## THE EFFECTIVE CRYSTAL FIELD POTENTIAL

JACEK MULAK and ZBIGNIEW GAJEK

W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland

2000



ELSEVIER

Amsterdam - Lausanne - New York - Oxford - Shannon - Singapore - Tokyo

## CONTENTS

| 1. | Introduction                                                                                                    | 1               |
|----|-----------------------------------------------------------------------------------------------------------------|-----------------|
| 2. | Parameterization of crystal field Hamiltonian<br>2.1. Operators and parameters of the crystal field Hamiltonian | <b>11</b><br>12 |
|    | 2.1.1. Operators related to spherical harmonics                                                                 |                 |
|    | 2.1.2. Operators related to tesseral harmonics                                                                  | 13              |
|    | 2.2. Basic parameterizations                                                                                    |                 |
|    | 2.2.1. $C_q^{(k)}$ tensor operator parameterization                                                             | 14              |
|    | 2.2.2. Of Stevens operator equivalent method                                                                    | 16              |
|    | 2.3. Symmetry transformations of the operators                                                                  |                 |
|    | 2.4. The number of independent crystal field parameters                                                         |                 |
|    | 2.5. Standardization of the crystal field Hamiltonian                                                           |                 |
|    | 2.6. Final remark                                                                                               | 29              |
| 3. | The effective crystal field potential.                                                                          |                 |
|    | Chronological development of crystal field models                                                               | 31              |
| 4. | Ionic complex or quasi-molecular cluster.                                                                       |                 |
|    | Generalized product function                                                                                    | 41              |
|    | 4.1 Concept of the generalized product function                                                                 |                 |
|    | 4.2 The density functions and the transition density functions                                                  |                 |
|    | 4.3 Model of the generalized product functions                                                                  |                 |
|    | 4.4 Crystal field effect in the product function model                                                          | 49              |
| 5. | Point charge model (PCM)                                                                                        | 53              |
|    | 5.1 PCM potential and its parameters                                                                            | 53              |
|    | 5.2 Simple partial PCM potentials                                                                               | 56              |
|    | 5.3 Extension of PCM – higher point multipole contribution                                                      | 61              |
| 6. | One-configurational model with neglecting                                                                       |                 |
|    | the non-orthogonality. The charge penetration                                                                   |                 |
|    | and exchange effects                                                                                            | 65              |
|    | 6.1 Classical electrostatic potential produced by the ligand                                                    |                 |
|    | charge distribution                                                                                             | 65              |
|    | 6.2 The charge penetration effect and the exchange interaction                                                  |                 |
|    | in the generalized product function model                                                                       | 68              |
|    | 6.3 The weight of the penetration and exchange effects                                                          |                 |
|    | in the crystal field potential                                                                                  |                 |
|    | 6.4 Calculation of the two-centre integrals                                                                     |                 |
|    | 6.5 Final remarks                                                                                               | 74              |

х

| 7. | The exclusion model. One-configurational approach                 |       |
|----|-------------------------------------------------------------------|-------|
|    | with regard to non-orthogonality of the wave functions            | 77    |
|    | 7.1 Three types of the non-orthogonality                          | 77    |
|    | 7.2 The renormalization of the open-shell Hamiltonian $H_a$       |       |
|    | owing to the non-orthogonality of the one-electron functions      | 79    |
|    | 7.3 The contact-covalency - the main component of the crystal 84  |       |
|    | field potential                                                   |       |
|    | 7.4 The contact-shielding                                         |       |
|    | 7.5 The contact-polarization                                      |       |
|    | 7.6 Mechanisms of the contact-shielding and contact-polarization  |       |
|    | in terms of the exchange charge notion                            | 88    |
| 8. | Covalency contribution, i.e. the charge transfer effect           | 91    |
|    | 8.1 The one-electron excitations.                                 |       |
|    | Group product function for the excited state                      | 91    |
|    | 8.2 The renormalization of the open-shell Hamiltonian due to      |       |
|    | the covalency effect                                              | 94    |
|    | 8.3 Basic approximations                                          |       |
|    | 8.4 The one-electron covalency potential $V^{cov}$                | 97    |
|    | 8.5 The one-electron covalency potential $V^{cov}$                |       |
|    | in the molecular-orbital formalism                                | 101   |
|    | 8.6 Remarks on the covalency mechanism                            | . 102 |
| 9  | Schielding and antishielding effect:                              |       |
| υ. | contributions from closed electron shells                         | 105   |
|    | 9.1 Phenomenological quantification of the screening effect       |       |
|    | 9.2 Microscopic model of the screening effect                     |       |
|    | 9.3 General expressions for the screening factors                 |       |
|    | 9.4 The screening factors                                         |       |
|    | 3.4 The screening factors                                         | . 110 |
| 10 | . Electrostatic crystal field contributions                       |       |
|    | with consistent multipolar effects. Polarization                  | 119   |
|    | 10.1 Expansion of the electrostatic potential of point charge     |       |
|    | system into the multipole series                                  | 119   |
|    | 10.2 Extended formula for the crystal field parameters including  |       |
|    | all multipole moments of the surroundings                         | 121   |
|    | 10.3 The self-consistent system of permanent and induced          |       |
|    | multipole moments in crystal lattice                              |       |
|    | 10.4 The off-axial polarization terms in local coordinate systems | 127   |
|    | 10.5 Typical examples of dipole and quadrupole polarization       |       |
|    | contributions to the crystal field potential                      | 129   |

| 11. | Crystal field effect in the Stevens                                        |     |  |  |
|-----|----------------------------------------------------------------------------|-----|--|--|
|     | perturbation approach                                                      | 131 |  |  |
|     | 11.1 The Wannier functions                                                 | 132 |  |  |
|     | 11.2 The perturbation scheme for degenerate systems                        |     |  |  |
|     | employing projection operators                                             | 133 |  |  |
|     | 11.3 The crystal field effect                                              |     |  |  |
|     |                                                                            |     |  |  |
| 12. | Specific mechanisms of metallic states                                     |     |  |  |
|     | contributing to the crystal field potential                                | 143 |  |  |
|     | ······································                                     |     |  |  |
| 13. | Screening the crystal field in metallic materials                          | 147 |  |  |
|     | 13.1 The Fourier form of the crystal lattice potential                     | 149 |  |  |
|     | 13.2 The dielectric static screening function $\hat{\epsilon}(\mathbf{q})$ |     |  |  |
|     | 13.3 The dynamic mechanism of the screening –                              |     |  |  |
|     | zero-point plasmon                                                         | 159 |  |  |
|     |                                                                            |     |  |  |
| 14. | Virtual bound state contribution to the                                    |     |  |  |
|     | crystal field potential                                                    | 163 |  |  |
|     | 14.1 The resonance scattering of conduction                                |     |  |  |
|     | electrons by a central potential                                           | 163 |  |  |
|     | 14.2 The nature of the virtual bound state                                 | 166 |  |  |
|     | 14.3 Spin-polarization of the virtual bound state                          | 167 |  |  |
|     | 14.4 Experimental manifestations of existing                               |     |  |  |
|     | the virtual bound states and methods of                                    |     |  |  |
|     | estimating their localization degree                                       |     |  |  |
|     | 14.5 The crystal field splitting of the virtual bound state                |     |  |  |
|     | 14.6 The primary crystal field effect relative to                          |     |  |  |
|     | the open-shell states $(4f)$                                               | 160 |  |  |
|     | 14.7 Corrections to the simple model of the                                | 100 |  |  |
|     | virtual bound state mechanism                                              | 174 |  |  |
|     |                                                                            | 1/4 |  |  |
| 15. | Hybridization or covalent mixing between                                   |     |  |  |
|     | localized states and conduction band                                       |     |  |  |
|     | states in metallic crystals                                                | 177 |  |  |
|     | 15.1 The essence of the hybridization                                      |     |  |  |
|     | 15.2 Hybridization contribution to the crystal                             |     |  |  |
|     | •                                                                          | 170 |  |  |
|     | field parameters                                                           |     |  |  |
|     | 15.3 The scale of the hybridization effect                                 | 182 |  |  |
|     | 15.4 Contribution to the crystal field potential                           |     |  |  |
|     | from a split-off state from the conduction band                            |     |  |  |
|     | in impurity systems                                                        | 184 |  |  |

| 16. |                                                           | 185        |
|-----|-----------------------------------------------------------|------------|
|     | 16.1 Electron density as a key variable                   | 185        |
|     | 16.2 The Kohn-Sham equations                              | 188        |
|     | 16.3 Local density approximation                          | 190        |
|     | 16.4 Extensions                                           | 192        |
|     | 16.4.1 Degenerate ground state and excited states         | 192        |
|     | 16.4.2 Multicomponent system                              | 196        |
|     | 16.4.3 Local spin density approximation                   |            |
|     | 16.4.4 Relativistic effects                               | 198        |
|     | 16.5 Exchange-correlation energy                          |            |
|     | 16.5.1 Self-interaction correction                        | 201        |
|     | 16.5.2 Generalized gradient approximation                 | 203        |
|     | 16.6 Mapping DFT on effective Hamiltonian                 | 204        |
|     | 16.7 Applications                                         | 206        |
|     | 16.7.1 Ionic compounds                                    | 206        |
|     | 16.7.2 Intermetallic compounds                            |            |
|     | 16.7.3 Final remarks                                      | 208        |
|     |                                                           |            |
| 17. | Analysis of the experimental data. Interpretation of      |            |
|     |                                                           | <b>211</b> |
|     | 17.1 Phenomenological Hamiltonian                         |            |
|     | 17.2 Simplified crystal field models                      |            |
|     | 17.2.1 Decomposition of the CF potential. Virtual ligands |            |
|     | 17.2.2 Superposition model and angular overlap model      |            |
|     | 17.2.3 Limitations                                        |            |
|     | 17.2.4 Non-equivalent ligands                             |            |
|     | 17.3 Towards applications                                 | 224        |
| 18. | Lattice dynamics contribution                             | 229        |
|     | 18.1 Adiabatic and harmonic approximations                | 230        |
|     | 18.2 Collective (normal) coordinates and                  |            |
|     | the "quasi-molecular" model                               | 233        |
|     | 18.3 The Jahn-Teller effect                               | 235        |
|     | 18.4 Lattice dynamics and the crystal field effect        |            |
|     |                                                           |            |
| 19. | Extension of the crystal field potential                  |            |
|     | beyond the one-electron model                             | 247        |
|     | 19.1 Two-electron correlation effect in the crystal       |            |
|     | field model                                               | 247        |
|     | 19.2 Parameterization of the two-electron potential       | 248        |
|     | 19.3 The term dependent crystal field                     |            |
|     | 19.4 Spin correlated crystal field (SCCF)                 |            |
|     | 19.5 Many-electron approach to the crystal field effect   | 254        |

| 20. | Appendices                                                   | 257 |
|-----|--------------------------------------------------------------|-----|
|     | A. Transformation from local to the global coordinate system | 257 |
|     | B. 3n-j symbols                                              | 259 |
|     | C. Methods of orthogonalization of functions                 | 261 |
|     |                                                              |     |
| 21. | References                                                   | 263 |
| 22. | Author index                                                 | 287 |
| 23. | Subject index                                                | 293 |