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1 Introduction

Large Scale Structure Surveys have the potential of becoming the leading cosmological

observable in the next decade. They contain a tremendous amount of cosmological infor-

mation. If we were able to extract information from all the modes that go from the horizon

scale ∼ 104 Mpc to the non-linear scale ∼ 10 Mpc, we would obtain about
(

104

10

)3

∼ 109 (1.1)
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independent modes. The Planck satellite in comparison has about (2×103)2 ∼ 106 modes.

Of course, accessing all this information is much harder than for the CMB, due to the short

scale non-linearities. There are several aspects to this problem. The first problem is related

to our currently limited understanding of the evolution of dark matter on large scales. Non-

linear corrections are very important even on scales larger than 10 Mpc, because modes of

different wavelengths couple to each other. Understanding these corrections is a problem

that affects all large scale structure observables. There are then two additional issues that

affect most, but at least not all, observables. One is the fact that most dark matter is

clumped in very non-linear structures (dark matter halos); and the other is the fact that

what we often observe are galaxies, and not just dark matter halos, and not even dark

matter long wavelength perturbations. The solution to these two last problems requires

the correct understanding of the so-called halo- and galaxy-biases. These two problems,

while important and deeply interesting in their own right, are very astrophysical in nature,

and we do not address them here.

Instead here we try to address in a rigorous way the first problem, that is the prediction

of the dark matter distribution on scales larger than the non-linear scale. The fact that

the universe is characterized by two well separated scales, the Hubble scale, over which

perturbations are linear, and the non-linear scale, which indeed characterizes the scale over

which gravitational collapse overtakes the expansion of the universe, makes the problem

amenable to an Effective Field Theory (EFT) treatment. An effective theory is a description

of a system that captures all the relevant degrees of freedom and describes all the relevant

physics at a macroscopic scale of interest. The short distance (so called ultraviolet or ‘UV’)

physics is integrated out and affects the effective field theory only through various couplings

in a perturbative expansion in the ratio of microphysical UV scale/s to the macroscopic

scale being probed. This technique has been systematically used in particle physics and

condensed matter physics for many years, but has not been fully used in astrophysics and

cosmology. An important early (and recent) application of these techniques in cosmology is

the so-called Effective Field Theory of Inflation [1, 2]. In a similar vein, understanding the

large scale properties of the universe is very important, and is ready for a careful analysis.

Indeed the situation in the universe is very similar to what happens in the chiral

Lagrangian that describes pion interactions in Particle Physics. At very low energies,

pions are weakly interacting. These interactions and the size of the fluctuations grow

with energy until we hit the Quantum ChromoDynamics (QCD) scale, ∼ 4πFπ, at which

the pions become strongly coupled. The Chiral Lagrangian [3] offers the correct effective

theory allowing arbitrarily precise predictions, up to non-perturbative effects, at energies

E ≪ 4πFπ. In our universe, matter fluctuations are small at large distances and becomes

larger and larger as we move up to the non-linear scale. Since the size of the non-linear

terms, which are nothing but interactions, grows with the size of the fluctuations, we see

that at long distances the universe should be described by some weakly coupled degree of

freedom, that becomes more and more interacting as we move closer to the non-linear scale,

at which point the fluctuations become strongly coupled. The coupling constant should

indeed be represented by the ratio of the considered wavenumber k over the wavenumber

at the non-linear scale kNL: k/kNL. Notice that indeed the size of the density perturbations
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δρ/ρ on a scale k scales as (k/kNL)
2. This scaling suggests the existence of an effective

field theory that should allow us to describe with arbitrary precision the universe on scales

k ≪ kNL, very much as the Chiral Lagrangian represents the right effective field theory to

describe pion dynamics to arbitrary precision.

Such an effective theory would have particularly relevant observational implications.

Already now, large scale structure surveys such as BOSS or DES are measuring the galaxy-

galaxy correlation function, so called Baryon Acoustic Oscillations (BAO), at scales of order

100 Mpc. Next generation experiments such as LSST will measure this quantity at about

percent precision. These observations contain huge amount of information on Dark Energy

and on Inflation, through for example the non-Gaussianity of the primordial perturbations.

The BAO scale is about one order of magnitude longer than the non-linear scale, where

δρ/ρ ∼ 10−2, and therefore physics at this scale must be describable by rigorous perturba-

tive methods. The alternative is to rely on either time consuming numerical simulations,

or on analytical approaches that however are limited by some irreducible mistake that is

hard to quantify precisely. In an ideal situation, numerical N -body simulations should be

quickly done only at small scales, to describe phenomena affected by gravitational collapse,

rather than running large simulations to describe weakly coupled physics. This has been

indeed recently elucidated in the context of the bias, where it was shown that in order to

derive the bias on large scales one needs to run very small simulations in a curved uni-

verse [4]. This line of reasoning is indeed very similar to what happens in QCD, where

we perform lattice simulation to measure quantities relevant at energies above around one

GeV, while we use the chiral Lagrangian for predictions at smaller energies.

The effective field theory (EFT) of the long distance universe was initially developed by

some of us in [5]. It was noticed that by concentrating on length scales longer than the non-

linear scale, the universe is described by a fluid with small perturbations. The equations

of motion of this fluid are organized in a derivative expansion in the ratio of the considered

wavenumber over the wavenumber associated to the non-linear scale kNL ∼ 1/10 Mpc−1.

At leading order in derivatives, the fluid has the stress tensor of an ordinary imperfect

fluid, characterized by a speed of sound for the fluctuations, a bulk and a shear viscosity,

plus a stochastic pressure component. This makes our approach different with respect to

the ‘standard’ approaches both at a quantitative and a qualitative level.

The purpose of this paper is to further develop this effective theory and be able to

make observational predictions. The parameters that characterize the fluid, the speed of

sounds, bulk viscosity, etc., are determined by the microphysics at the non-linear scale,

that we call UV, and cannot be derived from within the effective theory. They have to

be either fit to observations, or measured in small N -body simulations. At this point, the

EFT becomes predictive. Again, this is very similar to what happens in QCD, where one

can measure the pion coupling constant Fπ in lattice simulations, after which the Chiral

Lagrangian becomes predictive.

Our basic method and key results are summarized as the following:

• By smoothing the collisionless Boltzmann equation for non-relativistic matter in an

expanding FRW background on a length scale Λ−1, we establish the continuity and
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Euler equations for an effective fluid. The Euler equation includes an effective stress-

tensor [τ ij ]Λ that is sourced by the short-modes δs.

• By taking correlation functions of the stress tensor in the presence of long wavelength

fluctuations, we define an effective stress-tensor that is only a function of the long

wavelength fluctuations. It takes the form

[τ ij ]Λ = δijpb + ρb

[

c2s δ
ijδl −

c2bv
Ha

δij ∂kv
k
l

−3

4

c2sv
Ha

(

∂jvil + ∂ivjl −
2

3
δij ∂kv

k
l

)

]

+ . . . , (1.2)

where the various parameters c2s, c
2
bv etc. are defined by proper correlation functions

of short wavelength and long wavelength fluctuations.

• By directly evaluating the stress tensor from the microphysical theory, i.e., from N -

body simulations, and computing the appropriate correlation functions, we calculate

the value of the fluid parameters. For a ΛCDM universe with standard cosmological

parameters at redshift z = 0 and smoothing scale Λ = 1/3h Mpc−1, we find

c2comb(Λ = 1/3) = 0.96± 0.1× 10−6 (c2) , (1.3)

where c2comb is the combination of c2s, c
2
bv and c2sv that is relevant for the leading non-

linear correction to the power spectrum (one-loop in perturbation theory), and c is

the speed of light.

• Alternatively, by directly matching the couplings of the effective fluid to the measured

power spectrum, we obtain c2comb(Λ = 1/3) ≃ 0.9 × 10−6c2 in remarkable agreement

with the direct measurement from N -body simulations.

• The fluid parameters carry Λ dependence (as does any ‘bare’ parameter in an in-

teracting field theory). This cutoff dependence is taken to cancel against the cutoff

dependence of the loop integral. As usual in effective field theories, we ‘renormalize’

the theory by sending the cutoff Λ → ∞ and carefully changing the fluid parameters

so that predictions at low wavenumbers are not changed in the process. The finite

values of the fluid parameters such as c2comb in the Λ → ∞ limit is a direct measure of

the irreducible finite error made in standard approaches that approximate the dark

matter on large scales as a pressureless ideal fluid. This is an irreducible error that is

not recovered even by solving non-linearly the equations for a pressureless ideal fluid,

as the various perturbative approaches attempt to do. This occurs simply because

the equations they solve are not correct. Our approach, in contrast, should reach

arbitrary precision, at least in principle, up to non-perturbative corrections.

• The pressure and viscosity dampen the power spectrum by acting in opposition to

gravity, which makes sense intuitively. This is able to help explain the observed

shape of the baryon-acoustic-oscillations in the power spectrum relative to standard

perturbation theory (SPT).

– 4 –



J
H
E
P
0
9
(
2
0
1
2
)
0
8
2

• More precisely, at one-loop the density-density power spectrum receives a correction

δP from the fluid parameters, which we find to be

δP (k) ∼ −c2comb

k2

H2
P11,l(k) (1.4)

where P11,l(k) is the linear power spectrum. Since this is negative and grows as a

function of k, the power spectrum is reduced compared to SPT at high k’s, improving

the agreement with the full non-linear spectrum.

• We will find that already at one-loop, the computed power spectrum agrees at percent

level with the non-linear one up to k ∼ 0.24h Mpc−1. This suggest that in large scale

structure surveys we should be able to extract primordial information all the way to

at least such an high wavenumber, improving greatly with respect to the CMB our

knowledge of the origin of the universe.

During the years there has been a very large and relevant amount of work in under-

standing perturbatively the large scale clustering of dark matter. An incomplete sample of

these works is given by [6–26].

2 From dark matter particles to cosmic fluid

We take dark matter to be fundamentally described by a set of identical collisionless clas-

sical non-relativistic particles interacting only gravitationally. This is a very good approx-

imation for all dark matter candidates apart from very light axions. Given that on large

scales baryons follow dark matter, we can include them in the overall dark matter descrip-

tion. As we discuss later, we also neglect general relativistic effects and radiation effects.

In this approximation, numerical N -body simulations exactly solve our UV theory. The

coefficients of our effective fluid can therefore be extracted directly from the N -body simu-

lations, following directly the procedure described in [5]. Here, the UV theory is described

by a Boltzmann equation. Therefore, in order to be able to extract the fluid parameters

from N -body simulations, we need to derive the fluid equations from the Boltzmann equa-

tions and subsequently express the parameters of the effective fluid directly in terms of

quantities measurable in an N -body simulation. This is the task of this section.

2.1 Boltzmann equation

Let us start from a one-particle phase space density fn(~x, ~p) such that fn(~x, ~p)d
3xd3p

represents the probability for the particle n to occupy the infinitesimal phase space volume

d3xd3p. For a point particle, we have

fn(~x, ~p) = δ(3)(~x− ~xn)δ
(3)(~p−ma~vn) . (2.1)

The total phase space density f is defined such that f(~x, ~p)d3xd3p is the probability that

there is a particle in the infinitesimal phase space volume d3xd3p:

f(~x, ~p) =
∑

n

δ(3)(~x− ~xn)δ
(3)(~p−ma~vn) . (2.2)

– 5 –
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We define the mass density ρ, the momentum density πi and the kinetic tensor σij as

ρ(~x, t) =
m

a3

∫

d3p f(~x, ~p) =
m

a3

∑

n

δ(3)(~x− ~xn) , (2.3)

πi(~x, t) =
1

a4

∫

d3p pif(~x, ~p) =
m

a3

∑

n

vinδ
(3)(~x− ~xn) , (2.4)

σij(~x, t) =
1

ma5

∫

d3p pipjf(~x, ~p) =
∑

n

m

a3
vinv

j
nδ

(3)(~x− ~xn) .

The particle distribution fn evolves accordingly to the Boltzmann equation

Dfn
Dt

=
∂fn
∂t

+
~p

ma2
· ∂fn
∂~x

−m
∑

n̄ 6=n

∂φn̄

∂~x
· ∂fn
∂~p

= 0 , (2.5)

where φn is the single-particle Newtonian potential. There are two important points to

highlight about the former equation. First, we have taken the Newtonian limit of the full

general relativistic Boltzmann equation. This is an approximation we make for simplicity.

All our results can be trivially extended to include general relativistic effects. However, it is

easy to realize that the Newtonian approximation is particularly well justified. Non-linear

corrections to the evolution of the dark matter evolution are concentrated at short scales,

with corrections that scale as k2/k2NL. General relativistic corrections are expected to scale

as k2/(aH)2. This means that we should be able to cover up to wavelength of order 300

Mpc before worrying about per mille General relativity corrections. Furthermore, one of

the main goals of this paper is to recover the parameters of the effective fluid of the universe

from very short scale simulations valid on distances of order of the non-linear scale. The

parameters we will extract in the Newtonian approximation are automatically valid also for

the description of an effective fluid coupled to gravity in the full general relativistic setting.

A second important point to highlight in the former Boltzmann equation is about the

single-particle Newtonian potential φn. Following [5], the Newtonian potential φ is defined

through the Poisson equation

∂2φ = 4πGa2 (ρ− ρb) , (2.6)

with ρb being the background density and ∂2 = δij∂i∂j . We raise and lower spatial indexes

with δij . The solution reads

φ =
∑

n

φn +
4πGa2ρb

µ2
, (2.7)

φn(~x) = − Gm

|~x− ~xn|
e−µ|~x−~xn| . (2.8)

Notice that the overall φ(~x) is IR divergent in an infinite universe. This is due to a breaking

of the Newtonian approximation. We have regulated it with an IR cutoff µ that we will

take to zero at the end of the calculation. Our results do not depend on µ, as indeed we

are interested in very short distance physics.

– 6 –
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By summing over n, we obtain the Boltzmann equation for f

Df

Dt
=

∂f

∂t
+

~p

ma2
· ∂f
∂~x

−m
∑

n,n̄;n̄ 6=n

∂φn̄

∂~x
· ∂fn
∂~p

= 0 . (2.9)

2.2 Smoothing

Following [5], we construct the equations of motion for the effective fluid by smoothing

the Boltzmann equations and by taking moments of the resulting long-distance Boltzmann

equation. The smoothing guarantees that the Boltzmann hierarchy can be truncated,

leaving us with an effective fluid. indeed, notice that it is not trivial at all that we should

end up with an effective fluid. Fluid equations are usually valid over distances longer than

the mean free path of the particles. But here for dark matter particles the mean free path

is virtually infinite. What saves us is that the dark matter particles have had a finite

amount of proper time, of order H−1, to travel since reheating, and they traveled at a very

non-relativistic speed. This defines a length scale vH−1 ∼ 1/kNL which is indeed of order

of the non-linear scale. This length scale plays the role of a mean free path, as verified

in [5]. The truncation of the Boltzmann hierarchy is regulated by powers k/kNL ≪ 1.

We define the Gaussian smoothing

WΛ(~x) =

(

Λ√
2π

)3

e−
1
2
Λ2x2

, WΛ(k) = e−
1
2

k2

Λ2 , (2.10)

with Λ2 representing a k-space, comoving cutoff scale. This will smooth out quantities with

wavenumber k & Λ, or equivalently with waveleghts smaller than λ . 1/Λ. We regularize

our observable quantities O(~x, t), ρ, π, φ, . . . , by taking convolutions in real space with the

filter, defining long-wavelength quantities as

Ol(~x, t) = [O]Λ (~x, t) =

∫

d3x′WΛ(~x− ~x′)O(~x′) . (2.11)

Notice that in Fourier space W (k) → 1 as k → 0: our fields are asymptotically untouched

at long distances.

The smoothed Boltzmann equation becomes

[

Df

Dt

]

Λ

=
∂fl
∂t

+
~p

ma2
· ∂fl
∂~x

−m
∑

n,n̄,n 6=n̄

∫

d3x′WΛ(~x− ~x′)
∂φn

∂~x′
(~x′) · ∂fn̄

∂~p
. (2.12)

Fluid equations are obtained by taking successive moments

∫

d3p pi1 . . . pin
[

Df

Dt

]

Λ

(~x, ~p) = 0 , (2.13)

creating in this way a set of coupled differential equations known as Boltzmann hierarchy.

As we will explain in more detail later, it will be sufficient for the purposes this paper to stop

at the first two moments (one-loop approximation). The first two moments will give the

– 7 –
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continuity and momentum equations in the approximation in which the fluid is described

by the Navier-Stokes approximation, with the addition of a stochastic term. We obtain

ρ̇l + 3Hρl +
1

a
∂i(ρlv

i
l) = 0 , (2.14)

v̇il +Hvil +
1

a
vjl ∂jv

i
l +

1

a
∂iφl = − 1

aρl
∂j
[

τ ij
]

Λ
. (2.15)

Let us define the various quantities that enter in these equations. We define the long

wavelength velocity field as the ratio of the momentum and the density

vil =
πi
l

ρl
. (2.16)

The right hand side of the momentum equation (2.15) contains the divergence of an effective

stress tensor which is induced by the short wavelength fluctuations. This is given by

[

τ ij
]

Λ
= κijl +Φij

l , (2.17)

where κ and Φ correspond to ‘kinetically-induced’ and ‘gravitationally-induced’ parts:

κijl = σij
l − ρlv

i
lv

j
l , (2.18)

Φij
l = − 1

8πGa2

[

wkk
l δij − 2wij

l − ∂kφl∂
kφlδ

ij + 2∂iφl∂
jφl

]

,

where

wij
l (~x) =

∫

d3x′WΛ(~x− ~x′)

[

∂iφ(~x′)∂jφ(~x′)−
∑

n

∂iφn(~x
′)∂jφn(~x

′)

]

. (2.19)

Note that we have subtracted out the self term from wij
l , as necessary when passing from

the continuous to the discrete description in the Newtonian approximation, and used that

∂2φ = 4πGa2(ρ− ρb) and ∂2φl = 4πGa2(ρl − ρb) to express Φl in terms of φ and φl. In the

limit in which there are no short wavelength fluctuations, and Λ → ∞, κl and Φl vanish. In

appendix A we provide the above expression written just in terms of the short wavelength

fluctuations.

2.3 Integrating out UV physics

The effective stress tensor that we have identified is explicitly dependent on the short

wavelength fluctuations. These are very large, strongly coupled, and therefore impossible

to treat within the effective theory. When we compute correlation functions of long wave-

length fluctuations, we are taking expectation values. Since short wavelength fluctuations

are not observed directly, we can take the expectation value over their values. This is the

classical field theory analog of the operation of ‘integrating out’ the UV degrees of freedom

in quantum field theory, now applied to classical field theory. The long wavelength per-

turbations will affect the result of the expectation value of the short modes, through, e.g.,

– 8 –
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tidal like effects. This means that the expectation value will depend on the long modes. In

practice, we take the expectation value on a long wavelength background. The resulting

function depends only on long wavelength fluctuations as degrees of freedom. In this way,

we have defined an effective theory that contains only long wavelength fluctuations. Since

long wavelength fluctuations are perturbatively small, we can Taylor expand in the size of

the long wavelength fluctuations. Schematically we have

〈
[

τ ij
]

Λ
〉δl = 〈

[

τ ij
]

Λ
〉0 +

∂〈
[

τ ij
]

Λ
〉δl

∂δl

∣

∣

∣

∣

∣

0

δl + . . . . (2.20)

For the precision we pursue in the rest of the paper, we will stop at linear level in the

long wavelength fluctuations, though nothing stops us from going to higher order. By the

symmetries of the problem, the resulting stress tensor must take the following form

〈
[

τ ij
]

Λ
〉δl =pbδ

ij+ρb

[

c2sδlδ
ij− c2bv

Ha
δij∂kv

k
l −

3

4

c2sv
Ha

(

∂jvil+∂ivjl −
2

3
δij∂kv

k
l

)]

+∆τ ij+. . . .

(2.21)

This is the stress tensor of an imperfect fluid. pb is the background pressure that is induced

by short distance inhomogeneities even in the absence of long wavelength fluctuations. c2s
is the speed of sounds of the fluctuations: δp = c2sδρ. The parameters cbv and csv are the

coefficients for the bulk ζ and the shear η viscosity respectively, with units of velocity. They

are related to η and ζ by the relation η = 3ρbc
2
sv/(4H), ζ = ρbc

2
bv/H . ∆τ ij represents a

stochastic term, that takes into account the difference between the actual value of τ ij in a

given realization and its expectation value.1 We will come back to this term shortly, but

it is worth noting that neglecting this term in the above equations reproduces the familiar

Navier-Stokes equations.

Finally, the ellipses (. . .) represent terms that are either higher order in δl, or higher

order on derivatives of δl. Indeed, higher derivative terms will be in general suppressed by

k/kNL ≪ 1, and, as typical in effective field theories, we take a derivative expansion in those.

Astrophysically, these terms would corresponds to the effects induced by a sort of higher-

derivative tidal tensor. Once we expand in derivatives of the long wavelength fluctuations,

we take the parameters in (2.21) to be spatially independent, but time dependent.

The coefficient δpb, cs, csb, csv are determined by the UV physics and by our smoothing

cutoff Λ, and are not predictable within the effective theory. They must be measured from

either N -body simulations, or fit directly to observations. This is akin to what happens

in the Chiral Lagrangian for parameters that can be measured in experiments or in lattice

simulations, such as Fπ. We first define the correlation functions that will allow us to

extract these parameters from small N -body simulations.

1For the readers familiar with the in-in formalism, this term will take into account the cut-in-the-middle

one-loop diagrams [27–29].
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2.4 Matching correlation functions

It useful to define the following quantities from the stress tensor

J i
l =

1

aρb
∂j
[

τ ij
]

Λ
, Aki

l =
1

a
∂kJ i

l , (2.22)

Al =
1

a
∂iJ

i
l , Bl =

1

a2ρb

(

∂i∂j − δij∂
2
) [

τ ij
]

Λ
,

and to introduce a dimensionless velocity divergence

Θl = −∂kv
k
l

Ha
, Θki

l = −∂kvil
Ha

. (2.23)

Then, according to (2.21), we have

aJ i
l = c2s∂iδl +

3

4
c2sv∂jΘ

ji
l +

(

c2sv
4

+ c2bv

)

∂iΘl , (2.24)

a2Aki
l = c2s∂

k∂iδl +
3

4
c2sv∂

k∂jΘ
ji
l +

(

c2sv
4

+ c2bv

)

∂k∂iΘl ,

a2Al = c2s∂
2δl +

(

c2sv + c2bv
)

∂2Θl ,

a2Bl = c2sv∂
2Θl .

In order to extract the parameters of the effective fluid, we multiply each of these functions

with long wavelength fields, and take expectation values. By forming suitable combinations

of these, the parameters of the effective fluid can be extracted. We will need the following

set of correlation functions

PAδ(x) = 〈Al(~x
′ + ~x)δl(~x

′)〉 , (2.25)

PAΘ(x) = 〈Al(~x
′ + ~x)Θl(~x

′)〉 ,
PAkiΘki

(x) = 〈Aki
l (~x′ + ~x)Θlki(~x

′)〉 ,
PBΘ(x) = 〈Bl(~x

′ + ~x)Θl(~x
′)〉 ,

Pδδ(x) = 〈δl(~x′ + ~x)δl(~x
′)〉 ,

PδΘ(x) = 〈δl(~x′ + ~x)Θl(~x
′)〉 ,

PΘΘ(x) = 〈Θl(~x
′ + ~x)Θl(~x

′)〉 ,
PΘjiΘk

i
(x) = 〈Θji

l (~x
′ + ~x)Θk

l i(~x
′)〉 ,

where δl = δρl/ρb. From these we obtain the following expressions for the parameters of

the effective theory

c2s = a2
PAΘ(x)∂

2PδΘ(x)− PAδ(x)∂
2PΘΘ(x)

(∂2PδΘ(x))
2 − ∂2Pδδ(x)∂2PΘΘ(x)

, (2.26)

c2v = a2
PAδ(x)∂

2PδΘ(x)− PAΘ(x)∂
2Pδδ(x)

(∂2PδΘ(x))
2 − ∂2Pδδ(x)∂2PΘΘ(x)

,

c2sv =
4

3
a2

PAkiΘki
(x)− PAΘ(x)

∂2PΘkiΘki
(x)− ∂2PΘΘ(x)

= a2
PBΘ(x)

∂2PΘΘ(x)
,
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where c2v = c2sv + c2bv is the sum of the viscosity coefficients. By extracting the correlation

functions in (2.25) from N -body simulations, and performing the ratios in (2.26), we should

be able to extract the parameters of the effective theory. Notice that the ratios are supposed

to be spatially independent. Such behavior is expected to hold at large distances x ≫ Λ−1

where the higher derivative terms are negligible.

In simulations, we should in principle also measure the stochastic components of the

stress tensor. In the two point function at one-loop, at leading order in derivatives, it

enters just the correlation function of the trace. This amounts to measuring

〈J i
l (~x, t)J

j
l (~x+ ~x′, t′)〉 . (2.27)

We will see that the effect of this stochastic term is accidentally higher order in δl and so

does not enter at leading order.

After all these parameters have been measured in N -body simulations, the EFT is

prone for perturbation theory. It is alternatively possible to perform directly perturbation

theory and fit the results to observations. We will be able to perform both approach and

check that we obtain the same result. We will describe in detail how to measure these

quantities in simulations in appendix D and we will give the results of these measurements

in section 4. For the moment we will instead directly move to apply perturbation theory

with our EFT.

These parameters can either be measured from N -body simulations directly or kept

generic and then extracted by fitting the results to observables. We are able to do both

and verify that we obtain the same result. We will describe in detail how to measure these

quantities in simulations in appendix D and we will give the results of these measurements

in section 4. First we develop perturbation theory within the EFT that will allow us to

make predictions and to extract these parameters from observations.

3 Perturbation theory with the EFT

We now proceed to perform perturbation theory within our EFT. The non-linear equations

of motion that we need to solve are

∇2φl =
3

2
H2

0Ωm
a30
a
δl + . . . , (3.1)

δ̇l = −1

a
∂i
(

(1 + δl)v
i
l

)

,

v̇il +Hvil +
1

a
vjl ∂jv

i
l +

1

a
∂iφl = −1

a
c2s∂

iδl +
3

4

c2sv
Ha2

∂2vil +
4c2bv + c2sv
4Ha2

∂i∂jv
j
l −∆J i + . . . ,

where ˙ = d/dt, H = ȧ/a, ∆J i = ∂j(∆τ ji)/(aρb), Ωm is the present day matter fraction,

a0 is the present day scale factor, usually taken to be equal to 1, and . . . represent higher

order terms (in sense that we will explain shortly) that come from the expression of the

short wavelength stress tensor τ ij in terms of long wavelength fluctuations. Our theory is

defined on scales longer than the non-linear scale. For this reason we have δl ≪ 1. The long-

wavelength velocity vl and the long-wavelength φl are small even inside the the non-linear

– 11 –
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scale and they are even smaller at larger distances. This means that we can reliably solve

the above non-linear equations iteratively around the linear solution. Such an iterative

solution is very similar to what is done in quantum field theory, where the solution to the

quantum non-linear equations is organized in Feynman diagrams. Indeed we can organize

the various perturbative terms around Feynman diagrams even in this case. The result

is very similar to what is computed in the in-in formalism, for example when computing

quantum corrections to inflationary correlation functions [27–29]. Indeed, the calculation

we are going to do shares many of the features that are present in normal quantum field

theory computations: cutoff, renormalization, running, and so on are all concepts that will

appear and prove useful as we proceed. They have nothing to do with the word ‘quantum’

in ‘quantum field theory’, rather they have to do with the ‘field theory’. Our calculation

is for a classical field theory and shares all these features.

3.1 Organization of the perturbation theory

The simplest way to organize our perturbation theory is to use the fact that, in any order

of magnitude approximation, φ is constant at all scales, of order 10−5, and that well inside

the horizon the Newtonian approximation holds. For length scales longer than the equality

scale, at the linear level we therefore have

φl (∆x ∼ L) ∼ 10−5 , v2l (∆x ∼ L) ∼ 10−5 1

HL
, (3.2)

δl (∆x ∼ L) ∼ 1

H2∂2
φl (∆x ∼ L) ∼ 10−5 1

H2L2
.

We see that as L → 0, δl grows and indeed becomes of order one at L ∼ λNL.
2 At distances

larger than the non-linear scale, we therefore expand in powers of δl, keeping in mind that

the additional fluctuations scale as in (3.2). Let us estimate the relative size of the terms.

Loop corrections. It is easy to estimate from the non linear structure of the equations

that ∂iv
i ∼ Hδl. Notice that in the power spectrum we need to take two non-linear

corrections, or alternatively look at the cubic corrections. The non-linear terms scale as

non− linear terms

Hubble friction
∼ δlv

j
l ∂jv

i
l

Hvil
∼ H δ2l v

i
l

Hvil
∼ δ2l (3.3)

Loop corrections therefore scale as δ2l , peaked at the highest possible scale within the

theory Λ.

Pressure and viscosity terms. These terms result from integrating out the modes

higher than the Λ scale. So, naively they should scale as the δ at the extreme UV scales

2For the propose of estimating at order of magnitude level, we have assumed that the k modes under

consideration are longer than the equality scale keq ∼ 0.01 Mpc−1 and taken φl to be k-independent. On

shorter scales φl decays, and the estimates need to be slightly modified. This subtlety will be important

for the actual numerical contribution of the various terms, and it will be properly accounted for, but is not

particularly relevant for the order of magnitude estimates that control our power counting, and so we will

ignore it for simplicity’s sake.
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beyond the effective theory. Since the theory in the UV is strongly coupled, very large

corrections are expected, and the result cannot be extrapolated from the linear regime,

even at the order of magnitude level. This is why we will measure the parameters such as

c2s from N -body simulations. What we will find is that these parameters are of order 10−5.

This happens because the combination of short modes that generates the parameters like cs
are such that short modes that have virialized do not contribute.3 Since these terms scale

as φδ, the contribution is peaked at those modes that have just become non-linear δ ∼ 1,

but not yet virialized. We therefore expect the parameters c2s’s to be of order φ ∼ 10−5.

We will see that the fact that short modes entered the horizon in the radiation era makes

this a bit of an overestimate. At this point we are ready to estimate the size of these

corrections:
Pressure ,Viscosity

Hubble friction
∼ c2s∂δl

Hvil
∼ c2s

∂2δl
H2δl

∼ c2s
10−5

δl . (3.4)

Notice that thanks to the strongly coupled UV theory (or thanks to the fact that non-linear

structures virialize), we have that for c2s ∼ 10−5, the contribution from these terms is larger

than the one loop contribution in the low energy theory. This is so because the theory is

strongly coupled in the UV. We conclude that one insertion of these terms counts at least

as a one-loop term.

Stochastic terms. Let us now continue on to evaluate the effect of the stochastic terms.

This is a bit more complicated. Let us evaluate the relative effect on the power spectrum.

The structure of the equations leads to the following approximate non-linear solution

δl,non−lin ∼ δl,lin + c2s
∂2

H2
δl,lin +

∂2

H2

∆τ

ρb
. (3.5)

In the power spectrum we therefore have

〈δlδl〉1−loop ∼ c2s
k2

H2
〈δ2l 〉+

(

k2

H2ρb

)2

〈∆τ2〉 , (3.6)

as the stochastic part must be correlated with itself. Due to virialization, we expect that

the correlation function of τ should be Poisson like on independent pixels of order the

non-linear scale k−1
NL. We therefore estimate

〈∆τ2〉 ∼ 〈τ2〉
(

k

kNL

)3

∼
(

c2sρb
)2
(

k

kNL

)3

. (3.7)

This is indeed confirmed by calculations in perturbation theory [5]. We therefore have

Stochastic

Pressure
∼ k

kNL
, ⇒ Stochastic

Friction
∼ k

kNL
δl ∼ δ

3/2
l . (3.8)

This tells us that on scales longer than the non-linear scale, the contribution of the stochas-

tic pressure is parametrically smaller than the pressure effects. Since in this paper we will

3This was found and used in [5] to show that there is very little backreaction on the evolution of the

universe from short scale non-linearities. Short scale gravitational collapse changes the equation of state of

the overall universe by a relative factor of order 10−5.
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stop at one-loop order, we can therefore neglect this correction. It should be noted that

these contributions scale parametrically differently than the loop contributions, and so,

depending on the scale considered, they might be more relevant that a 2-loop contribution.

We notice that something similar happens also at the level of dissipative fluids, where we

generically include dissipative terms through the Navier-Stokes equations, but we neglect

stochastic terms.

Higher derivative terms. When we take the expectation value of the short-distance

stress tensor in a background of a long mode, we have Taylor expanded both in the long

wavelength fluctuations and in their derivatives. Higher power corrections scale with powers

of δl, and so corresponds to higher-loop terms. Higher derivative terms instead scale as

powers of k2/k2NL ∼ δl, where we have taken the squared because of rotational invariance.

This shows that higher derivative terms scale nicely as loop terms. If we allow the cutoff

to remain finite, we should also include higher derivative terms that scale as k2/Λ2.

General relativistic and radiation corrections. In this paper we will neglect gen-

eral relativistic corrections and all non-linear contributions coming from the fact that the

universe was radiation dominated at early times. General Relativistic corrections scale as

GR Corrections

Newtonian Approximation
∼
(

H

k

)2

∼ 10−5

δl
(3.9)

For the high scales where non-linear corrections are relevant, for example at the BAO scale

kBAO ∼ 10−2, these corrections are of order 10−4, and so uninteresting from this point

of view. Radiation is the dominant component of the universe at early times. Neglecting

it amounts to neglect corrections that scale as a/aeq ∼ 10−3, where a is the scale factor

and aeq is the scale factor at matter radiation equality. Inclusion of these corrections in

perturbation theory has been studied in [21], and it gives a small correction to power

spectrum, and small, but potentially measurable, corrections to the three-point function,

corresponding to fNL ∼few. Both General Relativistic effects and radiation effects do not

represent an intrinsic limitation of our EFT. They can be straightforwardly included in our

formalism, by simply improving the equations of motion we use in this paper.

In summary, we see that apart from the stochastic terms and some higher derivative

terms, all the remaining terms: loops, pressure, higher derivatives and higher powers of

δl from τ , scale as powers of δl, which is our main ordering parameter. Stochastic terms

instead contribute at leading order as δ
3/2
l , so they count as one loop and a half. Cutoff-

dependent higher derivative terms scale as k2/Λ2.

Cutoff dependence and effective expansion parameter. So far, it looks like that our

expansion parameter is the highest δl we have in our theory, which is δl(k ∼ Λ) ∼ Λ2/k2NL.

However, the situation is even better than this. So far, we have defined our theory with a

regulating cutoff at k ∼ Λ. Because of this, all our intermediate results depend explicitly

on Λ: cs(Λ), csv(Λ), etc. and loops need to be cutoff at Λ. This induces an explicit Λ

dependence plus higher derivative terms of order k2/Λ2. However, the sum of all the
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diagrams will be independent of Λ. Indeed cs(Λ), etc. should be really thought of as one-

loop counterterms. Upon carefully choosing the counterterms cs(Λ), etc., any Λ dependence

cancels apart from terms in k/Λ that should be removed by higher derivative corrections in

the stress tensor that we neglected. In order to resolve such error with the least effort, we

will choose the counterterms at a fixed cutoff in such a way as to have the theory agree with

observations at a certain renormalization scale kren., and then we will extrapolate our results

to Λ → ∞, effectively letting the residual terms in k/Λ vanish. In this Λ → ∞ regime,

the loop term gets dominated by the regime in which one of the modes has wavenumber

of order the non-linear scale, while the other has a wavenumber of order of the external

wavenumber. In this way, loop terms scale as one-power of δl as the counterterm.4 At this

point, the expansion parameter of the EFT will be δl ∼ k2/k2NL evaluated at the scale of

the external modes, with no residual Λ dependence even in the expansion parameters.

Again, this is very similar to what happens when one computes loop corrections in the

Chiral Lagrangian. After regulating the chiral theory with a cutoff Λ, there are naively

two expansion parameters. If E is the energy scale of the process, we have E/Fπ and E/Λ.

After renormalization and by sending Λ → ∞, we are left only we E/Fπ as an expansion

parameters.

In summary, the expansion parameter of the EFT is δ
1/2
l ∼ (k/kNL), where k is the

typical wavenumber of the external modes. Loops in the EFT, counterterms and higher-

derivative terms scale as δl. Stochastic terms start contributing at order δ
3/2
l .

3.2 One-loop perturbation theory

We are now ready to implement perturbation theory for the power spectrum at quartic

order in δl, that is at one-loop. At this order, the equations we are going to solve are the

ones in (3.1) with ∆J and the . . . terms neglected.

Let us write the equation for the vorticity wi
l = ǫijk∂jvk. Neglecting the stochastic

terms that we argued are small, we have

(

∂

∂t
+H − 3c2sv

4Ha2
∂2

)

wi
l = ǫijk∂j

(

1

a
ǫkmnv

m
l wn

l

)

. (3.10)

In linear perturbation theory the vorticity is driven to zero, and this occurs even the more

so at this order in perturbation theory, as the source is proportional to wl. While at

higher order one could expect vorticity to be generated, at this order, and therefore for the

purposes of this paper, we can take it to be zero. This means that we can work directly

with the divergence of the velocity

θl = ∂iv
i
l (3.11)

4Another kinematically allowed possibility is for the modes to have both wave numbers close to the non-

linear scale, but slightly different so that their sum is equal to the external wavenumber ~k. This contribution

would naively scale as (δl)
0
∼ 1. However this contribution in this regime scales as the stochastic term δ

3/2
l .
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Using a as our time variable, the equations (3.1) reduce to

Hδ′l + θl = −
∫

d3q

(2π)3
α(~q,~k−~q)δl(~k−~q)θl(~q) , (3.12)

Hθ′l +Hθl +
3

2

H2
0Ωm

a
δl − c2sk

2δl +
c2vk

2

H θl = −
∫

d3q

(2π)3
β(~q,~k − ~q)θl(~k − ~q)θl(~q) ,

where H = a−1∂a/∂τ , subscript 0 for a quantity means that the quantity is evaluated at

present time, we have set a0 = 1, ′ represents ∂/∂a and

α(~k, ~q) =

(

~k + ~q
)

· ~k
k2

, β(~k, ~q) =

(

~k + ~q
)2

~k · ~q

2q2~k2
. (3.13)

As we discussed, the parameters cs, cbv and csv are time dependent and must be measured

in the simulations as a function of time. For the purposes of this paper, we will make the

simplifying assumption that their time dependence can be inferred in perturbation theory.

In other words, we will measure them at one time and deduce their values at different times

by perturbation theory.5

3.2.1 Perturbative solutions

Since the correlation function of matter overdensities is small at large distances, we can

solve the above set of equations (3.12) perturbatively in the amplitude of the fluctuations.

For the computation of the power spectrum at one loop, it is enough to solve these equations

iteratively up to cubic order. Order by order, the solution is given by convolving the

retarded Green’s function associated to the linear differential operator with the non-linear

source term evaluated on lower order solutions. At second order we obtain

δ
(2)
l (~k, a) =

1

16π3D(a0)2
(3.14)

[(∫ a

0
dãG(a, ã)ã2H2(ã)D′(ã)2

)(

2

∫

d3qβ(~q,~k − ~q)δs1(~k − ~q)δs1(~q)

)

+

(∫ a

0
dãG(a, ã)

(

2ã2H2(ã)D′(ã)2 + 3H2
0Ωm

D(ã)2

ã

))

×
(∫

d3qα(~q,~k − ~q)δs1(~k − ~q)δs1(~q)

)]

.

Let us explain some of the relevant expressions that appear here. G(a, ã) is the retarded

Green’s function for the second order linear differential operator associated with δ that is

obtained after substituting θ in the second equation of (3.12) with the value obtained from

5As we will see, these parameters need to cancel the Λ dependence associated to the regularized loops.

The part of these parameters that depends on Λ can be therefore reliably inferred in perturbation theory.

However, the part of these parameters that is Λ-independent and that represents the finite contributions

should be measured in simulation or in observation. We will assume that the time dependence for these two

components is the same. We will check that this is an accurate approximation in an upcoming paper [30].

For this approximation, we stress that since these are 1-loop terms, it is important to know them up to a

relative factor of order δl ≪ 1.
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the first, and linearizing. In doing this, it is important to neglect all the terms of order c2s
because, in our power counting, they count as non-linear terms. This is given by

− a2H2(a)∂2
aG(a, ã)−a

(

2H2(a)+aH(a)H′(a)
)

∂aG(a, ã)+3
ΩmH2

0

2a
G(a, ã) = δ(a−ã) ,

G(a, ã) = 0 for a < ã .

(3.15)

For a ΛCDM cosmology the result can be expressed6 as a hypergeometric function, although

its form is not particularly illuminating. For all calculations presented here it is sufficient

to numerically solve the above differential equation. This can be easily accomplished by

replacing the δ(a − ã) on the r.h.s. of the first equation with zero, but starting with the

boundary conditions being G(a, ã)|a=ã = 0, and ∂
∂aG(a, ã)|a=ã = 1/(ãH(ã))2 . In principle,

it is possible to include in the linear equations that determine the Green’s function and

the growth functions also the higher-order linear terms proportional to c2s and c2v. Doing

this amounts to resumming the effect of these pressure and viscous terms. The resulting

linear equation can be easely solved numerically, finding for example that the growth

factor becomes k-dependent, being the more suppressed the higher is the wavenumber [22].

However, it is not fully consistent to resum these terms without including the relevant

loop corrections.

D(a) represents the growth factor at scale-factor-time a. In particular, we have written

the linear solution as

δ
(1)
l (k, a) =

D(a)

D(a0)
δs1(~k) , (3.16)

with a0 being the present time, and δs1 representing a classical stochastic variable with

variance equal to the present smoothed power spectrum

〈δs1(~k)δs1(~q)〉 = (2π)3δ(3)(~k + ~q)P11,l(k,Λ) , (3.17)

with P11,l(k) being the smoothing of the linearly computed power spectrum at present time

P11,l(k,Λ) = WΛ(k)
2P11,lin(k) . (3.18)

A very useful simplification is due to the fact the growth factor and the Green’s func-

tion are k-independent. This is due to the fact that at linear level we can neglect the

pressure and viscosity terms that would otherwise induce a k-dependence. Because of this,

the convolution integrals that would couple time integration and momentum integration

nicely split into separate time integrals and momentum integrals that can be simply per-

formed separately. We have tried to underline this in (3.14) by adding suitable parenthesis.

Iterating, we obtain the solution for δ at cubic order δ(3). For brevity, we report it in ap-

pendix B. Notice that in the terms in δ(2) (and δ(3)) we have neglected the contribution

from the pressure and the viscosity, which count as third order terms. They give

δ
(3)

l, c2
comb

(~k, a) = − k2

D(a0)

∫ a

0
dã G(a, ã) c̄2comb(ã)D(ã) δs1(~k) , (3.19)

6Using, e.g., Mathematica’s “DSolve” function.
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where c2comb is given by

c2comb(a) = c2s(a) + a
D′(a)

D(a)
c2v(a) , (3.20)

and it is the combination that is relevant at one-loop order. For the terms multiplying c2s
and c2v in the second equation of (3.12), we can substitute the linear relation

θ
(1)
l (a,~k) = −aH∂aδ

(1)
l (a,~k) = −aHD′(a)

D(a)
δ
(1)
l (a,~k) . (3.21)

Notice that δ(2) and δ(3) are the same as the standard ones used in perturbation

theory, with just two differences. The first is the important smoothing of the sourcing

power spectrum. This makes the convolution integral that we are going to perform next

rapidly converging, but also Λ dependent. The second difference is of a more technical

nature, and relies on the fact that in standard perturbation theory the time dependence

of the non-linear solution is approximated by the linear growth factor D elevated to the

power 2 and 3 for δ(2) and δ(3), while the momentum dependence is approximated to be

the same momentum dependence as in standard EdS universe. This procedure is exact in

EdS, but not so in other space times. Some studies [19] (see also [33–35]) have checked

that this is correct up to percent level on the full power spectrum. Since however percent

accuracy is the target of next generation experiments, we decide to perform the correct

computation, which is not so very complicated to set up in any case. For the purpose of

comparing with the literature and to gain familiarity with the EFT setup with simpler

formulas, we provide results obtained with this approximate treatment of the perturbed

solutions in appendix C.

3.2.2 Diagrams

By contracting the non-linear expression we obtain the non-linear corrections. There are

three diagrams at order δ4l . After including the linear contribution, we have

〈δl(~k, a0)δl(~q, a0)〉 = (2π)3δ(3)(~k+~q)
(

P11(k, a0)+P22(k, a0)+P13(k, a0)+P13, c2
comb

(k, a0)
)

(3.22)

with

P11(k, a0) = 〈δ(1)(~k, a0)δ(1)(~q, a0)〉′ , (3.23)

P22(k, a0) = 〈δ(2)l (~k, a0)δ
(2)
l (~q, a0)〉′ ,

P13(k, a0) = 2〈δ(3)l (~k, a0)δ
(1)
l (~q, a0)〉′ ,

P13, c2
comb

(k, a0) = 2〈δ(3)
l, c2

comb

(~k, a0)δ
(1)
l (~q, a0)〉′ ,

where the 〈. . .〉′ means that we have removed a factor of (2π)3δ(3)(~k+ ~q) from the expecta-

tion value. P11 represents the unsmoothed linear power spectrum, as the linear theory does

not need to be regularized. The term P13, c2
comb

is supposed to remove the Λ dependence

that comes from P13. It is a counterterm diagram. Strictly speaking, we would need a

counterterm diagram also from P22, which is provided by the two-point function of the

– 18 –



J
H
E
P
0
9
(
2
0
1
2
)
0
8
2

stochastic source ∆J i in (3.1). As we discussed, this term is supposed to count as a δ5l
term, and therefore we neglect it. This means that the Λ dependence associated with P22

is very weak at this order in the calculation. The full stochastic term will be included in a

following paper [30].

The expressions for P22, P13, P13, c2
comb

are given by

P22(k, a0) =
k3

16π2D(a0)4

∫

dq d(cos θ)
1

(k2 − 2 cos(θ)k q + q2)2
P11,l(q,Λ)P11,l(|~k − ~q|,Λ)

[(∫ a0

0
dã ã2G(a0, ã)H2(ã)D′(ã)2

)

4 cos(θ)(k − cos(θ)q)

+3H2
0Ωm

(∫ a0

0
dã G(a0, ã)

D(ã)2

ã

)

(cos(θ) (k − 2 cos(θ)q) + q)

]

×
[(∫ a0

0
dã ã2G(a0, ã)H2(ã)D′(ã)2

)

(

3k2 cos(θ)− k q
(

4 cos(θ)2 + 1
)

+ 2 cos(θ)q2
)

+3H2
0Ωm

(∫ a0

0
dã G(a0, ã)

D(ã)2

ã

)

(

k2 − 2 cos(θ)k q + q2
)

]

, (3.24)

where cos(θ) = ~k · ~q/(k q);

P13(k, a0) = − 2 k3

96(2π)2D(a0)3
P11,l(k,Λ) (3.25)

∫ ∞

0

dr

r3
[

12r7D4 − 24rD5 + 4r3 (16D1 + 8D2 + 4D3 − 3D4 + 24D5)

+8r5 (4D2 + 2D3 − 6D4 + 3D5 − 4D6)

+3
(

r2 − 1
)3 (

r2D4 + 2D5

)

log

(

(1− r)2

(1 + r)2

)]

P11,l(k r,Λ) ,

where D1,...,6 are given in appendix B, and finally

P13, c2
comb

(k, a0) = −2
k2

D(a0)

∫ a0

0
dã G(a0, ã) c

2
comb(ã)D(ã)P11,l(k,Λ) . (3.26)

The convolution integrals in P22 and P13 are the sign that these are one loop diagrams.

P13, c2
comb

does not have a convolution integral as it is a one-loop counterterm. The diagrams

are pictorially represented in figure 1. Since α(~k,−~k) = β(~k,−~k) = 0, there are no non-

1PI diagrams. Notice that in P13 and P22 we have already carried out at least a part of

the angular integration. The sign of the P13, c2
comb

in (3.26) is also quite intuitive. For

positive cs or cv, the gravitational collapse is slowed down, and so this contribution tends

to decrease the gravitational collapse.

3.2.3 Cutoff-(in)dependence

Each diagram is dependent on the cutoff Λ: P22 and P13 through the smoothed linear power

spectrum, while P13, c2
comb

depends on Λ through c2comb, which is Λ dependent because it

arises from integrating out the short distance fluctuations. The Λ dependence of P13 is to

be cancelled by P13, c2
comb

, while the one of P22 from the stochastic fluctuations.

– 19 –



J
H
E
P
0
9
(
2
0
1
2
)
0
8
2

δ(1)

x

x1 x2 t = tfinal

δ
(2) δ(2)

δ(1) δ(1) δ(1)

t

δ(1)

x

x1 x2 t = tfinal

δ(1)

δ(2)

δ(3)

δ(1) δ(1)

t

δ(1)

x

x1 x2 t = tfinal

c
2
comb

δ(3)

δ(1)

t

Figure 1. Diagrammatic representation of P22 (top left), P13 (top right), and P13, c2
comb

(bottom).

Continuous green lines represent Green’s functions, red dashed lines represent free fields, and red

crosses circled by a dotted blue line represent correlation among free fields.

Consider the sum of the P13 and P13, c2
comb

terms. In order for this sum to be Λ

independent, both must have the same k-dependence in the relevant regime. By inspection

of (3.26), we see that P13, c2
comb

goes as k2, which implies that P13 should behave in the

same way in this regime. This is in fact the case, as can be readily verified by taking the

k → 0 limit of (3.25). In particular, we can define a Λ-independent renormalized parameter
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c comb;ren. defined at a renormalization scale kren. and a Λ-dependent counterterm parameter

c2comb;ctr.(Λ) such that

c2comb(a,Λ) = c2comb;ren.(a, kren.) + c2comb;ctr.(a,Λ) . (3.27)

c2comb;ctr.(a,Λ) must have the same time and Λ-dependence of P13, while c comb;ren.(a, kren.)

is determined by matching to simulations or to observations at a specific k = kren.. The

time dependence of c2comb;ren.(a) could in general be different from the one of c2comb;ctr.(a,Λ).

However, for the purposes of this paper, we can approximate them to be equal, and we will

check this approximation in a forthcoming paper [30]. We can therefore extract the time

dependence of c2comb(a,Λ) from the k → 0 limit of P13. We obtain

c2comb;ctr.(a,Λ) = c2comb;ctr.(a0,Λ)
Dc2

comb
(a)

Dc2
comb

(a0)
, (3.28)

where

Dc2
comb

(a) =
1

a

[(

63H4
0Ω

2
mF1(a) + 12H2

0ΩmF2(a) + 52 a3H2(a)D′(a)2
)

(3.29)

−4 a3H2(a)
D′(a)

D(a)

(

27H2
0ΩmF3(a) + 28F4(a)

)

]

.

and

F1(a) =

∫ a

0
dã G(a, ã)

D(ã)2

ã
, F2(a) =

∫ a

0
dã G(a, ã) ã2D′(ã)2H2(ã) , (3.30)

F3(a) =

∫ a

0
dã ∂aG(a, ã)

D(ã)2

ã
, F4(a) =

∫ a

0
dã ∂aG(a, ã) ã2D′(ã)2H2(ã) .

A plot of the time dependence of the speed of sound is given in figure 2.

We determine the value of c2comb;ctr.(a0,Λ) in two different independent ways: one

involving fitting to observation of the power-spectrum derived from simulations, and the

other involving direct measurement from simulation. In the first, simplest, way, we deter-

mine c2comb;ctr.(a0,Λ = ∞) by matching the one-loop EFT power spectrum at k = kren. to

the power-spectrum extracted from simulations (or directly from precise observations in

the future!). We can do this at various values of Λ, but we take the Λ → ∞ limit in order

to drive to zero any effect from higher derivative terms down by powers of k/Λ. At this

point, we can derive c2comb(a0,Λ 6= ∞) by running the value at Λ = ∞ down to a finite Λ.

The formula is given by

c2comb(a0,Λ 6= ∞) = c2comb(a0,Λ=∞)+ lim
kext→0

[

(

P13(kext, a0,Λ=∞)−P13(kext, a0,Λ)
)

×
(

−2
k2ext
D(a0)

∫ a0

0
dã G(a0, ã)

Dc2
comb

(ã)

Dc2
comb

(a0)
D(ã)P11,l(kext,Λ)

)−1 ]

. (3.31)

The limit kext → 0 is necessary in order to suppress higher derivative terms down by

powers of kext/Λ. The running of c
2
comb is plotted in figure 3. c2comb(a0,Λ = ∞) ≃ 6.2×10−7
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

a

c2
co

m
b
H1

0
-

6
c2
L

Time evolution of c2
comb HL=¥, kren=.16 L

Figure 2. Time dependence of c2comb as inferred using the correct time dependence from P13 and

instead using the approximate time dependence derived from the growth functions (see appendix C).

Starting from very early times, we see that c2comb grows as a functions of time, peaks at about

a ≃ 0.7, and then decreases near the present epoch, probably as due to the onset of dark energy.

c2comb is positive, implying that this term tends to slow down the collapse of structures.

and is the value obtained by fitting to data using kren. = 0.16h Mpc−1.7 We see that as Λ

decreases, we integrate out more and more modes, and c2comb grows. We see that the result

matches with the one obtained by the second method for measuring c2comb, that is by using

N -body simulation to extract directly the correlations in (2.26). We perform measurements

at Λ = 1/3h Mpc−1 and Λ = 1/6h Mpc−1, and we see that the match is extremely good.

We describe more precisely how these measurements are derived in section 4. We take this

as an extremely promising indication of the strength of our approach.

In order to elucidate the effect of the higher derivative terms, we plot in figure 4 the

value of c2comb(a0,Λ = 1/3), for various values of the external kext. It is only for vary low

kext’s that c
2
comb becomes kext. independent.

Finally, there is a third method in which we could have derived c2comb(a0,Λ). By

keeping Λ finite, we could have fit the analytical results to N -body simulations by including

higher derivative terms proportional to powers of k/Λ. Indeed, unless Λ → ∞, the largest

of these terms are not negligible and need to be included to get the correct c2comb(a0,Λ). A

description of this approach in detail is given in appendix E, and leads to the same results

for c2comb(a0,Λ).

4 Fluid parameters from N -body simulations

If this language of effective field theory is to be born out, we must be able to take the

fundamental theory, integrate away UV effects, and find agreement in terms of the pa-

rameters described above. Fortunately we have, in the form of simulation, exactly those

7It is somewhat interesting to notice that by using csv ∼ 10−7 we find a shear viscosity of order η ∼

20 Pa s, in SI units. This value is very similar to that of some everyday items such as chocolate syrup!
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Figure 3. Running of c2comb as a function of Λ. The purple band contains the region for

the values of c2comb as inferred from matching with the non-linear power spectrum from CAMB

at the renormalization scale k = 0.1h Mpc−1 and k = 0.18h Mpc−1. The dependence on the

renormalization scale is a measure of the importance of higher loops. We see that as Λ → ∞, c2comb

decreases as more and more modes are included within the regime of validity of the EFT. However,

the fact that as Λ = ∞, c2comb 6= 0 is an indication of the fact that the fundamental theory is not

described by a pressureless ideal fluid, but by indeed freely streaming dark matter particles. Data

points with 1σ error bars represent the value obtained from N -body numerical simulations using

the methods described in section 4 using two different smoothing lengths Λ−1. Given the error bars

from numerical evaluation, the measured values are in remarkable agreement with what inferred

from renormalizing using the power spectrum.

0.002 0.005 0.010 0.020 0.050 0.100

0.8

0.9
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1.1
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Dependence of c
2

comb on kext for L=1�3 Hh�MpcL, kren=.16

Figure 4. In this plot we present to values obtained for c2comb as a function of the external

momentum used in (3.31). We see that only as kext → 0, c2comb becomes kext independent. This is

so because at high k any higher derivative terms suppressed by powers of k/kNL are important.
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Figure 5. Measurement of c2comb in the UV with Λ = 1/3 h Mpc−1 and Λ = 1/6 h Mpc−1.

calculations in the fundamental theory. By smearing the positions of simulated particles

with a normalized Gaussian function of width Λ, we are able to introduce a soft UV cutoff

of order 1/Λ. For correlations on scales longer then the cutoff we can directly measure

c2comb corroborating the perturbative analysis presented above.

Specifically we consider random downsamples of positions and velocities of the Con-

suleo simulation8 [31, 32] from 2.7 × 109 particles downsampled to 1, 000, 053 particles

distributed over (420 Mpc)3. Even this incredibly coarse resolution allows us to measure

the following fields δl, Θl, ∂
2δl, ∂

2Θl, and As to measure c2comb to within standard errors

of 10 percent. While the complexity of the first four fields go linearly in the number of

particles, As is more expensive. The fact that we can achieve such consistency with such

a small number of particles is not only remarkable, but numerically quite convenient. We

describe the details of the analysis in appendix D.1, and here simply provide a summary

of the results.

The spatial dependence of measured c2comb are plotted for Λ = 1/3h Mpc−1 and Λ =

1/6h Mpc−1 in figure 5. These regions were chosen to maximize numerical stability as

described in appendix D. Fitting a constant to the value of c2comb for the displayed values

after the UV cutoff gives in units of c2, we obtain

c2comb(Λ = 1/3) = 0.96± .1× 10−6 , (4.1)

c2comb(Λ = 1/6) = 1.26± .1× 10−6 .

The RG flow between the two measured values is consistent with the prediction from

perturbation theory as seen in figure 3. Furthermore the measured value from Consuelo

agrees nicely with that predicted from matching to the nonlinear CAMB power spectrum.

5 Results

The O(δ4l ) result of the computation of the power spectrum with our EFT is presented in

figure 6. On top, we plot the ratio of the one loop power spectrum compared with the non-

8The simulation parameters are: Ωm = 0.25, ΩΛ = 0.75, h = 0.7 (H = 70 km/s/Mpc), σ8 = 0.8, and

ns = 1 with measurements described taking place at z = 0.
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linear fit provided by the CAMB software with high precision settings, evaluated with the

following cosmological parameters: ΩΛ = 0.75 ,Ωm = 0.25, Ωb = 0.04, h = 0.7, ns = 1.

The linear power spectrum is also obtained from CAMB with high precision settings. We

take these data for all perturbative calculations done in the paper. Often in the literature

the results of perturbation theory are plotted as ratio of the perturbation theory result

versus a no-wiggle power spectrum. In this way the oscillatory features are still present in

the plot, though they come mostly from the linear theory. We give this in the bottom part

of the plot.

This plot is obtained after renormalizing the EFT prediction to match the power

spectrum at kren. = 0.16hMpc−1. In detail, we perform the calculation at several increasing

values of Λ, we choose the value of c2comb(a0,Λ) to match the simulations’ non-linear output,

and then we extrapolate to Λ → ∞. This gives us c2comb(a0,Λ = ∞) ≃ 6.2× 10−7. Notice

that naive considerations of virialization gave an estimated value for c2comb of order 10−5 [5].

The obtained smaller numerical value fits well with the decrease in the transfer functions

for wavenumbers that are higher than the equality scale.

The result for the power spectrum agrees at percent level with the CAMB non-linear

fit up to k ≃ 0.24h Mpc−1, where the EFT prediction begins to be smaller than the N -

body simulation result. Results obtained with the approximate time dependence described

in appendix C are close to these ones, at percent level. As discussed in appendix C, it is

potentially dangerous to trust this approximation at high k’s for percent level precision,

and luckily it is not very hard at all to perform the correct perturbation theory. We

expect that the inclusion of the stochastic pressure and of higher order diagrams should

improve the fit in the UV, possibly allowing us to fit the simulations to even higher k’s.

Notice how the counterterm P13, c2
comb

decreases the power spectrum, compensating for the

overshooting of SPT. It is difficult to interpret the percent disagreement that we have at

moderate slow scales such as at k ≃ 0.12h Mpc−1. At face value, it looks like that the

computed power spectrum presents oscillations that are too large. These disagreements

might be improved with the inclusion of higher order terms, or it might even be that

at this level of precision, the results from the CAMB non-linear fit or from the N -body

simulations might not be precise enough. These same improvements should reduce also the

dependence on the renormalization scale: by changing the renormalization scale our results

change by about 2%, at k ∼ 0.24h Mpc−1. This dependence can be taken as a measure of

the contribution from higher order terms.

6 Conclusions

Large scale structure surveys have the potential of becoming the next leading observational

window on the physics of the early universe, potentially greatly improving what we are

already learning from the CMB. Large Scale Structure physics is however much more

complicated than the CMB due to the presence of large matter clustering at small scales.

Since at non-linear level different scales are coupled, these non-linearities affect even large

scale perturbations that are mildly non linear and so potentially treatable in a perturbative

matter. In this paper we have developed the effective field theory of cosmological large scale
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Figure 6. The order δ4l prediction from our EFT is compared with the CAMB non-linear output

in the top, and to the no-wiggle power spectrum in the bottom, as well with the linear theory and

Standard Perturbation Theory (SPT). The results from the EFT agree at percent level with the

non-linear theory up to k ≃ 0.24h Mpc−1, when some high scale power seems to be missing. Results

should improve already by going to δ5l order. The results are remarkably better than using SPT.

The no-wiggle power spectrum we use is given by Pδδ,No−Wiggle = 5.1·106q log2(13q+2e)/(54 q2(14+

731/(457q + 1)) + log(13q + 2e))2.

structures in order to achieve a reliable predictability. Calculations in the effective theory

are performed in k/kNL. The effective field theory is a cosmological fluid description for cold

dark matter, and by extension all matter including baryons which trace the dark matter.

The microphysical description is in terms of a classical gas of point particles, which we have

– 26 –



J
H
E
P
0
9
(
2
0
1
2
)
0
8
2

smoothed at the level of the Boltzmann equation. We have exhibited and computed the

various couplings that appear in the effective field theory, namely pressure and viscosity

by matching to N -body simulations, finding c2s ∼ 10−6 c2, etc. We have developed the

perturbative expansion for the power spectrum, which we have carried out at the O(δ4l ).

The fluid parameters arise from UV modes and alter standard perturbation theory. We

have found that the corrections lead to a power spectrum in percent agreement with the

full nonlinear spectrum as obtained by CAMB up to k ≃ 0.24h Mpc−1.

It is a peculiar coincidence that k ≃ 0.24h Mpc−1 is also the maximum k at which the

popular technique of Renormalized Perturbation Theory (RPT) [10] works. While RPT is

a very nice technique to compute non-linear corrections to the power spectrum, we stress

that our approach is different at a qualitative and a quantitative level. At a qualitative

level, RPT tries to solve, as exactly as possible, non-linear equations for a pressureless

ideal fluid. In our approach, instead, we try to solve non-linear equations for a different

fluid. This has quantitative effects, as it is shown from the fact that as Λ → ∞ our

effective parameters like c2comb do not vanish. What is more important about our EFT is

that in can be improved. By performing higher order computations and by adding suitable

counterterms, in principle arbitrary precision for reconstructing the power spectrum, or

indeed any dark matter observables, can be achieved by going to a sufficiently high order

in perturbation theory, on scales k . kNL. Techniques such as RPT or the renormalization

group approach [16] for example are still very nice techniques to perturbatively solve some

non-linear equations, resumming many diagrams. It would be interesting to apply those

techniques to solve the equations of our EFT. We leave this to future work.

The effective field theory approach to large scale structure formation is complimentary

to N -body simulations by providing an elegant fluid description. This provides intuition for

various nonlinear effects, as well as providing computational efficiency, since the numerics

required to measure the fluid parameters are expected to be computationally less expensive

than a full scale simulation. Indeed we are able to achieve excellent agreement with the

small down-sample of the full simulation we examined here. Of course, since the couplings

are UV sensitive, it still requires the use of some form of N -body simulation to fix the

physical parameters, either by matching to the stress-tensor directly or to observables.

But this matching is only for a small number of physical parameters at some scale and

then the constructed field theory is predictive at other scales.

There are several possible extensions of this work. A first extension is to go beyond

the one-loop order to two-loop, or higher. This will require the measurement of several new

parameters that will enter the effective stress-tensor at higher order, including its stochastic

terms. Another extension is to compute the velocity fields and to include the small but

finite contributions from vorticity, or to compute higher order N -point functions, which can

probe non-Gaussianity. Finally, another extension is to consider different cosmologies; in

this work we have presented results on dark energy in the form of a cosmological constant.

But one could equally consider other models for dark energy. This would presumably

alter the value of the fluid parameters in a way that could be measured either from new

simulations or determined by observation. Hopefully, our effective field theory for large

scale structures will help us use large scale structure surveys to uncover the physics of the

beginning of the universe.
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A UV stress tensor directly from short modes

It is useful to write down the expression (2.18) directly in terms of short wavelength fluc-

tuations. In this appendix we provide these expressions. We define

σij
s ≡ m−1a−5

∫

d3p (pi − pil(x))(p
j − pjl (x))f(x,p)

=
∑

n

m

a3
(vin − vil(xn))(v

j
n − vjl (xn)) δ

(3)
D (x− xn) , (A.1)

φs,n ≡ φn − φl,n , (A.2)

∂iφs =
∑

n

∂iφs,n , (A.3)

wij
s ≡ ∂iφs ∂jφs −

∑

n

∂iφs,n ∂jφs,n , (A.4)

where pil(x) ≡ mavil(x). Note that σij
s 6= σij − σij

l , but they are related as follows

σij
l =

[

σij
s

]

Λ
+
[

ρmvilv
j
l

]

Λ
+
[

vil(π
j − ρmvjl ) + vjl (π

i − ρmvil)
]

Λ
. (A.5)

The second term is approximately ρlv
i
lv

j
l (so it approximately cancels with −ρlv

i
lv

j
l in κijl )

and the final term is small (as it is an overlap between short and long modes). Following

the methods of [5] we obtain

κijl =
[

σij
s

]

Λ
+

ρl∂kv
i
l∂kv

j
l

Λ2
+O

(

1

Λ4

)

. (A.6)

Similarly, one can prove that Φij
l satisfies

Φij
l = − [wkk

s ]Λδ
ij − 2[wij

s ]Λ
8πGa2

+

∂m∂kφl∂m∂kφlδ
ij − 2∂m∂iφl∂m∂jφl

8πGa2Λ2
+O

(

1

Λ4

)

. (A.7)
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So altogether we obtain the effective stress-tensor

[

τ ij
]

Λ
=
[

τ ijs
]

Λ
+
[

τ ij
]∂2

, (A.8)

where

[

τ ijs
]

Λ
=
[

σij
s

]

Λ
− [wkk

s ]Λδ
ij − 2[wij

s ]Λ
8πGa2

, (A.9)

[

τ ij
]∂2

=
ρl∂kv

i
l∂kv

j
l

Λ2
+

∂m∂kφl∂m∂kφlδ
ij − 2∂m∂iφl∂m∂jφl

8πGa2Λ2
+O

(

1

Λ4

)

. (A.10)

We see that [τ ij ]Λ is sourced by short wavelength fluctuations plus higher derivative cor-

rections.

Note that by taking the derivative ∂j this leading piece becomes

∂j [τ
ij
s ]Λ = ∂j

[

σij
s

]

Λ
+ [ρs∂iφs]Λ , (A.11)

with

[ρs∂iφs]Λ =
∑

n 6=n̄

ma−3∂iφs,n̄(xn)WΛ(x− xn)− [ρl∂iφs]Λ , (A.12)

where the first term in (A.12) is given by

∑

n 6=n̄

ma−3∂iφs,n̄(xn)WΛ(x− xn) (A.13)

=
∑

n 6=n̄

m2G

a4
(xn − xn̄)

i

|xn − xn̄|3
(

Erfc

[

Λ|xn − xn̄|√
2

]

+
4π|xn − xn̄|

Λ2
WΛ(xn − xn̄)

)

WΛ(x− xn) ,

and the second term in (A.12) can be expanded as

[ρl∂iφs]Λ = − 1

2Λ2
ρl∂i∂

2φl + . . . , (A.14)

and this term should be included since it involves the background piece ρb, and so it includes

a first order contribution.
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B Expression for δ(3)

The iterative solution for δ(3) is given by

δ
(3)
l (~k, a) =

1

256π6D(a0)3
(B.1)

[

4D1(a)

(∫

d3q

∫

d3pβ(~p, ~q − ~p)δs1(~q − ~p)δs1(~p)β(~q,~k − ~q)δs1(~k − ~q)

∫

d3q

∫

d3pβ(~p,~k − ~q − ~p)δs1(~k − ~q − ~p)δs1(~p)β(~q,~k − ~q)δs1(~q)

)

+

2D2(a)

∫

d3q

∫

d3pβ(~p,~k − ~q − ~p)δs1(~k − ~q − ~p)δs1(~p)α(~q,~k − ~q)δs1(~q) +

D3(a)

∫

d3q

∫

d3pα(~p,~k − ~q − ~p)δs1(~k − ~q − ~p)δs1(~p)α(~q,~k − ~q)δs1(~q) +

D4(a)

∫

d3q

∫

d3pα(~p, ~q − ~p)δs1(~q − ~p)δs1(~p)α(~q,~k − ~q)δs1(~k − ~q) +

2D5(a)

(∫

d3q

∫

d3pα(~p, ~q − ~p)δs1(~q − ~p)δs1(~p)β(~q,~k − ~q)δs1(~k − ~q)

∫

d3q

∫

d3pα(~p,~k − ~q − ~p)δs1(~k − ~q − ~p)δs1(~p)β(~q,~k − ~q)δs1(~q)

)

+

2D6(a)

∫

d3q

∫

d3pβ(~p, ~q − ~p)δs1(~q − ~p)δs1(~p)α(~q,~k − ~q)δs1(~k − ~q)

]

,

where Di’s represent the result of the integration of the Green’s functions and the other

time-dependent coefficients. They are given by

D1 =

∫ a

0
dã ã2G(a, ã)H2(ã)D′(ã)

∫ ã

0
dâ â2H2(â)∂ãG(ã, â)D′(â)2 , (B.2)

D2 = 3H2
0Ωm

∫ a

0
dã

G(a, ã)

ã

∫ ã

0
dâ â2H2(â)D′(â)2D(ã)G(ã, â) + 2D1 ,

D3 =

∫ a

0
dã

G(a, ã)

ã
∫ ã

0
dâ

1

â

[

3H2
0ΩmD(â)2+2â3H2(â)D′(â)2

][

3H2
0ΩmD(ã)G(ã, â)+2ã3H2(ã)D′(ã)∂ãG(ã, â)

]

,

D4 = D3 − 4

∫ a

0
dã ã2G(a, ã)H2(ã)D(ã)D′(ã)2 ,

D5 = 3H2
0Ωm

∫ a

0
dã ã2G(a, ã) H2(ã)D′(ã)

∫ ã

0
dâ D(â)2

∂ãG(ã, â)

â

−2

∫ a

0
dã ã2G(a, ã)H2(ã)D(ã)D′(ã)2 + 2D1 ,

D6 = D2 + 2

∫ a

0
dã ã2G(a, ã)H2(ã)D(ã)D′(ã)2 .

Notice again the great simplification that occurs due to the fact that the growth factors

and the Green’s function do not depend on k, so that the time integrals and the momentum

integrals decouple.
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C O(δ4
l
) power spectrum with approximate treatment

In the main part of the paper, we performed perturbation theory with our EFT in a rigorous

and exact way. However, it is possible to perform an approximate treatment that simplifies

quite a bit the formulas. In this way it is simpler to follow the derivation and we therefore

present it here.

If the universe were to be EdS, then the solution for δ(n) would be δ(n) ∝ an ≃ D(a)n.

Thanks to this, all formulas simplify remarkably. Our universe is of course not of the

EdS form, because of the cosmological constant. But it is tempting to extend the results

obtained in EdS to the ones in ΛCDM universe by replacing in the EdS formulas the EdS

growth factor with the growth factor in ΛCDM. In this we obtain

〈δl(~k, a0)δl(~q, a0)〉1−loop ≃ (2π)3δ(3)(~k + ~q)
(

P̃22(k) + P̃13(k) + P̃13, c2
comb

(k)
)

. (C.1)

Here P̃22 and P̃13 are the time-independent one loop contributions given by

P̃22(k) =
k3

392π2

∫ ∞

0
dr

∫ 1

−1
dx

(

−10rx2 + 3r + 7x
)2

(r2 − 2rx+1)2
P11,l(kr,Λ)P11,l(k

√

r2 − 2rx+1,Λ) ,

P̃13(k) =
k3

1008π2
P11,l(k,Λ) (C.2)

∫ ∞

0
dr

(

3

r3
(

r2 − 1
)3 (

7r2 + 2
)

log

∣

∣

∣

∣

r + 1

1− r

∣

∣

∣

∣

− 42r4 + 100r2 +
12

r2
− 158

)

P11,l(kr,Λ) .

The counterterm contribution is given by

P̃13, c2
comb

(k) = −2

9

c2comb(a0)D(a0)
2

H2
0D

′(a0)2a20
k2P11,l(k,Λ) , (C.3)

where the time dependence of c2comb can be inferred in perturbation theory from (2.26)

to be

c2comb(a) = c2comb(a0)
H2(a)D′(a)2a2

H2
0D

′(a0)2a20
. (C.4)

Notice that, within this approximation, the k dependence and the time dependence of

c2combδ
(1)
l is the same as the one of the source of δ

(3)
l in the high k limit.

This approximation is quite a good numerical approximation, and here below in figure 7

we present results of comparisons for P22 and P13, where we see that the disagreement is

at percent level. This ratio is plotted in figure 8. Notice that at k ∼ 0.24 Mpc−1 where

the non-linear corrections are of order of a few ten percents, a percent error in the loop

calculation leads to an error that is dangerously close to one percent. Therefore, for percent

precision, using this approximate treatment at the high k’s that we can reach with the EFT

corresponds to pushing the boundaries of safety. It is further important to stress that this

is not a parametrically good approximation in δl, as is our loop expansion. As noted in [33–

35], this is an expansion in the smallness of the ratio Ωm(a)/(∂ logD/∂ log a)2. A good

fit is (∂ logD/∂ log a)2 ∼ Ω(a)1.2, explaining the possibility to make this approximation.

Luckily, we find it not so hard to implement directly the correct perturbation theory, which

is the one we present in this paper.
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0.2 0.4 0.6 0.8 1.0
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4/ P13,EFTHaL at k=.1 (h/Mpc)

0.2 0.4 0.6 0.8 1.0

0.9985

0.9990

0.9995

1.0000

a

P22,SPTHDHaL�DH1LL
4/P22,EFTHaL at k=.1 (h/Mpc)

Figure 7. We plot the ratio as a function of time of P13 and P22 as obtained using the rigorous

time dependence and the approximate one. The ratio goes to 1 at early times when dark energy is

irrelevant and the approximate treatment becomes exact. The results at redshift zero agree well,

at percent level.

0.0 0.2 0.4 0.6 0.8 1.0
1.00

1.05

1.10

1.15

a

WmHaL�Ha D'HaL�DHaLL2

Figure 8. Plot of the ratio Ωm(a)/(∂ logD/∂ log a)2. This being equal to one would justify the

approximations done in this appendix. We see that at late times the difference is quite large. Since

this is a correction to the one-loop term, this error can be acceptable for a one-loop calculation. On

the contrary the approximation can become more harmful if one goes to higher loops. The actual

result on the power spectrum of the approximation is even better than what shown in the plot, as

more of the clustering happens before dark energy domination.

D Measuring in N -body simulations

D.1 Efficient calculation

We break the calculation into three parts: the calculation of primary fields, the calcula-

tion of secondary fields, and the calculation of correlations. Primary fields are dependent

solely upon the positions or velocities of the simulation particles, and secondary fields

are dependent upon the primary fields, and we care about correlations between particular

secondary fields.
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The immediate goal is to calculate the following expressions:

c2s(r) =
PAΘ∂

2PδΘ − PAδ∂
2PΘΘ

(∂2PδΘ)2 − ∂2Pδδ∂2PΘΘ
(D.1)

c2v(r) =
PAδ∂

2PδΘ − PAΘ∂
2Pδδ

(∂2PδΘ)2 − ∂2Pδδ∂2PΘΘ
(D.2)

based upon the two-point correlation functions: PIJ(r). These two point correlation func-

tions can be seen as the expectation value of the product of field I with field J , but with

I evaluated at all points a distance r from all points r′:

PIJ(r) ≡ 〈I(~r+ ~r ′)J(~r ′)〉Ω(r′,r),r′ = lim
R→∞

3

16π2R3

∫ R

0
dr′ dΩ′ dΩ r′2 I(~r+ ~r ′) J(~r ′). (D.3)

In the quantities being calculated the overall normalization cancels. The cost of evaluating

each of these fields at all positions is prohibitive, so we approximate these correlations by

measuring some largeN number of pairs of points (pseudo)-randomly chosen but at fixed r:

P̂IJ(r) ≈ N−1
∑

{~ra ′,~rb ′}∈Nset(r)

I(~ra
′) J(~rb

′) (D.4)

where Nset(r) is a set of N pairs of points randomly selected from the space to be separated

by a distance r.

The following are the specific correlation functions used:

PAδ(r) = 〈As(~r + ~r ′)δl(~r
′)〉Ω(r′,r),r′ (D.5)

PAΘ(r) = 〈As(~r + ~r ′)Θl(~r
′)〉Ω(r′,r),r′ (D.6)

Pδδ(r) = 〈δl(~r + ~r ′)δl(~r
′)〉Ω(r′,r),r′ (D.7)

PδΘ(r) = 〈δl(~r + ~r ′)Θl(~r
′)〉Ω(r′,r),r′ (D.8)

PΘΘ(r) = 〈Θl(~r + ~r ′)Θl(~r
′)〉Ω(r′,r),r′ (D.9)

∂2Pδδ(r) = 〈∂2δl(~r + ~r ′) δl(~r
′)〉Ω(r′,r),r′ (D.10)

∂2PδΘ(r) = 〈∂2δl(~r + ~r ′)Θl(~r
′)〉Ω(r′,r),r′ (D.11)

∂2PΘΘ(r) = 〈∂2Θl(~r + ~r ′)Θl(~r
′)〉Ω(r′,r),r′ (D.12)

These are functions of the gravitational short-mode field As, the over density δ, and the

velocity divergence Θ, and relevant spatial derivatives. These fields are to be calculated

from the observed (or simulated) positions and velocities of point-sources at a fixed moment

in time (redshift=0 initially). We smear the observation of the position of these sources

with a gaussian, introducing a (soft) ultraviolet cutoff.

To calculate c2s and c2v in terms of As, δ,Θ, ∂2δ, ∂2Θ we use a number of secondary fields.

While it would be possible to numerically estimate the relative necessary spatial derivatives,
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it is simple enough to explicitly carry the operations out analytically, and treat them as

independent secondary fields, avoiding the introduction of specious numerical error.

[δ](~r) = [ρ](~r)/ρb − 1 , (D.13)

[Θ](~r) = − 1

Ha

3
∑

i=1

[∂ivi](~r) (D.14)

[As](~r) =
1

ρb

3
∑

i=1



[∂i∂iφs](~r) +

3
∑

j=1

[∂i∂jκij ](~r)



 , (D.15)

[∂2δ](~r) =
3
∑

i=1

[∂2
i ρ](~r)/ρb , (D.16)

[∂2Θ](~r) = − 1

Ha

3
∑

i=1,j=1

[∂2
i ∂jvj ](~r) (D.17)

[∂i∂jφs](~r) = [∂i[ρm∂jφ]Λs)](~r) +
4πGa2

2Λ2
([∂iρ](~r)[∂jρ](~r) + [ρ](~r)[∂i∂jρ](~r)) (D.18)

[∂i∂jκij ](~r) = [∂i∂jσij ](~r)− [∂jπi](~r) [∂ivj ](~r)− [∂iπi](~r)[∂jvj ](~r) (D.19)

− [πi](~r) [∂i∂jvj ](~r)− [∂i∂jπi](~r) [vj ](~r)

[vi](~r) = [πi](~r)/[ρ](~r) (D.20)

[∂ivj ](~r) = [∂iπj ](~r)/[ρ](~r)− [πj ](~r)[∂iρ](~r)/([ρ](~r))
2 (D.21)

[∂i∂jvk](~r) = [∂i∂jπk](~r)/[ρ](~r)− [∂iπk](~r)[∂jρ]/([ρ](~r))
2 − [∂jπk](~r)[∂iρ]/([ρ](~r))

2

− [πk](~r)[∂i∂jρ](~r)/([ρ](~r))
2 + 2[πk](~r)[∂iρ](~r)[∂jρ](~r)/([ρ](~r))

3 (D.22)

[∂2
i ∂jvj ](~r) = ([ρ](~r))−4

{

− 6 ([∂iρ](~r))
2 [∂jρ](~r) [πj ](~r) (D.23)

+ 2
(

([∂iρ](~r))
2 [∂jπj ](~r) + [∂i∂iρ](~r) [∂jρ](~r) [πj ](~r)

+ 2 [ρ](~r) [∂iρ](~r) ([∂iπj ](~r) [∂jρ](~r) + [∂i∂jρ](~r) [πj ](~r))
)

− ([ρ](~r))2
(

2 [∂i∂jρ](~r) [∂iπj ](~r) + 2 [∂i∂jπj ](~r) ([∂iρ](~r))

+ [∂i∂iρ](~r) [∂jπj ](~r) + [∂i∂iπj ](~r) [∂jρ](~r) + [∂2
i ∂jρ](~r) [πj ](~r)

)

+ ([ρ](~r))3 [∂i∂i∂jπj ](~r)
}

These are, in turn, defined in terms of the following primary fields

[ρ] (~r) = mΛ3/(a3(2π)3/2)
∑

n∈η(~r)

W (~r − ~rn) (D.24)

[∂iρ] (~r) = mΛ3/(a3(2π)3/2)
∑

n∈η(~r)

∂iW (~r − ~rn) (D.25)

[∂i∂jρ] (~r) = mΛ3/(a3(2π)3/2)
∑

n∈η(~r)

∂i∂jW (~r − ~rn) (D.26)
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[

(∂i)
2∂jρ

]

(~r) = mΛ3/(a3(2π)3/2)
∑

n∈η(~r)

(∂i)
2∂jW (~r − ~rn) (D.27)

[πi] (~r) = mΛ3/(a3(2π)3/2)
∑

n∈η(~r)

W (~r − ~rn)(~vn)i (D.28)

[∂iπj ] (~r) = mΛ3/(a3(2π)3/2)
∑

n∈η(~r)

∂iW (~r − ~rn)(~vn)j (D.29)

[∂i∂jπk] (~r) = mΛ3/(a3(2π)3/2)
∑

n∈η(~r)

∂i∂jW (~r − ~rn)(~vn)k (D.30)

[

(∂i)
2∂jπk

]

(~r) = mΛ3/(a3(2π)3/2)
∑

n∈η(~r)

(∂i)
2∂jW (~r − ~rn)(~vn)k (D.31)

[∂i∂jσij ] (~r) = mΛ3/(a3(2π)3/2)
∑

n∈η(~r)

∂i∂jW (~r − ~rn)(~vn)i(~vn)j (D.32)

[∂i[ρm∂jφ]Λs] (~r) = m2G/a4(Λ/
√
2π)3

∑

n∈η(~r)

(∂iW (~r − ~rn))(ξn)j (D.33)

where µ ≡ rmax and η(~r) = {n s.t. |~r − ~rn| < rmax}, and we have introduced the following

functions for notational convenience:

W (r) ≡ exp

(

−Λ2

2
r2
)

(D.34)

∂iW (r) ≡ −Λ2riW (r) (D.35)

∂i∂jW (r) ≡ Λ2W (r)(Λ2rirj − δijk ) (D.36)

(∂i)
2∂jW (r) ≡ Λ2

(

∂iW (r)
(

Λ2rirj − δijk

)

+W (r)Λ2(1i rj + δijk ri))
)

(D.37)

(ξn)j ≡
∑

m∈ηn

(~rn − ~rm)j Γ(~rn − ~rm)

(

1

|~rn − ~rm|erfc(Λ|~rn − ~rm|/
√
2)

+

√

2

π
ΛW (~rn − ~rm)

)

, (D.38)

where ηn = {m s.t. |rm − rn| < rmax}. We set rmax ≡ 7Λ. It is efficient to precalculate

and store (ξn)j for a given downsample of particles and Λ. Given that each simulation

particle has a limited radius of influence rmax, a variety of parallelization strategies are

available. We have presented these fields, in detail, to emphasize that all such secondary

fields rely on a relatively small number of primary fields, and it is only the primary fields

which need concern themselves with the explicit number of particles down sampled from

the simulation.

D.2 Stability of measurement and region selection

The fluid parameter of interest c2comb is calculated as a ratio of polynomial functions of

correlations. In figure 9 we plot the numerator and denominator of these ratios for Λ =

1/3 (h/Mpc) and Λ = 1/6 (h/Mpc). It is worth noting strong confirmation of the effective

field theory description is how well the numerator and denominator of the c2comb ratio tracks
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Figure 9. The numerator and denominators of c2comb as measured with smoothing parameter

Λ = 1/3 (left) and Λ = 1/6 (right), scaled to similar heights. This allows us to choose a convenient

region of measurement to avoid zero over zero contamination. Precision calculations in the future

should extend measurements farther into the IR.

Figure 10. Prediction of the non-linear power spectrum without the addition of higher derivative

terms, as we send Λ → ∞, normalized to the non-linear power spectrum. We see that if we keep Λ

finite, non-included higher derivative terms that scale as powers of k/Λ are important. Indeed the

results improves as Λ = ∞, which is the correct procedure.

each other. With these sorts of statistical measurements, one should be careful of small

fluctuations causing misleading signal near zero over zero regions. For the measurements

described in the paper we select a region where the denominator is 3σ above zero.

E Renormalizing at finite Λ

The procedure as outlined in the main text involves renormalization for Λ = ∞ at some

chosen kren by fitting P 1−loop
δδ for c2comb(Λ) against observation at that particular kren. The
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Figure 11. Ratio of the value of c2comb(Λ, kren) as obtained from running from c2comb(Λ = ∞, kren)

versus the one obtained by fitting directly the result of the EFT at finite Λ without the inclusion

of higher derivative terms in k/Λ. At low kren, the error is particularly pronounced for Λ = 1/6, as

in that case kren/Λ is not very small. Inclusion of higher derivative terms reduces the mismatch to

few percent.

power spectrum at all other k become predictions of the EFT. We could imagine to perform

the same procedure at finite Λ. In this case, however, higher derivative terms suppressed

by powers of k/Λ should be included. These terms do indeed vanish as Λ → ∞, but at

finite Λ and k they are not negligible. In fact, as shown in figure 10, without the addition

of higher derivative terms, the power spectrum deviates from the Λ = ∞ as k → Λ. One

can indeed check that the values of c2comb that is obtained by fitting in this way is off with

respect to the correct value as obtained from running down to finite Λ the value of c2comb

at Λ = ∞ by about 15%, depending on the cutoff used, see figure 11. Instead, by allowing

for higher derivative terms, the correct value of c2comb is derived.
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