of the lack of smoothness of a function /, since the
compactness of K may smooth oscillations in /.  The residual controls only the low
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CHOICE OF THE SMOOTHING NORM IN REGULARIZATION 151

frequency components of/.  Control over the high frequency components is exercised
by the smoothing norm £2 in (5).  £2(/) will be small, only if /is smooth.  Thus, the
minimization in (5) forces the solutions fa of the Pa to be smooth.   The selection of
a in (5) determines the tradeoff between these two forms of control.  We refer the
reader to Wahba [19] for a discussion of the choice of a.

Much of the existing literature on regularization focuses on constructing regulariz-
ing families and proving that the required convergence occurs.   In fact, the implication
in some papers (see Chechkin [3] for example) is that the choice of £2 is a matter of
convenience, and does not critically affect the behavior of the approximations.  We
will argue, however, that the choice of £2 is important even for smooth kernels
because numerical work demands more than simple convergence.

Regularization is normally applied to problems where the data is determined
experimentally and, thus, contains noise or errors.  We have, for any a > 0, the
inequality

(7) ||/(a, e)-f0 II < ||/(a, e) -/(a, 0)|| + ||/(a, 0) -/„ ||,

where/0 denotes the desired solution,/(a, 0) denotes the solution of (5) with no
error in g, and f(a, e) denotes the solution of (5) with error e in g.  We note that we
will use e to denote both an error function and the norm of this error function.
Clearly, the size of the first term on the right-hand side of (7) is controlled by the
condition of P(ot) and the size of the error e.   If e # 0, as a I 0, this first term will
get arbitrarily large.  The size of the second term depends upon the rate of convergence
of the approximation P(á) to the original problem P, as a I 0.  Inequality (7) clearly
demonstrates that there are two forces at work.  To obtain a reasonable approximation,
each P(a) must be well-conditioned, and we must achieve a reasonable rate of conver-
gence.

We will demonstrate, for certain classes of operators and solutions, how the choice
of £2 affects both the condition and the rate of convergence.   Its effect upon the
condition is usually, however, of primary importance.

In Section 2 we extend some results of Franklin [4].  He considered three
problems:   (a) the analytic continuation of a harmonic function that is known on a
circle of radius R < 1 to the unit disk; (b) the backward heat equation in one
dimension; and (c) the differentiation of a smooth function.   He showed that the
regularizing families obtained for problems (a) and (b) using £2¡ in (6) are poor
approximations to the original problem when there is noise in the data.  However, the
corresponding family obtained for problem (c), differentiation, has reasonable convergence
properties.  He did not elaborate.  In Section 4 we will explain these results for
problems (a) and (b) in terms of the lack of sensitivity of the condition of the members
of the associated regularizing families to simple order changes in the smoothing norm
£2.  This lack of sensitivity is due to the exponential decay rate of the singular values
of the associated operators.   First, however, in Section 2 we introduce two norms
that yield regularizing families that are 'good' approximations to problems (a) and
(b).
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152 JANE CULLUM

In Section 3, we consider in detail the problem of differentiating a function and
derive relationships between the rate of convergence, the order of the smoothing norm
£2 and the smoothness of the desired solution.   Furthermore, we demonstrate that the
condition of the associated regularizing approximations improves as the order of £2 is
increased, whereas the corresponding rate of convergence deteriorates.  However, the
overall approximation given by (7) can improve.  The results derived in Section 3
apply to a family of operators that includes differentiation.

In Section 4 we extend the results obtained for differentiation to more general
convolution equations.  The results in Section 4 are split into five theorems.  The first
theorem yields majorant estimates on the rate of convergence of Tikhonov regularizing
families of order p for a large class of convolution operators.  The second theorem
yields minorant estimates on these rates for a subclass of the operators considered
in Theorem 1.  Together these two theorems yield the exact order of the rate of
convergence of the regularizing families for this subclass.   The third and fourth theorems
in Section 4, again for subclasses, relate the order of £2 to the condition of the approxi-
mating problems generated by the regularization.  Together these theorems yield, for a
subclass of the operators considered, an overall estimate of the error in the approxima-
tions.  We conclude Section 4 with a theorem that tells us that if our operator K is
symmetric and positive definite, then there is a better-conditioned regularizing family
which can be used in place of (5).

Sections 3 and 4 use Fourier transform analysis.  The arguments are similar to
those given in Aref'eva [5]. We will discuss this paper as well as the earlier papers
Arsenin and Ivanov [6], [7], Arsenin and Savelova [8], Goncharskii, Leonov, and
Yagola [9] in more detail in Section 4.

In Section 5 we make some remarks about several ways that a regularization can
be implemented numerically using the associated Euler equation,

(8) (K*K + cS)f=K*g,
where B is the differential operator obtained from £2 by variational arguments.

The discussion is not chronological since some of the Russian work predates
Franklin [4].  The results described give, for convolution equations, heuristics that
can be used in estimating the appropriateness of a proposed regularization.

2.  Franklin [4].  In this section we examine the two classical ill-posed problems
considered by Franklin [4] :

(a) The analytic continuation of a harmonic function in the unit circle (see
Eq. (17)) and

(b) The solution of the backwards heat equation in 1-dimension.
Theorem  1   (Franklin [4]).   The regularizing families for problems (a) and

(b) above, obtained using the norm in (6), and assuming dxe2 < a < d2e2, satisfy the

following estimates of the error in the approximation of the desired solution f0 by the
solution f(ot, e) of P(a) with ge = g0 + e,

(9) (a)    ll/(a)e)-/0||<[C1/(-lna)],
(10) 0>)    ll/(a,e)-/0||<C2[r/(-lna)]P/2.
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In (10), [0, T] is the interval of interest for the heat equation, and this result was
obtained with

(11) £2 {f) = £ mf\\fV>\?,     p = 1, 2,... and m, >0.
/=o

INI denotes the ¿2-norm.
We note that the setting in Franklin [4] is different from what we will use in

later sections.   Franklin considered varying a and e simultaneously.  He asked the
question:   If \\Ku\\ < e and £2(u) < 1, then how does the hull behave as e I 0?  He
used this to define a modulus of regularization.  He proved that the ordinary modulus
of convergence can be bounded by multiples of the modulus of regularization.  Thus,
estimating the modulus of regularization yields a corresponding estimate on the
modulus of convergence as e and a decrease simultaneously to zero.  The estimates in
(9) and (10) were obtained using the modulus of regularization.  Franklin [4] used
Fourier series expansions of the solutions of problems (a) and (b).  In this section we
will use similar arguments to derive error estimates for other norms.  The class of
problems considered in Section 4 will include these two problems.  However, we
also consider them separately here, because through Franklin's arguments [4] we can
see explicitly the control exercised by the residual term in (5) on the low frequency
components of the solution, and the control exercised by the smoothing norm £2 in
(5) on the high frequency components of the solution.   In Sections 3 and 4 we will
see how the smoothing norm mollifies the condition of the regularizing approximations.

If we know for problem (a) that for the desired solution the quantity

(12) £2^</) = ¿ ||/C>||2c2>/(2/)!
;=0

exists and is finite for some c > 0, where the ¿2-norm is over the interval of interest,
then we can use £2£, to define a regularizing family for problem (a).  We will
demonstrate that for c > -2 In R, the regularizing family generated by £2^, yields
'good' approximations to problem (a).

Lemma 1. Let f be C°° on (-°°, °°) and assume f(i\t) —► 0 as \t\ —► °° for
j = 0, 1,2, . . . . Assume also that the Fourier transform of f exists and satisfies

(13) |/(cü)|<Mexp(-uM)

for all | to | > 5 and for some M > 0.  Then, if 2p > c, £2£,(/) is finite.
Proof.   By (13) the Fourier transform of each derivative of/exists and is in Lx.

By Parseval's equality,

(14) ll//'ll2<llay/||2,

where the co-norm is on (-<*>, °°).  Therefore, each term in (12) is majorized by

(15) W(2/)!)/~ (cco)2'exp(- 2u I co I) < M (c/2p)2'.
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154 JANE CULLUM

Combining (15) and (12), we obtain
oo

£2l(/) < M £ ic/2p)2i.
/-o

But, this series is finite, whenever 2/j > c.    Q.E.D.
Theorem 2. If for the solution f0 of the analytic continuation problem

£2^(/0) < °°, then for the regularizing family defined in (5) using £2^, in (12), we
obtain the following majorant estimate of the error as a J, 0,

(16) \\hj2 = ||/(a, e) -/0H2 < ßV/(c-21nÄ>.

We have assumed that dxe2 < a < d2e2.
Proof.   We repeat Franklin's analysis, using instead the £2£,-norm.  We are given

a harmonic function u(r, 8) in the unit disk with known values for some R < 1, gQ =

u(R, 8), and asked to determine its values/0 = u(l, 8) on the unit circle.  We must
solve the integral equation of the first kind,

(17) g0 = (1/2tt)J^[(1 - R2)/(l - 2R cos(0 - 8x) + R2)} f0(8x)d8x.

We know the solution is periodic, so we write the error ha = /(a, e) - /0 as

ha(8) =  £ (An cos nd + Bn sin n8).
n = Q

If ||A7zJ|2 < aß and £2£,(/0) < Q, we obtain, assuming that the interchanges of
summation, integration, and differentiation are correct,

(18) OL(ha) = 2tl42 + 7T ¿  cosh(c»)L42 + Z?2) < 2Q
n=l

and

(19) WKhJ2 = 2nAl + it ¿ R2"(A2n + B2n) < ccQ .
n=l

Following Franklin, we balance the contribution from the low frequency terms in
(19) against the contribution from the high frequency terms in (18).   Let N = N(a)
be the solution of the equation

(20) acoshcN =2R2N.

Since for n < N, R2n > R2N; and for n > N, cosh en > cosh cN, we obtain

(21) \\hj2 < \\KhJ2R-2N + n^hj (coshcN)-1 < 2Q(coshcfif)-*.

Now consider the asymptotic behavior of N as a function of a.  Clearly, as a i 0,
N t oo, and

(22) N ~ ln(4/a)/(c - 2 In R).
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Substituting (22) into (21), we obtain (16).    Q.E.D.
Comments.   If c = -2In R, then the exponent in (16) equals ]/i.   For fixed R,

as we let c t °° this exponent approaches 1.   As we decrease c, it decreases to 0.  Note
that the eigenvalues of K*K decay like exp(2nlnZ<) as n t °°.  Choosing a norm with
a growth rate that matches or exceeds this decay rate, that is, c > -2\nR, yields a
reasonable rate of convergence.  To use £2£, we must know that for the desired solution

Wo) < "■
We can achieve a better rate of convergence if we use an even stronger norm.

oo

(23) £21 s £ ci\\fW>\\2H\    for c > 0.
/=0

Then we have the following:   the proof is similar to that of Lemma 1.
Lemma 2. Let /£ C°° on (-°°, °°) and assume f^\t) —► 0 as If I —► °° for all

j = 0, 1,2, ... . Assume also that the Fourier transform of f exists and satisfies

(24) |/(co)|<Mexp(-uco2)

for all | co | > S, for some M > 0. If p> c/2, then ~hcJf) is finite.
Theorem 3. If for the solution f0 of the analytic continuation problem

^Lifo) < °° for some c > 0, then for the regularizing family defined in (5) using
£2^ in (23), we obtain the following majorant estimate of the error in the approxima-
tion as a, e I 0 with dxe2 < a < <i2e2,

(25) \\hj2 = ll/(a,e)-/0||2<ö*a.

Proof.   The proof proceeds as before with small changes.  Equation (20)
becomes

(26) a exp(cA2) = 2R2N.

The asymptotic solution of this satisfies

(27) A~(-ln(a/2)/c)1/2,

for a given R and sufficiently small a, or for a given a and sufficiently large R.  Then
using (27) and the analog of (21), we obtain (25).    Q.E.D.

Comments.   We note that to use £2£, or £2£   numerically we would have to use
Fourier transforms, and we would have to know that our desired solution had sufficient
smoothness to guarantee the existence of £2 £, or £2^,.  We note that as R I 0, the
eigenvalues Rn, n = 1, 2,. .. , of the operator K in (17) decrease more rapidly, and
the error in the approximation increases.  Thus, by picking a norm whose growth rate
matches or exceeds the decay rate of the given operator, we can achieve 'good' orders
of approximation.

If we apply the same analysis to the backwards heat equation, we obtain the
following.

Theorem 4. If for the solution f0 of the backwards heat equation in 1-dimension
we have £2^,(/0) < °° for some c > 0, then for the regularizing family defined in (5)
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156 JANE CULLUM

using ü,c„ in (23), we obtain the following majorant estimate of the error in the
approximation,

(28) \\ha\\2 = ||/Ta, e) -/0||2 < ßV'(c+2r>.

77te heat equation is considered on the interval (0, T), and again we assume dxe2 <
a<tf2e2.

Proof.   The proof proceeds as before.  In this case we obtain the equation

(29) a exp(N2(c + 2T)) = 2.

Taking logarithms of both sides, we obtain

N2(c + 2T) = -ln(a/2).

Therefore,

N2 = -\n(a/2)/(c + 27)

and

\\hj2 < ßexp(-cA2) < öV'(c+2r).    Q.E.D.

Theorem 5. If we use £2£,, we obtain an estimate of the form

(30) \\hJ2'<Q*exp(-c(-\na)xl2),

where c involves c and T.
The difference in the convergence of the regularizing families for problems (a)

and (b) can be explained by the difference in the decay rates of the eigenvalues of
the two operators.   For problem (a) the eigenvalues decay like R"; for problem (b)
like exp(-n2T).  Thus, the norm £2£ with a growth rate of exp(cw) cannot
counteract the rapid decay of exp(-n2T).  For problem (b) we must go to £2^,, whose
growth rate is exp(cn ), to achieve an overall approximation that is some power of a.

The preceding analysis points out the need to have an estimate of the decay rate
of the singular values of the given operator K as an aid in choosing an appropriate £2.
We are of course constrained in what order £2 we can use by the smoothness of the
desired solution.  In order for the convergence arguments to be valid, £2(/0) must be
defined.

Arguments of the preceding type assumed a and e varied simultaneously and, in
fact, that dxe2 < a < d2e2.  Consequently, the effect of the choice of £2 on the
rates of convergence and on the condition of the approximating problems cannot be
obtained from such arguments.   In Sections 3 and 4 we attempt to estimate directly
rates of convergence, and the condition of members of the Tikhonov regularizing
families for certain classes of convolution operators.

In the next section, we examine the problem of differentiation in detail.  We will
be using Fourier transforms so instead of Eq. (1) we use

(31) ¡t_aaf(s)dS=g(t), -oo<r<oc.
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We will show that increasing the order of £2 decreases the rate of convergence
but improves the condition of the approximating problems generated.

3.   Differentiation.   Now let us use differentiation to understand the effect of
various choices of the norm £2 on the rate of convergence and on the condition of
the regularizing approximations.  We want to demonstrate the interaction between the
choice of £2, the rate of convergence, the condition, the smoothness of the desired
solution, and the compactness of the kernel.  We will work on the interval (-°°, °°)
using Eq. (31), and use Fourier transform analysis.  In Sections 3 and 4 it is assumed
that each kernel K and each solution /has a Fourier transform.  The smoothness of the
solution is measured in terms of the decay rate of its Fourier transform for large co.
The compactness of the kernel is measured in terms of the decay rate of its Fourier
transform.  We further assume that the transforms of/(a, e), f0, g, and ge are in
¿2(-oo, oo).

The theorems in this section are valid for any operator K with Fourier transform

(32) \K(u)\=Dco-r,      r>0.

This includes, in particular, the derivative operators.  We use arguments similar to those
in Aref'eva [5].

Theorem  6.  We assume that the desired solution f0 has m> 1 derivatives, that
each /fP £ L, (- °°, °°), 0 < /' < m, and its Fourier transform f0 satisfies | (J + xfQ \2 <
Rj+, for all w and |/01 > Dxco~m~x for large co.   Then for any Eq. (1) whose
kernel K satisfies (32), we have the following.   For sufficiently small a, the rate of
convergence of the Tikhonov regularizing families obtained using £2   in (11), varies as

(33) ||/(a, 0) -/0I| < Qcf,   where a = (2m + l)/(4p + 4r), for m <2p + 2r - 1.

For m > 2p + 2r - 1, a becomes

(34) (4p + 4r- l)/(4p + Ar).

The dynamic condition of the members of these families varies as

(35) a b,   where b = - r/(p + r).

Moreover, for any m, p > 0, and r > 0, an overall estimate of the error in using the
solution of P(a) with ge = g0 + e to approximate f0 is of the form

(36) \\f(a,e)-f0\\<Cxa" +eC2cxb,

where b = -r/(2p + 2r) and q = (2m + l)/(4p + 4r) if m <2p + 2r - 1, and q =
(4p + 4r - l)/(4p + 4r), otherwise.

Comments.   The smoothness of the solution helps the rate of convergence, but of
course does nothing for the condition.  Using (36), we see that increasing the order of
£2 adversely affects the rate of convergence, but improves the condition.  As we increase
the decay rate r of K, the condition and the rate of convergence deteriorate.   As
r î °o, the estimate of the condition approaches 1/tv and of the rate approaches 0(1).
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By rate of convergence, we will always mean the size of the Z,2-norm of the

discrepancy caused by the regularization, ha = f(ct, 0) - f0.
By condition we mean the dynamic condition.  To briefly explain dynamic

condition, consider the following.  Given a symmetric matrix A, one measure of the
ill-conditioning of A is the ratio, max|X-|/min|X-|, where X- are the eigenvalues of A.

For a circulant matrix C defined by the vector c = (cQ, cx, . . . , cn_t), we
have a direct relationship between the eigenvalues of C and the finite Fourier transform
of c, Gray [10].  Namely, X(C) equals the/th Fourier coefficient of c.  Therefore, we
can express the condition of a circulant matrix in terms of the maximum and minimum
Fourier coefficients of c, or the eigenvalues of C.

We have a generalization of this result to symmetric Toeplitz matrices, see
Widom [11], for example.   A matrix Tn is Toeplitz if its entries, Tn(i, j), are a function
only of the difference i - j.  Thus, T  is constant on each of its diagonals and
defined by a vector c = (c0, cx, . . . , cn_x).  The relevant theorem states roughly
that if we consider the entries of c = (c0, cx, . . . , cn_ x ) as the Fourier coefficients
of a L2-function 0, then all the eigenvalues of Tn satisfy m < \(Tn) < M, where
m = ess inf 0 and M = ess sup <p on the real line.

Since we have convolution operators, each can be approximated by a Toeplitz
matrix (although this may not be the approximation one would use in practice).  The
Toeplitz matrix obtained is essentially a discretized form of the kernel, and the
kernel is the Fourier transform of its transform.  Thus, for this particular discretization
we can use the maximum and minimum of | A" ' to estimate the maximum and
minimum eigenvalues and thus, the condition of the matrix obtained.

It is common practice in the engineering literature, see Makhoul [12], for example,
to estimate the condition of a convolution operator by the ratio of the maximum of
the modulus of its Fourier transform to the minimum.  The number obtained is
called the dynamic condition of the operator.

Comments.   In the proofs we assume p, m, r and / are integers.  The proofs could
be modified to accept fractional quantities.   Also, we use only the pth derivative term
in £2p. This is sufficient to give us some understanding of the relationships between
the different quantities.

Proof of Theorem 6.   First consider the rate of convergence of the associated
regularizing family as a function of p, m, and r.  Consider £2   given by (11) for p =
1,2,...   .  We use Fourier transforms and the Euler equation (8) to compute / .
Then the discrepancy caused by the regularization ha = /(a, 0) -/„, using Parseval's
equality, satisfies

(37) \\hj2 =a2J0°co4" + 4n/l2/(c +aco2P + 202rr.

Part a:  Rate of Convergence-Majorant Estimate.   We split the integral in (37)
into the sum of integrals over (0, M) and (M, °°) where M will be chosen subsequently
to optimize the error estimate.  If we have \cJ+xf\2 < R¡+x, then we have for any
M, and 0 </ < m,
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(38) fcW <*,&-"-*'XT2*-1-
Moreover, for 0 < / < / = min(2¿? + 2r - 1, m),

0 \ha\2 <R¡a2joío4P + 4r-2'-2 =R*a2M*P + 4r-2>-x.

Combining (38) and (39), we obtain the majorant estimate for any / </ of the form,

(40) \\hj2 <Exa2M4p + 4r-2'-x +E2M~1-2'.

If we choose M to minimize the expression in (40), we obtain for each such /',

(41) Mj = CcTll(2p + 2r\

Thus, the optimal choice of M is independent of; </, and the optimal majorant
estimate obtainable from (40) is

(42) |iha\\2 < Qft    with a = (2/ + l)/(2p + 2r),

where ß. depends on / but not on a.  In particular, for a given r and p, if the

smoothness of / satisfies m < 2p + 2r - 1, then the best order of a in (42) corresponds
to / = m for which we obtain (33).  If m > 2p + 2r - 1, then the best order is obtained
with / = 2p + 2r - 1, when we get

(43) || hj2 < Qua    with a = (4p + 4r - l)/(2p + 2r).

Note.   The constant terms in the various equations do not involve a and do not
significantly affect the arguments so no attempts have been made to be precise with
them.  We note, moreover, that the estimates in (42) and (43) hold for all a > 0.

Part b: Rate of Convergence-Minorant Estimate.  We must obtain a lower bound
on U/zJI2.  Since |/|   >D,to-m~1 for large w and \K\ = Dœ~r everywhere, we
have for sufficiently small a that

(44) \\hj2 > cfMa2oj4P + 4r-2m-2/(l + aco2" + 2'-)2,

where M is defined in (41).   But for to > M we have

(45) aco2p + 2''>C>0.

Therefore, we have with Q = (C + 1)/C, on (M, °°) the denominator in (44) satisfies

(46) (1 +au2p + 2r)<Qaœ2P + 2r.

From (46) we obtain

l|/lJ|2>ßf~GJ-2m-2 =Q*M-2m~x.

Using (41), we obtain for sufficiently small a

(47) WhJ2>Q'aa    with a = (2m + l)/(2p + 2r).
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The coefficient Q' in (47) depends on p, m, and r but not a.
Combining (33) and (47) for m < 2p + 2r - 1, we obtain an exact order estimate

of the rate of convergence

(48) l\hj2 <Qxaa    with a = (2m + l)/(2p + 2r).

For m > 2p + 2r - 1, we have only that the convergence is at least as fast as

(49) \\hj2 <Q2a"     with ä = (4p + 4r - l)/(2p + 2r).

Part c: Condition.   The condition of a minimization problem typically refers to
the condition of the second derivative operator of the given functional.   In our case
this is the operator in the Euler equation (8)

(50) 0 = K*K + aZ?,

where B is generated from £2 using variational arguments.
For differentiation,

(51) <P(f)=S1tf0f+<*f-<*f(2)-
If we approximate this operator and/by discretizing, then we obtain a matrix.  How-
ever, the type of matrix obtained, Toeplitz, symmetric, etc., depends upon the quad-
rature rule used for K*K and the approximation of the differential operator chosen.
The algebraic condition may vary depending upon the particular approximation chosen.
Therefore, we choose to look at this operator directly and to use Fourier transform
analysis.  We use the dynamic condition, computing the minimum value of the
modulus of the Fourier transform of our given operator.  This notion of condition is
only applicable to convolution operators.

Therefore, we form the Fourier transform of 0 and consider

(52) h(co)= |0(w)| = oj-2r + acj2p.

In (52) we have again ignored the lower order derivative terms in £2 , because they
have only secondary effects upon the conclusions.  The minimum of h occurs at u> =
(r/pa)ll(2p + 2r) and is of the order

(53) Cot",      a=r/(r+p).

(53) is a lower bound on the smallest eigenvalue of the operator 0.  Observe that 0
has no maximum.  However, in numerical work, there is a limit on the sampling size,
and the maximal singular value of any discretization of 0 depends primarily on this
sample size.  To see this consider the following:   We know, see, e.g. Wilkinson [13],
that for any matrix A that approximates 0, all the eigenvalues of A satisfy | XL4)| <
\\A || for any consistent matrix norm.  In particular, the maximal row sum norm is a
bound on the eigenvalues.

So we can conclude that as the order of £2 is increased, the condition of the
approximating problems improves, and the critical order in a is given in (35).
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Part d.   Overall Estimate of Error in the Approximation.   Now let us consider the
overall error in (7).   Using Fourier transforms, we find that the

(54) ll/(a, e)-f(cc, 0)|| = ||/(a, e) - /(a, 0)|| < C2eab    with b = - r/(2r + 2p).

Combining (54) and (48), we obtain (36).    Q.E.D.
Theorem 6 tells us that for small decay rates r we can achieve fairly well-

conditioned, approximating problems with a small order norm £2.
We have the following simple theorem.
Theorem 7.  Under the hypotheses of Theorem 6, for

(55) cc<(C2e/Cx)2,

m < 2p + 2r - 1, and 2r > 2m + 1, the choice £2m yields the regularizing family that
minimizes the overall error in (3.6).

Proof of Theorem 7.  Since 2r > 2m + 1, the minimizer of (36) is larger than
the solution p* of the equation ab = eC2/Cx, where b = (m + 1/2 + r)/(2r + 2p).
Therefore, if p* is in the interval p > m, then the minimum value corresponds to
p = m.  Taking logarithms of both sides of this equation and using (55), we get

2p* + 2r > 2m + 2r + 1.

Therefore, the optimal choice is p = m.    Q.E.D.
In the next section we consider more general convolution operators, again on the

interval (-°°, °°).

4.  General Convolution Equations.   In this section we extend the results obtained
in the previous section for operators of the form \K(oj) | = Cco_r, r > 0, to more
general convolution operators.  Arsenin and Ivanov [6], Arsenin and Savelova [8],
Goncharskii, Leonov and Yagola [9] and Aref'eva [5] have each derived estimates on
the asymptotic rates of convergence (as a I 0), and on the overall error bounds attain-
able when the data is inaccurate, for certain classes of convolution equations on the
interval (-°°, °°).   Each paper used Fourier transform analysis.   The families considered
in Aref'eva [5] will be described.  These include those considered in the other papers.
The papers are listed chronologically.  The Arsenin and Ivanov [6] and Arsenin and
Savelova [8] papers obtained majorant estimates that relate the decay of the transform
of the operator K, the order of the norm £2, and the smoothness of the desired solu-
tion.  They used complex variable theory to evaluate the error integrals and obtained
pointwise estimates.  Goncharskii, Leonov and Yagola [9] enlarged the class of kernels
under consideration and used the L2-norm of the Fourier transform of the error so that
they could work with real integrals.  However, they did not consider general norms
£2 or the effects of the smoothness of the desired solution.   Aref'eva [5] considered
the same class of kernels as in [9]. She answered a slightly different question.
Generalizing the class of admissible regularizers, she obtained the following theorem.
For a precise statement see Aref'eva [5].

Theorem 8 (Aref'eva  [5]).  For a given level of noise, a, the optimal approxi-
mation fa to the desired solution f0 of (1) is obtained as the solution of (8) with
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otB replaced by

(56) a2/|/0|2.

Thus, in the presence of noise, the optimal choice of regularizer depends only on
the decay rate of the Fourier transform of the desired solution.  We note that the
expression in (56) may or may not have a function analytic interpretation as the norm
of some identifiable function space.   All Tikhonov regularizers are, of course, defined
initially in terms of such norms.  Using (56), Aref'eva [5] derives estimates on the
optimal overall error attainable for a given o with various assumptions on the decay
rates of /0 and K.  Since (56) is not a priori computable, Aref'eva then returns to
Tikhonov regularizers and shows that for certain classes of problems, she can achieve
to the same order, the error that she gets using the optimal regularizer in (56).

In this paper we consider only Tikhonov regularizers.  We will demonstrate that
the character of the compactness of K determines whether or not the approximation
obtained using a particular family of regularizers is sufficient to make sense
computationally.  As we saw by examples in Section 2, with exponentially decaying
operators, in order to obtain an approximation of the order tv3 for some a > 0, we
had to use exponentially increasing smoothing norms.  Obviously, the use of such
norms is limited by the smoothness of the desired solution, since the convergence
arguments are valid only when £2(/0) is defined.

Numerically, we have to worry about the condition of the approximating
problems generated.  As in Section 3, we will use the dynamic condition.

The discussion has three parts.   First, for a large class of operators, we obtain
in Theorem 9 majorant estimates of the rates of convergence of approximating
regularizing families obtained from £2 .   In Theorem 10, for a subclass of these opera-
tors, we obtain minorant estimates of these rates.   Together Theorems 9 and 10 give
us the order of the rates of convergence for this subclass.   In Theorems 11 and 12,
for a further subclass, we estimate the dynamic condition of the approximating problems
generated using £2   (Theorem 11) and using £2£, and £2^, (Theorem 12).  Together
these theorems give us an estimate on the overall behavior of the error in approximat-
ing our given solution /0 by the solution of P(a) for ge = g0 + e.

Using these estimates, one can argue that typically one would obtain the best
error by maximizing the order of £2.  (For a specific problem one would have to be
more precise in such arguments and take into account the dependence of the
coefficients that appear in the estimates upon p.)   For a function /0 with m derivatives
this corresponds to taking p = m.  We note, however, that in practice we often do
not know m, and we are likely to choose a low order £2 because it is easier to work
with.   In such a situation it is important to have some estimate of the decay rate of
our operator.   Since we are nominally working with symmetric, Toeplitz operators,
the associated Fourier transforms give us such an estimate.   Using this estimated
decay rate, we can use inequalities similar to those obtained in these theorems to
indicate whether the proposed regularization makes sense numerically.

The following are slight modifications of definitions in Aref'eva [5].
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Definition 2 {Aref'eva [5]).  A kernel K is of type 1 if: (a) Its transform,
I K(co)\ has a denumerable number of zeros on the real axis of to.  (b)  There are no
limit points for the zeros of K(oo) with the exception of to = + °°, and if N(M) is the
number of zeros in (0, M), then N(M) <CM" for some v > 0, C> 0.  (c)  There
exists a system of nonoverlapping e-neighborhoods of the zeros of K(co) on to > 0
such that \K(u>)\ > a¡ |to - cj¡\s for to £ [to,- - e¡, to,- + e¡], where the to,- > 0 are the
finite nonzero, zeros of K and a¡ > a > 0, s > 0.  (d) /i(0) =£ 0.  (e)  Outside the e-
neighborhoods, \K(u)\ > Du^r, r>0,D>0.

We note that K can have infinitely many zeros satisfying (c) only if e,- —> 0 as
j —». oo.

Definition 3 (Aref'eva [5]).  A kernel is of fype 2 if its transform has no finite
zeros and for large to, | AT(co)| > C exp(-ato) for some a > 0, C > 0.

Within type 1 Aref'eva [5] determines a subclass for which she derives a lower
bound estimate of the same order.  Aref'eva [5] also classifies solutions/0 in terms
of the behavior of their Fourier transforms.  She further subdivides type 1 into 0 <
s < Vi, integrable singularities, and s > Vi, nonintegrable singularities.  We consider only
s < V*.  We use Aref'eva type arguments to derive our estimates in Theorems 9 and
10.  We note that the arguments in Section 3 also mimic Aref'eva [5] arguments.

Theorem 9.  Consider the norms £2 , p > 1, and Eq. (1). Let the solution
f0 of(l) have m derivatives with each f*p £ Lx(-°°, °°), 0 <j < m and I (J+ xf(oj)\2 <
R,+1 for all to.

(a) Let K be of type 1 with 0 < s < lA and v < 4s.   Then the discrepancy ha =
/(a, 0) - /0 satisfies the following as a i 0.  For m < 2p + 2r - 1

(57) WhJ2 < cy   with b = (2m + l)/(2p + 2r).

For m > 2p + 2r - 1,

(58) b = (4p +4r- l)/(2p + r).

(b) Let K be of type 2 with \K\> D exp(~a<S)for some a > 0 and for all to.
Then

(59) IIZiJI2 <C3(-ln(6a2)/2a)-2('" + 1).

The proofs in this section will also treat p, r, m and / as integers.  The proofs could
be modified to handle fractional values.   As in Section 3, we have used only the
pth derivative term in £2

Proof of Theorem 9.  (The argument parallels that in Theorem 2 of Aref'eva

[5]-)
Part a.   Type 1 Operators.   The proof is analogous to that given for Theorem 6

using an expression like (37) for HriJI2 except that it is now necessary to split the
integral over (0, M) into integrals over neighborhoods of the zeros of K, and integrals
over the complements of these neighborhoods.   For each neighborhood N¡ = (to,- -
e,., to,- + e,) of a zero to,- of \K\ we have
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SN\ha\2 < a2 iNœ4p\f\2/(at\co- to,.|4*) < Ca2ej-4s+di,

where d, = max(0, 4p - 2/ - 2).
There are at most M" such intervals in (0, M) and clearly each e,- <M, so we

obtain

ZSN\hot\i<cct2M1-4s+v+di.
i        i

Now consider the integrals over the complements N¿ of the TV,-.  On the complements
\K\>Do3~r

ZfÑ\ha\2 <Da2f^4p + 4r\f\2<a2DM4p + 4r-2'-x
i '

for any / </ = min(m, 2p + 2r - 1).
The integral from (M, °°), as in Theorem 6, satisfies (38).  Therefore,

(60) WhJ2 <a2CM^ +DM~1-2',

where p = max(l + y - 4s + d.-, 4p + 4r - 2/ - 1). Since v < 4s and / < 2p + 2r - 1, we
have for each /, p = 4p + 4r-2j -1. Minimizing (60) over M, we obtain

(61) Mopt=C0a-'/(2' + 2'>.

Therefore, for m < 2p + 2r - 1 we obtain (57).   For m > 2p + 2r - 1 we obtain

(58).
Parr b.   Type 2 Operators.   We have assumed that K has no real zeros.  We

again split the error estimate (37) into integrals over (0, M) and (M, °°).

JM   * CM0 \ha\2 < Jo cv2to4"e4auj|/|2/(Z)4 + a2to4pe4a") < a2Cxe4aMMd,

where c/ = max(0, 4p - 2m - 2).  Moreover, we obtain (38) again.
Combining (38) and (62) and then minimizing over M, we obtain the transcen-

dental equation for the optimal M

4aCxa2e4aM = C2M-2m-2-d.

Taking logarithms, we find that the solution

(63) M* ~ [-ln(ôa)/2fl] [1 - ln(- \n(ba)/2a)(2(m + l)/(2(m + 1) - 2 In ¿a))],

where b = 4aCx/C2.  Therefore, a majorant estimate is of the form

(64) WhJ2 < C(-ln(Äa2)/(2«))-2d(m + 1>.

For a small, d is approximately 1.
Comments.   Theorem 9 states that we can obtain the same majorant of the rate

of convergence that was obtained in Theorem 6 when the growth rate v of the number
of zeros in the interval (0, M) is not greater than 4s.   The exponent s in Definition 1 is
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a measure of the rate of decrease of K in a neighborhood of any zero.  Theorem 9 also
states that for type 2 operators the rate of convergence depends primarily on the
smoothness of the desired solution and is inversely proportional to -In a.

Theorem   10.  Consider the norms £2    p > l,andEq. (1).   Let the desired
solution f0 have m derivatives with each f^ £ Lx(-°°, °°), 0 < j < m.   Let its
Fourier transform /„ satisfy | to/+ xfQ\ < R>+ ' for all to, and D2co-m~x >\f0\>
Dx(jO~m~x for large to.

Let K be of type 1 with 0 < s < Va and v = 0.  (v = 0 corresponds to a finite
number of zeros.)  Moreover, assume \K(oj)\ < Dio~r as to t °°.  Then for sufficiently
small a, we obtain the following lower bound:

(65) WhJ2 > Qoc"    with a = (2m + l)/(2p + 2r).

Proof of Theorem 10.  As a I 0, M(a) in (60) becomes arbitrarily large.  There-
fore, for sufficiently small a, we have

WhJ2 >fM(a2œ4p + 4r\f\2)/(D + a2co4p + 4r).

Furthermore, we have for to > M, a2to4p + 4r > C0.  Therefore, for some Q,

WhJ2 >QJM\f\2 = QM-2m~x = Qcr-

with a = (2m + l)/(2p + 2r).   Q.E.D.
Comments.   Theorems 9 and 10 yield exact order estimates for the rate of

convergence for type 1 operators whenever m < 2p + 2r - 1, 0 < s < lA, and v = 0.
Next we consider the condition of the approximating problems generated.  We

again use the dynamic condition, Makhoul [12].
Theorem 11. Consider the norms £2p, p > 1, and Eq. (1). Let K be of type 1

or 2.  Assume moreover that \K I is a monotone decreasing function of to such that
for type 1, Dcj~r < \K \ < Doj~r outside an interval of 0, and for type 2,
Cexp(-aco) <\K\ <C exp(-ato) for all to.   Then for small a, the dynamic condition
of the members of the approximating families generated is of order

(66) ßa-r/(p + r)

for type 1 operators, and of order

(67) ßtY-1((-lnZ;<v)/2a)-2p

for type 2 operators where b = p/ac.
Proof of Theorem 11.  We consider the operator in the Euler equation (8),

0 = K*K + ccB.

Parta. Type 1 Operators.   Outside an interval of to = 0, (0, S),

du~2r + aco2p < |0(to)|<cito-2r + ato2p.

The minimum of dcj~2r + ato2p occurs when

(68) to* =(rd/pcx)x/(2p + 2r\
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and the corresponding minimum value is of the form,

(69) ßcW(p + r).

For small a, to in (68) is not in (0, 5).  Therefore, the minimum value of |0(to) I lies
between the two values of (69) obtained for d and d.  As we argued in Section 3,
|0| has no maximum; however in practice the maximum is limited by the sample size.
Therefore, we obtain (66).

Part b.   Type 2 Operators.   Using a similar argument for case (b), we obtain the
equation

apto2p~1 = ac exp(-2ato)

that we must solve.  The solution is approximately

to* ~ [-ln(Z>a)/2a] [1 - ln(-ln(Z>a)/2a)((2p - l)/((2p - 1) - In ba))],

where b = p/ac and for small a the minimum value of 0 is of order ßa(-ln(Z>a)/2a)2p.

Q.E.D.
Comments.   We see in Theorem 11 that for operators whose Fourier transforms

decay like Gj~r, r > 0, increasing the order of £2   has a significant effect upon the
condition of the approximating problems generated by the regularization.   However, if
the decay of \K\ is exponential, then this effect is much less.  As indicated by
examples in Section 2 for operators whose transforms decay exponentially, to achieve
a condition similar to (66), we must use a norm like £2^, in (12) or £2^ in (23).

Theorem  12.   Use the norms £2C and $1°  introduced in Section 2 in Eqs.
oo oo ^

(12) and (23).   Let K be of type 1 or type 2, satisfying the hypotheses of Theorem 11.
Then the dynamic condition of the members of the approximating families generated
is as follows.   For K of type 1, the condition is majorized by

(70) Q((-lnba)/cf,

where q = 2r corresponds to £2^, and q = r to £2£.  For type 2 operators we obtain
for £2^, the condition is of order

(71) Qa~d    with d = 2a/(2a + c)

and for £2^, of order

(72) Q{(-inba)/c)ll2.

Proof of Theorem 12. Part a.   7>pe 1 Operators.   As in the proof of Theorem
11, we compute the minimum of

(73) |0, | = dto~2r + a cosh ceo

for £2£, and of

(74) \4>2\=dco  2r + aexp(cto2)
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for £2^.  Differentiating (73), we obtain

acoj2r+ x = 2rtf(sinh cto)~1.

But this equation has the same form as that obtained for case (b) in Theorem 11.
Therefore, its approximate solution is given by (63) with some renaming of constants
and replacing a2 by a.

to* ~ (-ln(éa)/e)[l - ln(-ln(Z>cY)/c)((2r + l)/(2r + 1 - lnfta))].

Therefore, for small a,

(75) \4>x(G})\>(c/(-\nbcx))2r.

For (74) we obtain

(76) acto2r+2 =rt?exp(-cto2).

The solution of (76) is approximately

cto2 = - ln(*a)[l - ln(- Hbot)/c)((r + l)/(r + 1 - ln(6a)))],

where b = c/rd.  Therefore, for small a,

\$2(to)\>(cl(-ltiba))r.

Part b.  Type 2 Operators.

(77) 10j | = d exp(- 2aco) + a exp(cto)

for £2^,; and for ££,

(78) 1021 = d exP(~ 2ato) + a expfcto2 ).

Differentiating (77) and solving for to, we obtain

to ~ -ln(Z>a)/(2a + c),

where b = c/2ad.  Therefore,

10\ I > Qad    with d = 2a/(2a + c).

Differentiating (78) and solving for to, we obtain

cto2 ~ -ln(Z»a) - in((-lnZ>a)/c)1/2.

Therefore,

\4>2\>Q(cl(-\nba))xl2.

Combining these estimates, we can obtain overall estimates on the error,

l/(«,e)-/0||2.
We conclude this section with the following theorem which states that if K is

symmetric and positive definite, then a regularizing family with improved convergence
and condition can be used instead of Eq. (8).

Theorem  13. If the operator K in (1) is symmetric and positive definite, then
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for £2 , p> l,the solutions of the problems O < a < 1,

(79) {K + aB)f = g
with the associated natural boundary conditions form a regularizing family for Kf = g
with respect to £2 .

We note that the decay rate for K is the square root of that for K*K.
Proof of Theorem 13.   Define operators

Kx=Hoxnl2unuTn    and    K2 =ZunuTloln'2.

Then (79) is the Euler equation for the problem

(80) Minimize \\Kxf-K2g\\2 + a£2(/).
Equivalently,

(81) Minimize \\Kf-g\\K   + a£2(/),

where K3 = ^unuTn/on.
We first must show that each of the families (8Q) and (81) is well defined.   First

note that the {un} are complete since K is invertible.  Moreover, we know that Kf =
g has a solution only if 'E(gTun)2/a2 < °°.  Therefore, Kxf, K2g and K3g are all well-
defined.

fa minimizes (80) if and only if it satisfies the associated Euler equation.   Due
to the symmetry, this equation is just (79).   From Tikhonov [2] we know that the
solution of (79) converges at least uniformly to the solution of

(82) Kxf=K2g

as a I 0.   But for the given g any solution of (82) is a solution of (1).    Q.E.D.

5.  Summary.   In the preceding sections we have considered the question, how
does our choice of £2 in (5) affect the condition and the rate of convergence of the
approximating problems generated.   For convolution equations, we have described
the relationship of the condition and the rate of convergence to not only the choice
of norm £2, but also to the character of the compactness of the operator K, and the
smoothness of the desired solution.   The condition of the approximating problems
generated is strongly dependent upon the order of £2, and improves as we increase this
order.   For a given £2, the condition deteriorates as we increase the decay rate of the
singular values of K.  The rate of convergence depends not only on the compactness
of K and the order of £2 but also upon the smoothness of the desired solution.   For a
given operator K, the smoother the desired solution the better the rate of convergence.
This rate deteriorates as either the order of £2 is increased or the decay rate of the
operator is increased.  With respect to the order of £2, this deterioration is limited by
the smoothness of the desired solution.

The estimates obtained in Sections 3 and 4 are crude. They are intended only
to provide an appreciation for the relationship between the choice of the smoothing
norm £2, the compactness of K, and the smoothness of the solution. In paraticular,
they imply that if the singular values of K decay exponentially, then regularization
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with £2p in (11) cannot be expected to provide good approximations.  It is interesting
to note that the estimates indicate that for an operator whose singular values decay
polynomially, nothing is gained by using an exponential norm.

These results give heuristics for determining the appropriateness of a proposed
regularization for a convolution equation.   In practice, we probably would not know
the smoothness of the desired solution and would choose a lower order £2 because it
is easier to work with.  Moreover, we would probably be working on a finite interval,
for example, [0, 1] not {-°°, °°).

In an implementation, we have at least three ways of solving the minimization
problems in (5):

(a) Direct discretization of the functionals in (5) or of the Euler equation in (8).
(b) Solving the Euler equation, using Fourier transforms.
(c) Inverting B in (8) with the natural boundary conditions and solving the

resulting integral equation of the second kind.
All three approaches have been used in practice, see Glasko, Kulik and Tikhonov

[14] for approach (a), Anderssen and Bloomfield [15] for approach (b), and Cullum
[16] for approach (c).  Approach (a) is limited to lower order £2, whereas approach
(b) could be used with general regularizers as is done in Aref'eva [5].  In both
approaches, (a) and (b), if we work with the Euler equation, we have the question of
satisfying the natural boundary conditions associated with the Euler equation.  The
statement that (8) is equivalent to (5) includes these boundary conditions. With
approach (c) we note that the solution obtained automatically satisfies the natural
boundary conditions, because we must have

(83) etf=B-x(K*g-K*Kf).
We also note, however, that if we use approach (c), then the resulting operator in (82)
is only perturbed by ai from the rapidly decaying operator B~ lK*K.   Thus, this
approach does not seem desirable.  However, we can argue that Eq. (82) is not as bad
as it seems.   In contrast to what is often done in practice—namely, smoothing the

given data and then solving Kf = ¿fsmootn—in approach (c) we simultaneously smooth
the data B~ xK*g and alter the equation.  Smoothing the data in this way removes the
high frequency components of the noise in a way consistent with the original equation.
To see this consider the following.  For B~ ' generated by (6) the eigenvectors have
the oscillation property. That is, if we order the eigenvalues of B~x, pn, such that
pn i 0 as n î °o, then the number of zero crossings of the eigenvectors wn = sin nirt,
« = 1,2,... (for n = 0,w0 = 1), increases as n t °°.  Since the error in the modified

data satisfies

B-1K*e = ZiwTnK*e)pnwn,
n

the high frequency components of K*e (which already are smoother than those of e)

are modified by pn.
We could obtain a symmetrized version of (82)

(84) ((BXK*KBX) + cJ)h= BxK*g
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if we could compute Z?, = B   .  Then h will be derivatives of/   Once we have (84),
we can relate it directly to the results obtained previously with B = identity, see
Hilgers [17].  We note that if instead of using B with the natural boundary conditions,
we use another operator with different boundary conditions, see for example Hilgers
[17], then the approximations we generate will be good only if the desired solution
satisfies these conditions.  A comparison of the three approaches (a)—(c) is needed.

The preceding discussion demonstrates the importance of one's having some
understanding of the given operator K.  This can be used to estimate the appropriateness
of any proposed regularization, and to give an indication of potential difficulties.
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